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Lie Symmetry Analysis of Seventh Order Caudrey-Dodd-
Gibbon Equation

Hariom Sharma and Rajan Arora

Abstract. In the present paper, seventh order Caudrey-Dodd-Gibbon (CDG) equa-
tion is solved by Lie symmetry analysis. All the geometry vector fields of seventh
order KdV equations are presented. Using Lie transformation seventh order CDG
equation is reduced into ordinary differential equations. These ODEs are solved by
power series method to obtain exact solution. The convergence of the power series is
also discussed.

1 Introduction

Nonlinear PDEs with high non-linearity have a very deep impact not only in nonlinear
sciences but also in applied mathematics as well as in theoretical physics. The solution of
these equations helps us understand the complete physical phenomena involved therein.
There are number of methods used to solve the nonlinear PDEs; commonly used methods
are exp function method [1], G′/G method [6], tanh method [3], Lie symmetry method [4],
[2] etc. It is well known that Lie group method is a powerful tool to construct the exact
solution of nonlinear PDEs; depending on Lie group various kind of solution are obtained
as traveling wave solutions, soliton solutions, fundamental solutions and so on. The general
form of seventh order Korteweg-de Varies (KdV) equation is given by

ut + au3ux + bu3
x + cuuxu2x + du2u3x + eu2xu3x + fuxu4x + guu5x + u7x = 0, (1)

where a, b, c, d, e, f, g are constants.
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In the present paper, we deal with CDG equation which is a particular form of above
equation with a = 420, b = 0, c = 420, d = 210, e = 70, f = g = 28 as follows

ut + 420u3ux + 420uuxu2x + 210u2u3x + 70u2xu3x + 28uxu4x + 28uu5x + u7x = 0. (2)

where u, x, t denotes the wavelength, space and time variable respectively unx denotes
the n-th partial derivative with respect to x. This equation is formed in various areas of
science and engineering e.g. fluid dynamics, plasma physics, laser optics, traffic flow and
elastic media etc. The paper is organized as follows. Section 1 contains some background
information related to Lie symmetry analysis. In section 2, with the help of Lie algebra
the vector field of Eq. (2) is obtained. In section 3, symmetry reduction is done to obtain
ODEs. Power series solution and convergence of the ODE are presented in section 4.
Section 5, contains results and discussion. Finally, conclusion is drawn in section 6.

2 Group Analysis of CDG Equation

We consider one-parameter Lie group of infinitesimal transformations:

t∗ = t+ ετ(x, t, u) + o(ε2),

x∗ = x+ εξ(x, t, u) + o(ε2),

u∗ = u+ εη(x, t, u) + o(ε2), (3)

where ε� 1 is a small parameter. The geometric vector field of a PDE is given by

V = τ(x, t, u)∂t + ξ(x, t, u)∂x + η(x, t, u)∂u. (4)

If the vector field (4) generates a symmetry of the equation (2), then V must satisfy the
Lie symmetry condition

Pr7V (∆)|∆=0 = 0, (5)

where

∆ = ut + 420u3ux + 420uuxu2x + 210u2u3x + 70u2xu3x + 28uxu4x + 28uu5x + u7x,
(6)

and

Pr7V = τ∂t + ξ∂x + η∂u + ηt∂ut + ηx∂ux + η2x∂u2x + η3x∂u3x + η4x∂u4x + η5x∂u5x + η7x∂u7x
(7)

is the 7-th order prolongation of V , where, for each k ∈ {1, 2, 3, 4, 5, 7}, the coefficient
function ηkx is given by

ηkx = Dk
x(η − τut − ξux) + τukxt + ξu(k+1)x. (8)
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Here, the symbol Dx stands for total differential operator and is given by

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + . . . . (9)

Using the Lie symmetry analysis method, we obtain

τ = c1t+ c2, ξ =
1

7
c1x+ c3, η = −2

7
c1u, (10)

where c1, c2, c3 are arbitrary constant. So we have the following geometric vector fields

V1 =
1

7
x∂x + t∂t −

2

7
u∂u, V2 = ∂t, V3 = ∂x. (11)

Further, it is necessary to show the vector fields of Eq. (2) are closed under the Lie bracket,
we have

[Vi, Vi] = 0, i = 1, 2, 3. (12)

[V1, V2] = −[V2, V1] = V2, [V1, V3] = −[V3, V1] =
1

7
V3, [V2, V3] = −[V3, V2] = 0. (13)

3 Similarity Reductions

In this section, we obtain the reduction equations with the help of similarity variables
and find the exact solutions of these equations.
Case (i): For the generator V1 we have

u = t−
2
7f(ζ), where ζ = xt−

1
7 . (14)

Substituting Eq. (14) into Eq. (2), we have the following ODE:

−(2f + ζf (1)) + 420f 3f (1) + 420ff (1)f (2) + 210f 2f (3)

+ 70f (2)f (3) + 28f (1)f (4) + 28ff (5) + f (7) = 0, (15)

where f (n) = dnf
dζn

.

