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A family of non-Volterra quadratic operators corresponding
to permutations

U. U. Jamilov

Abstract. In the present paper we consider a family of non-Volterra quadratic
stochastic operators depending on a parameter α and study their trajectory behav-
iors. We find all fixed points for a non-Volterra quadratic stochastic operator on
a finite-dimensional simplex. We construct some Lyapunov functions. A complete
description of the set of limit points is given, and we show that such operators have
the ergodic property.

1 Introduction

The quadratic stochastic operators frequently arise in many models of mathematical
genetics, namely, in the theory of heredity (see [1], [2], [3], [5], [7], [9], [10], [12], [13], [14],
[16], [18], [20], [21], [22], [23], [25], [26], [27], [28], [29]). Consider a biological population
and suppose that each individual in this population belongs precisely to one of the species
(genotype) 1, . . . ,m. The scale of species is such that the species of the parents i and j,
unambiguously, determine the probability of every species k for the first generation of direct
descendants. Denote this probability, called the heredity coefficient, by pij,k = P (k|(i, j)).
It is then obvious that pij,k ≥ 0 for all i, j, k and that

m∑
k=1

pij,k = 1, i, j, k = 1, . . . ,m.

The state of the population can be described by the tuple (x1, x2, . . . , xm) of species
probabilities, that is, xk = P (k) is the fraction of the species k in the total population.
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In the case of panmixia (random interbreeding) the parent pairs i and j arise for a fixed
state x = (x1, x2, . . . , xm) with probability xixj = P (i, j) = P (i)P (j). Hence, the total
probability of the species k in the first generation of direct descendants is defined by

x′k =
m∑

i,j=1

P (k|(i, j))P (i)P (j) =
m∑

i,j=1

pij,kxixj, k = 1, . . . ,m.

The association x 7→ x′ defines an evolutionary quadratic operator. Thus evolution
of a population can be studied as a dynamical system of a quadratic stochastic operator
[23]. See [9] and [24] for a review of QSOs. Recently in [22], [11] a quasi-strictly non-
Volterra QSO is studied. We refer the reader to [19] for a review on convex combinations
of quadratic stochastic operators. The main goal of the present paper is to study a family
of operators which contains a convex combination of two non-Volterra QSOs.

The paper is organised as follows. In Section 2 we recall definitions and well known
results from the theory of Volterra and non-Volterra QSOs. In Section 3 we consider
a class of non-Volterra QSOs and study trajectory behaviors of such operators. We show
that each QSO from this class has the two fixed points. Moreover, we prove that such
operator is ergodic.

2 Preliminaries

Let

Sm−1 =

{
x = (x1, x2, . . . , xm) ∈ Rm : for any i, xi > 0 and

m∑
i=1

xi = 1

}

be the (m − 1)-dimensional simplex. A map V of Sm−1 into itself is called a quadratic
stochastic operator (QSO) if

(V x)k =
m∑

i,j=1

pij,kxixj (1)

for any x ∈ Sm−1 and for all k = 1, . . . ,m, where

pij,k ≥ 0, pij,k = pji,k for all i, j, k and
m∑
k=1

pij,k = 1. (2)

Assume {x(n) ∈ Sm−1 : n = 0, 1, 2, . . . } is the trajectory (orbit) of the initial point
x ∈ Sm−1, where x(n+1) = V (x(n)) for all n = 0, 1, 2, . . ., with x(0) = x.

One of the main problems in mathematical biology is to study the asymptotic behavior
of the trajectories. This problem deeply studied for the Volterra QSOs (see [7], [8]).

Definition 2.1. A quadratic stochastic operator is called a Volterra operator if



A family of non-Volterra quadratic operators corresponding to permutations 33

pij,k = 0 for any k /∈ {i, j}, i, j, k = 1, . . . ,m.

Definition 2.2. A point x ∈ Sm−1 is called a periodic point of V if there exists an n so
that V n(x) = x. The smallest positive integer n satisfying the above is called the prime
period or least period of the point x. A period-one point is called a fixed point of V .

Denote the set of all fixed points by Fix (V ) and the set of all periodic points of (not
necessarily the smallest) period n by Pern (V ). Evidently that the set of all iterates of
a periodic point form a periodic trajectory (orbit).

Let DxV (x∗) = (∂Vi/∂xj)(x
∗) be a Jacobian of V at the point x∗.

Definition 2.3 ([4]). A fixed point x∗ is called hyperbolic if its Jacobian DxV (x∗) has no
eigenvalues on the unit circle.

Definition 2.4 ([4]). A hyperbolic fixed point x∗ is called:

i) attracting, if all the eigenvalues of the Jacobian DxV (x∗) are less than 1 in absolute
value;

ii) repelling, if all the eigenvalues of the Jacobian DxV (x∗) are greater than 1 in absolute
value;

iii) a saddle, otherwise.

Definition 2.5. A QSO V is called regular if for any initial point x ∈ Sm−1, the limit
lim
n→∞

V (x(n)) exists.

