
Communications in Mathematics 31 (2023), no. 1, 21–30
DOI: https://doi.org/10.46298/cm.10133
©2023 Mehdi Hassani and Mohammadreza Esfandiari
This is an open access article licensed under the CC BY-SA 4.0

21

On the geometric mean of the values of positive multiplica-
tive arithmetical functions

Mehdi Hassani and Mohammadreza Esfandiari

Abstract. In this paper we obtain asymptotic expansions for the geometric mean of
the values of positive strongly multiplicative function f satisfying

f(p) = α(d)pd +O(pd−δ)

for any prime p, with d real, α(d) and δ > 0.

1 Introduction

The arithmetic mean of the values of arithmetical functions is very well studied in the
literature and some theories have been developed. For example, see [3], [6], [7], [8], [9],
[14], [15], [20] and the references given there. In comparison, the geometric mean of the
values of arithmetical functions has been studied only in some special cases. Let us denote
by Gf (n) the geometric mean of the first n values of the positive arithmetic function
f . In 2008 Deshouillers and Luca [4] studied the density modulo 1 of some sequences
involving the values of the Euler function ϕ, including the sequence with general term
Gϕ(n). Meanwhile, they proved that

Gϕ(n) =
1

e

∏
p

(
1− 1

p

) 1
p

n+O(log n).

In 2013 the first author [12] studied uniform distribution modulo 1 of some sequences
involving the values of the Euler function, where he improved the above error term up to
O(log log n). In 2012 Bosma and Kane [1], and later in 2018 Pomerance [17] considered a
variant of the geometric mean of the first n values of the sum of divisors function to study
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the so-called “aliquot constant”. In 2016 the first author [13] considered the geometric
mean of the first n values of the function d(n) =

∑
d|n 1. He proved that given any positive

integer r, there exist computable constants c1, . . . , cr such that

Gd(n) = 2M
∏
pα

α>2

log
(

1 +
1

α

) 1
pα

(log n)log 2
(

1 +
r∑
j=1

cj

logj n
+O

( 1

logr+1 n

))
,

where M is the Meissel–Mertens constant. Recently, the second author [10] studied the
geometric mean of the first n values of the Jordan totient function.

In this paper we are motivated by introducing a general theory for studying the geo-
metric mean of the values of positive multiplicative functions f . Since log f is additive, we
get

n logGf (n) =
∑
k6n

log f(k) =
∑
pα6n
α>1

(
log f(pα)− log f(pα−1)

) [ n
pα

]
.

Consequently,

n logGf (n) =
∑
p6n

[
n

p

]
log f(p) +

∑
pα6n
α>2

[
n

pα

]
log

f(pα)

f(pα−1)
. (1)

In particular, if we further assume that f is strongly multiplicative, then

n logGf (n) =
∑
p6n

[
n

p

]
log f(p). (2)

With regards to this case, we prove the following general result.

Theorem 1.1. Let f be a positive strongly multiplicative function such that for any prime
p it satisfies f(p) = α(d) pd + O(pd−δ) with d real and α(d), δ > 0. Then for any positive
integer r, there exist computable constants c1, . . . , cr such that

Gf (n) = α(d)Med(γ+E−1)%f n
d (log n)logα(d)

(
1 +

r∑
j=1

cj

logj n
+O

( 1

logr+1 n

))
,

where

M = lim
x→∞

∑
p6x

1

p
− log log x

is the Meissel–Mertens constant, γ is Euler’s constant, E is the constant in Mertens’
approximation defined by

E = lim
x→∞

∑
p6x

log p

p
− log x,
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and %f is a constant depending on f , given by the following product running over primes

%f =
∏
p

(
f(p)

α(d) pd

) 1
p

.

As an example satisfying the conditions of Theorem 1.1, we consider the square-free
kernel of n defined by κ(n) =

∏
p|n p.

Corollary 1.2. For any positive integer r, there exist computable constants c1, . . . , cr such
that

Gκ(n) = eγ+E−1n+
r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
.

The proof of Theorem 1.1 depends on the approximation of the sum on the right hand
side of (2). The following key result gives the required approximation, and implies Theorem
1.1 immediately.

Theorem 1.3. Let Q(x) = α(d)xd + E(x) with d real and α(d) > 0, and E(x) = O(xd−δ)
for some fixed δ > 0. Moreover, we assume that Q(n) > 0 for any positive integer n.
Given any positive integer r, there exist computable constants η0, η1, . . . , ηr such that

∑
p6n

[
n

p

]
logQ(p) = d n log n+ (logα(d))n log log n

+ η0n+
r∑
j=1

ηj
n

logj n
+O

( n

logr+1 n

)
.