Case (ii): For the generator V2, we have a trivial solution u(x, t) = c where c is an
arbitrary constant.
Case (iii): For the generator V3, we have

u = f(ζ), where ζ = x. (16)

Substituting Eq. (16) into Eq. (1), we have the following ODE:

420f 3f (1) + 420ff (1)f (2) + 210f 2f (3) + 70f (2)f (3) + 28f (1)f (4) + 28ff (5) + f (7) = 0.
(17)
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4 The Exact Power Series Solutions

Now, our aim is to solve the ODEs (15) and (17) by using the power series method.
Suppose that Eq.(15) has a solution of the form

f(ζ) =
∞∑
n=0

cnζ
n. (18)

Putting Eq.(18) into Eq.(15), we obtain

−2

7
c0 −

2

7

∞∑
n=1

cnζ
n − 1

7

∞∑
n=1

ncnζ
n + 420c3

0c1

+ 420
∞∑
n=1

n∑
l=0

n−l∑
k=0

l∑
j=0

(l − j + 1)cjckcl−j+1cn−l−kζ
n + 840c0c1c2

+ 420
∞∑
n=1

n∑
j=0

j∑
k=0

(j − k + 2)(j − k + 1)(k + 1)ck+1cn−jcj−k+2ζ
n + 1260c2

0c3

+ 210
∞∑
n=1

n∑
j=0

j∑
k=0

(n− j + 3)(n− j + 2)(n− j + 1)ckcj−kcn−j+3ζ
n + 840c2c3

+ 70
∞∑
n=1

n∑
k=0

(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)(k + 2)cn−k+3ck+2ζ
n

+ 672c1c4

+ 28
∞∑
n=1

n∑
k=0

(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)cn−k+4ck+1ζ
n

+ 3360c0c5

+ 28
∞∑
n=1

n∑
k=0

(n− k + 5)(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)cn−k+5ckζ
n

+ 5040c7 + (n+ 7)(n+ 6)(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)cn+7ζ
n = 0. (19)

Comparing the coefficients for n = 0 in Eq. (19), we have

c7 =
2
7
c0 − 420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
. (20)

For n ≥ 1, we have recursion formula
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cn+7 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)
(21)

×
(

420
n∑
l=0

n−l∑
k=0

l∑
j=0

(l − j + 1)cjckcl−j+1cn−l−k

+ 420
n∑
j=0

j∑
k=0

(j − k + 2)(j − k + 1)(k + 1)ck+1cn−jcj−k+2

+ 210
n∑
j=0

j∑
k=0

(n− j + 3)(n− j + 2)(n− j + 1)ckcj−kcn−j+3

+ 70
n∑
k=0

(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)(k + 2)cn−k+3ck+2

+ 28
n∑
k=0

(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)cn−k+4ck+1

+ 28
n∑
k=0

(n− k + 5)(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)cn−k+5ck −
2

7
cn −

1

7
ncn

)
.

The power series solution is given by

f(ζ) = c0 + c1ζ + c2ζ
2 + c3ζ

3 + c4ζ
4 + c5ζ

5 + c6ζ
6 (22)

+
2
7
c0 − 420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
ζ7

+
∞∑
n=1

cn+7ζ
n+7,

where cn+7 is given by Eq. (21). Finally the solution u(x, t) of Eq. (15) is given by

u(x, t)

=

[
c0 + c1(xt−

1
7 ) + c2(xt−

1
7 )

2
+ c3(xt−

1
7 )

3
+ c4(xt−

1
7 )

4
+ c5(xt−

1
7 )

5
+ c6(xt−

1
7 )

6

+
2
7
c0 − 420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
(xt−

1
7 )

7

+
∞∑
n=1

cn+7(xt−
1
7 )
n+7
]
t−

2
7 . (23)

Further, we have to solve Eq. (17) so, once again from Eq. (17) and Eq. (18)
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420c3
0c1 + 420