More precisely
η0 = M logα(d) + d(γ + E − 1) + CQ, (3)

where CQ is an absolute constant in terms of Q defined by

CQ =
∑
p

1

p
log

Q(p)

α(d) pd
. (4)

2 Proofs

We have divided the proof of Theorem 1.3 into a sequence of propositions. Let us break
up the sum addressed in this theorem as follows∑

p6n

[
n

p

]
logQ(p) = (logα(d))S1(n) + d S2(n) + S3(n),
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where

S1(n) =
∑
p6n

[
n

p

]
, S2(n) =

∑
p6n

[
n

p

]
log p, S3(n) =

∑
p6n

[
n

p

]
log

(
1 +

E(p)

α(d)pd

)
.

An approximation of S1(n) is well-known due to the notion of the omega function

ω(k) =
∑
p|k

1, (5)

which counts the number of distinct prime divisors of the positive integer k. We observe
that ∑

k6n

ω(k) =
∑
k6n

∑
p|k

1 =
∑
p6n

∑
k6n
p|k

1 =
∑
p6n

[
n

p

]
.

In 1970 Saffari [19] used Dirichlet’s hyperbola method to prove

1

n

∑
k6n

ω(k) = log log n+M +
r∑
j=1

aj

logj n
+O

( 1

logr+1 n

)
, (6)

for each integer r > 1, with

aj = −
∫ ∞
1

{t}
t2

(log t)j−1dt. (7)

More precisely, it is known [11] that a1 = γ−1. Hence, for any positive integer r we obtain

S1(n) = n log log n+Mn+
r∑
j=1

aj
n

logj n
+O

( n

logr+1 n

)
. (8)

We mention that later in 1976 Diaconis [5] reproved (6) by applying Perron’s formula on the
Dirichlet series

∑∞
n=1 ω(n)n−s and using complex integration methods. Approximations of

S2(n) and S3(n) are given in the following propositions.

Proposition 2.1. Given any positive integer r, there exist computable constants c1, . . . , cr
such that

S2(n) = n log n+ (γ + E − 1)n+
r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
. (9)

Proposition 2.2. For any fixed δ > 0,

S3(n) = CQn+O
(
n1−δ + 1 + [δ−1] log log n

)
. (10)

Note that the big-O term in (10) is finally O( n
logr+1 n

) for each r > 0. Thus, combining

the asymptotic expansions (8), (9) and (10) completes the proof of Theorem 1.3.
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Proof of Proposition 2.1. For each integer n > 2, let

λ(n) =
log n

log κ(n)

be the index of composition of n. In 2005 De Koninck and Kátai [2, Theorem 3] proved
that given any positive integer r, there exist computable constants d1, . . . , dr such that

U(x) :=
∑
k6x

1

λ(k)
= x+

r∑
j=1

dj
x

logj x
+O

( x

logr+1 x

)
. (11)

The above asymptotic expansion is very useful to obtain an asymptotic expansion for
S2(n). Indeed, we observe that

n∑
k=1

log κ(k) =
n∑
k=1

log
∏
p|k

p =
n∑
k=1

∑
p|k

log p =
∑
p6n

[
n

p

]
log p = S2(n).

Hence, by Abel summation we get

S2(n) =
n∑
k=1

log κ(k) =
n∑
k=2

1

λ(k)
log k = U(n) log n− U(2−) log 2−

∫ n

2

U(t)

t
dt.

To deal with the last integral, we study the functions Lj(t) defined for each integer j > 1
by the following anti-derivative

Lj(t) :=

∫
dt

logj t
.

Note that L1(t) is the logarithmic integral function, which admits the following expansion

L1(t) = li(t) =
r∑
i=1

(i− 1)!
t

logi t
+O

( t

logr+1 t

)
. (12)

Integrating by parts gives

Lj−1(t) =

∫ ( 1

logj−1 t

)
(dt) =

t

logj−1 t
+ (j − 1)

∫
dt

logj t
.

Hence, for j > 2 the functions Lj(t) satisfy the recurrence

Lj(t) =
1

j − 1
Lj−1(t)−

t

(j − 1) logj−1 t
.

By repeatedly using this recurrence we deduce that

(j − 1)! Lj(t) = li(t)−
j−1∑
i=1

(i− 1)!
t

logi t
.
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Hence, by using the expansion (12), for 1 6 j 6 r we obtain

Lj(t) =
r∑
i=j

(i− 1)!

(j − 1)!

t

logi t
+O

( t

logr+1 t

)
. (13)

We deduce from the expansion (11) that∫ n

2

U(t)

t
dt =

∫ n

2

(
1 +

r∑
j=1

dj
1

logj t
+O

( 1

logr+1 t

))
dt

= n+
r∑
j=1

djLj(n)−

(
2 +

r∑
j=1

djLj(2)

)
+O

( n

logr+1 n

)
.

With r replaced by r + 1 in (11), we obtain

U(n) log n = n log n+ d1n+
r∑
j=1

dj+1
n

logj n
+O

( n

logr+1 n

)
.