∞∑
n=1

n∑
l=0

n−l∑
k=0

l∑
j=0

(l − j + 1)cjckcl−j+1cn−l−kζ
n + 840c0c1c2

+420
∞∑
n=1

n∑
j=0

j∑
k=0

(j − k + 2)(j − k + 1)(k + 1)ck+1cn−jcj−k+2ζ
n + 1260c2

0c3

+210
∞∑
n=1

n∑
j=0

j∑
k=0

(n− j + 3)(n− j + 2)(n− j + 1)ckcj−kcn−j+3ζ
n + 840c2c3

+70
∞∑
n=1

n∑
k=0

(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)(k + 2)cn−k+3ck+2ζ
n + 672c1c4

+28
∞∑
n=1

n∑
k=0

(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)cn−k+4ck+1ζ
n + 3360c0c5

+28
∞∑
n=1

n∑
k=0

(n− k + 5)(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)cn−k+5ckζ
n + 5040c7

+(n+ 7)(n+ 6)(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)cn+7ζ
n = 0. (24)

Equating the coefficients of like power in Eq.(24) we have

c7 =
−420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
. (25)

For n ≥ 1, we have recursion formula

cn+7 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)
(26)

×
(

420
n∑
l=0

n−l∑
k=0

l∑
j=0

(l − j + 1)cjckcl−j+1cn−l−k

+ 420
n∑
j=0

j∑
k=0

(j − k + 2)(j − k + 1)(k + 1)ck+1cn−jcj−k+2

+ 210
n∑
j=0

j∑
k=0

(n− j + 3)(n− j + 2)(n− j + 1)ckcj−kcn−j+3

+ 70
n∑
k=0

(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)(k + 2)cn−k+3ck+2

+ 28
n∑
k=0

(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)(k + 1)cn−k+4ck+1

+ 28
n∑
k=0

(n− k + 5)(n− k + 4)(n− k + 3)(n− k + 2)(n− k + 1)cn−k+5ck

)
.
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The power series solution is given by

f(ζ) = c0 + c1ζ + c2ζ
2 + c3ζ

3 + c4ζ
4 + c5ζ

5 + c6ζ
6 (27)

+
−420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
ζ7

+
∞∑
n=1

cn+7ζ
n+7,

where cn+7 is given by Eq. (26). Finally, the solution u(x, t) of Eq. (17) is given by

u(x, t) =

[
c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + c5x
5 + c6x

6 (28)

+
−420c3

0c1 − 840c0c1c2 − 1260c2
0c3 − 840c2c3 − 672c1c4 − 3360c0c5

5040
x7

+
∞∑
n=1

cn+7x
n+7

]
.

Now, we show the convergence of the power series solution (18) of Eq. (15) by using
implicit function theorem. From Eq. (21) we have

cn+7 ≤M

(
|cn|+

n∑
l=0

n−l∑
k=0

l∑
j=0

|cj||ck||cl−j+1||cn−l−k| (29)

+
n∑
j=0

j∑
k=0

|ck+1||cn−j||cj−k+2|+
n∑
j=0

j∑
k=0

|ck||cj−k||cn−j+3|

+
n∑
k=0

|cn−k+3||ck+2|+
n∑
k=0

|cn−k+4||ck+1|+
n∑
k=0

|cn−k+5||ck|
)
,

where M = 420. If we define a power series

ν = P (ζ) = Σ∞n=0pnζ
n, (30)

with

p0 = |c0|, p1 = |c1|, p2 = |c2| p3 = |c3|
p4 = |c4|, p5 = |c5|, p6 = |c6|, p7 = |c7|. (31)
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Also, we have

pn+7 = 420

(
pn +

n∑
l=0

n−l∑
k=0

l∑
j=0

pjpkpl−j+1pn−l−k (32)

+
n∑
j=0

j∑
k=0

pk+1pn−jpj−k+2 +
n∑
j=0

j∑
k=0

pkpj−kpn−j+3

+
n∑
k=0

pn−k+3pk+2 +
n∑
k=0

pn−k+4pk+1 +
n∑
k=0

pn−k+5pk

)
.

It is obvious that

|cn| ≤ |pn| n = 0, 1, 2, . . . (33)

If we are able to prove that the series ν = P (ζ) = Σ∞n=0pnζ
n is convergent then from Eq.

(33) we conclude that series given by Eq. (18) is also convergent. In order to prove the
convergence of the series ν = P (ζ), first of all we show that the series has positive radius
of convergence. We have

P (ζ) = p0 + p1ζ + p2ζ
2 + p3ζ

3 + p4ζ
4 + p5ζ

5 + p6ζ
6 + p7ζ

7 +
∞∑
n=1

pn+7ζ
n+7. (34)

From Eqs. (32) and (34), we have

P (ζ) = p0 + p1ζ + p2ζ
2 + p3ζ

3 + p4ζ
4 + p5ζ

5 + p6ζ
6 + p7ζ

7 (35)

+ 420

[ ∞∑
n=1

pnζ
n+7 +

∞∑
n=1

n∑
l=0

n−l∑
k=0

l∑
j=0

pjpkpl−j+1pn−l−kζ
n+7

+
∞∑
n=1

n∑
j=0

j∑
k=0

pk+1pn−jpj−k+2ζ
n+7 +

∞∑
n=1

n∑
j=0

j∑
k=0

pkpj−kpn−j+3ζ
n+7

+
∞∑
n=1

n∑
k=0

pn−k+3pk+2ζ
n+7 +

∞∑
n=1

n∑
k=0

pn−k+4pk+1ζ
n+7

+
∞∑
n=1

n∑
k=0

pn−k+5pkζ
n+7

]
= p0 + p1ζ + p2ζ

2 + p3ζ
3 + p4ζ

4 + p5ζ
5 + p6ζ

6 + p7ζ
7 (36)

+ 420

[
ζ6P (ζ)4 + (2ζ4 − 2p0ζ

6)P (ζ)3+

+ (3ζ2 − 4p0ζ
4 − 2p1ζ

5 + (p2
0 − p2)ζ6 − p3ζ

7)P (ζ)2

− (5p0ζ
2 + 4p1ζ

3 + (3p2 − 3p2
0)ζ4 + (3p3 − 2p0p1)ζ5 + 2p4ζ

6 + p5ζ
7)P (ζ)

+ 2p0ζ
2 + 3p0p1ζ

3 + (p2
1 + 2p0p2 − p3

0)ζ4 + (2p0p3 + p1p2 − p2
0p1)ζ5

+ (p0p4 + p1p3)ζ6 − p0ζ
7

]
.
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Now, we consider the implicit functional equation

T (ζ, ν)

= ν − P
= ν − p0 + p1ζ + p2ζ

2 + p3ζ
3 + p4ζ

4 + p5ζ
5 + p6ζ

6 + p7ζ
7 (37)

+ 420

[
ζ6ν4 + (2ζ4 − 2p0ζ

6)ν3

+ (3ζ2 − 4p0ζ
4 − 2p1ζ

5 + (p2
0 − p2)ζ6 − p3ζ

7)ν2

− (5p0ζ
2 + 4p1ζ

3 + (3p2 − 3p2
0)ζ4 + (3p3 − 2p0p1)ζ5 + 2p4ζ

6p5ζ
7)ν

+ 2p0ζ
2 + 3p0p1ζ

3 + (p2
1 + 2p0p2 − p3

0)ζ4 + (2p0p3 + p1p2 − p2
0p1)ζ5

+ (p0p4 + p1p3)ζ6 − p0ζ
7

]
.

From the Eq. (37) it immediately follows that T (ζ, ν) is analytic in (ζ, ν) - plane and also

T (0, p0) = 0
∂T

∂ν

∣∣∣∣
(0,p0)

= 1 6= 0. (38)

Hence, in the light of implicit function theorem, ν = P (ζ) is analytic in a neighborhood of
the point (0, p0) with the positive radius of convergence. Consequently, the power series
solution of Eq. (15) converges in a neighborhood of the point (0, p0). Similarly, it can
be shown that the power series solution of Eq. (17) given by Eq. (28) converges in
a neighborhood of the point (0, p0). This completes the proof.

5 Results and Discussion

The soliton solutions of CDG equation were obtained by Wazwaz. In particular, one
soliton solution of Eq.(2) is given by (Wazwaz [5])

u(x, t) =
2ex−t

(1 + ex−t)2 . (39)

We have obtained exact analytic solutions in the form of power series which are given by
Eq. (23) and Eq. (28) respectively. The graphical representation of the solutions of Eq.
(23) by taking particular values of constants (c1, c2 . . . ..c6) with increasing values of t have
been shown below. One can observe from these figures that u decreases rapidly when we
increase t.

6 Conclusion

In the present paper, following the classical Lie symmetry method, the seventh order
CDG equation is studied. In this method, we get infinitesimal generator of the equation.
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Figure 1: Profiles of u(x, t) with various values of t.
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Then, we discuss the Lie symmetry groups of the CDG equation and reduce the CDG
equation into ODEs with the help of similarity variables. Finally, we solve these ODEs
using power series method to obtain the exact solutions. In our best knowledge the solu-
tions obtained in this paper are the new solution to CDG equation i.e. not obtained by
anyone so far.
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