Combining the above expansions yields that

S2(n) = n log n+ (d1 − 1)n+
r∑
j=1

(
dj+1

n

logj n
− djLj(n)

)
− Cr +O

( n

logr+1 n

)
,

where Cr = 2 + U(2−) log 2 +
∑r

j=1 djLj(2) = Or(1). Note that

r∑
j=1

(
dj+1

n

logj n
− djLj(n)

)

=
r∑
j=1

(
dj+1

n

logj n
−

r∑
i=j

dj
(i− 1)!

(j − 1)!

n

logi n

)
+O

( n

logr+1 n

)
.

Also, an easy computation shows that

r∑
j=1

(
dj+1

n

logj n
−

r∑
i=j

dj
(i− 1)!

(j − 1)!

n

logi n

)
=

r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
,

for some computable constants cj in terms of the djs. Furthermore we let c0 = d1 − 1.
Consequently,

S2(n) = n log n+ c0n+
r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
.

It remains to compute the value of c0. To do this, we let

S2(n) = nM(n)−R(n), (14)
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where

M(x) :=
∑
p6x

log p

p
, and R(n) :=

∑
p6n

{
n

p

}
log p.

Theorem 6 of [18] asserts validity of the double sided inequality

log x+ E − 1

2 log x
< M(x) < log x+ E +

1

2 log x
, (15)

the left hand side for x > 1 and the right hand side for x > 319. We estimate R(n). Let

F1(x) =
∑
p6x

{
x

p

}
and F2(x) =

∑
pα6x

{
x

pα

}
.

Lemma 3 of [16] asserts that

F2(n) = (1− γ)
n

log n
+O

( n

log2 n

)
.

Note that

F2(n)−F1(n) =
∑
pα6n
α>2

{
n

pα

}
<
∑
pα6n
α>2

1 =
∑
p6n

1
α

α>2

1 =
∑

26α6 logn
log 2

π(n
1
α )

�
∑

26α6 logn
log 2

n
1
α

log n
1
α

6
n

1
2

log n

∑
26α6 logn

log 2

α�
√
n log n.

Hence
F1(n) = (1− γ)

n

log n
+O

( n

log2 n

)
.

Let $(k) to be 1 when k is prime and 0 otherwise. Abel summation allows us to write

R(n) =
n∑
k=2

{n
k

}
$(k) log k

= F1(n) log n− F1(2
−) log 2−

∫ n

2

(∑
p6t

{
n

p

})
dt

t

= (1− γ)n+O
( n

log n

)
−
∫ n

2

O
( t

log t

)dt

t
= (1− γ)n+O

( n

log n

)
.

By using (15) and (14), we obtain

S2(n) = n log n+ (γ + E − 1)n+O
( n

log n

)
,

implying that c0 = γ + E − 1 and also d1 = γ + E.
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Proof of Proposition 2.2. We have

S3(n) =
∑
p6n

[
n

p

]
log

Q(p)

α(d) pd

= n
∑
p

1

p
log

Q(p)

α(d) pd
− n

∑
p>n

1

p
log

Q(p)

α(d) pd
−
∑
p6n

{
n

p

}
log

Q(p)

α(d) pd
.

Note that

log
Q(p)

α(d) pd
= log

(
1 +

E(p)

α(d) pd

)
= log

(
1 +O

( 1

pδ

))
= O

( 1

pδ

)
.

Hence ∑
p

1

p
log

Q(p)

α(d) pd
�
∑
p

1

p1+δ
,

and this implies that in (4) the series defining CQ is absolutely convergent. Moreover

n
∑
p>n

1

p
log

Q(p)

α(d) pd
� n

∑
p>n

1

p1+δ
� n

∫ ∞
n

dt

t1+δ
� n1−δ.

Also, note that ∑
p6n

{
n

p

}
log

Q(p)

α(d) pd
�
∑
p6n

1

pδ
.

Hence, if δ = 1, then ∑
p6n

{
n

p

}
log

Q(p)

α(d) pd
� log log n,

and if δ 6= 1, then ∑
p6n

{
n

p

}
log

Q(p)

α(d) pd
�
∑
p6n

1

pδ
�
∫ n

2

dt

tδ
� n1−δ.

Combining the above approximations we get (10).

Proof of Theorem 1.1. We observe that for any positive integer r

exp

(
r∑
j=1

cj

logj n
+O

( 1

logr+1 n

))
= 1 +

r∑
j=1

cj

logj n
+O

( 1

logr+1 n

)
, (16)

where the computable constants c1, . . . , cr are not necessarily the same on both sides. The
relation (2) and Theorem 1.3 give

logGf (n) = d log n+ (logα(d)) log log n+ η0 +
r∑
j=1

ηj

logj n
+O

( 1

logr+1 n

)
.

Taking exponents and using (16) completes the proof.
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Proof of Corollary 1.2. By using (2) we observe that n logGκ(n) = S2(n). Thus

logGκ(n) =
S2(n)

n
= log n+ (γ + E − 1) +

r∑
j=1

cj

logj n
+O

( 1

logr+1 n

)
.

Taking exponents and considering (16) completes the proof.
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