Note that the limit point is a fixed point of a QSO. Thus, the fixed points of a QSO
describe limit or long run behavior of the trajectories for any initial point. The limit
behavior of trajectories and fixed points play an important role in many applied problems
(see [3], [5], [7], [9], [12], [13], [15], [16], [18], [21], [23], [25], [28], [29]). The biological
treatment of the regularity of a QSO is rather clear: in the long run the distribution of
species in the next generation coincides with the distribution of species in the previous
one, i.e., it is stable.

For nonlinear dynamical systems (1) Ulam [27] suggested an analogue of a measure--
theoretic ergodicity, the following ergodic hypothesis:

Definition 2.6. A QSO V is said to be ergodic if the limit

lim
n→∞

1

n

n−1∑
k=0

V k(x)

exists for any x ∈ Sm−1.
On the basis of numerical calculations Ulam, in [27], conjectured that the ergodic

theorem holds for any QSO. In [28] Zakharevich proved that this conjecture is false in
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general. Later, in [6], a sufficient condition of non-ergodicity for QSOs defined on S2 was
established. In [5] have shown the correlation between non-ergodicity of Volterra QSOs
and rock-paper-scissors games. In [20] the random dynamics of Volterra QSOs is studied.

The biological treatment of non-ergodicity of a QSO is the following: in the long run
the behavior of the distributions of species is unpredictable. Note that a regular QSO is
ergodic, but in general from ergodicity does not follow regularity.

Let ωV
(
x(0)
)

be the set of limit points of the trajectory{
V n
(
x(0)
)
∈ Sm−1 : n = 0, 1, 2, . . .

}
.

Definition 2.7. A continuous function ϕ : Sm−1 → R is called a Lyapunov function for
a QSO V if ϕ(V (x)) ≥ ϕ(x) for all x (or ϕ(V (x)) ≤ ϕ(x) for all x).

Note that a Lyapunov function is very helpful to describe an upper estimate of ωV (x0).

Definition 2.8. A permutation π of En = {1, . . . , n} is a k–cycle if there exists a positive
integer k and an integer i ∈ En such that

(1) k is the smallest positive integer such that πk(i) = i, and

(2) π fixes each j ∈ En \ {i, π(i), . . . , πk−1(i)}.

The k-cycle π is usually denoted
(
i, π(i), . . . , πk−1(i)

)
.

The set supp(π) = {i ∈ En : π(i) 6= i} denotes the support of π and we let supp(k)
denote the support of the k-cycle, that is, the set

supp(k) = {i, π(i), . . . , πk−1(i)}.

Any permutation can be represented in the form of a product of cycles without common
elements (i.e. disjoint cycles) and this representation is unique to within the order of the
factors.

Let π = τ1τ2 . . . τq be a permutation of the set Em−1 = {1, . . . ,m− 1}, where τ1, . . . , τq
are disjoint cycles and we denote by ord(τi) the order of a cycle τi. Evidently that

supp(τ1) ∪ · · · ∪ supp(τq) = supp(π) and supp(τi) ∩ supp(τj) = ∅, for any i 6= j.

The following notations will be used in the below. Let

∂Sm−1 =
{
x ∈ Sm−1 : xi = 0 for at least one i ∈ {1, 2, . . . ,m}

}
denote the boundary of Sm−1 and let intSm−1 = {x ∈ Sm−1 : x1x2 · · ·xm > 0} be the
interior of Sm−1.
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3 Main results

Consider a non-Volterra QSO defined on a finite-dimensional simplex which has the
form

Vπ :


x′k = 2xmxπ(k), k = 1, . . . ,m− 1

x′m = x2m +
(m−1∑

i=1

xi

)2 (3)

where π is a permutation on the set Em−1.
It is worth mentioning that if π = (21)(3) then the QSO (3) coincides up to the

rearrangement of the coordinates with the quasi-strictly non-Volterra QSO which is studied
in [22].

Let s = LCM
(

ord(τ1), . . . , ord(τq)
)
.

Theorem 3.1 ([17]). For the operator Vπ the following statements are true:

i) if x(0) ∈ Γ = {x ∈ Sm−1 : xm = 0} ∪ {em} then ωVπ
(
x(0)
)

= {em};

ii) if π = Id then ωVπ
(
x(0)
)

= {x̃} for any x(0) ∈ Sm−1 \ Γ;

iii) if π 6= Id then ωVπ
(
x(0)
)

= {xξ,x1
ξ , . . . ,x

s−1
ξ }.

Let V1 := VId and V2 := Vπ. Consider the convex combination of the QSOs V1, V2,
that is,

Vα = αV1 + (1− α)V2, α ∈ [0, 1]

It is easy to see that the operator Vα has the form

Vα :


x′k = 2xm(αxk + (1− α)xπ(k)), k = 1, . . . ,m− 1

x′m = x2m +
(m−1∑

i=1

xi

)2 (4)

where π is a permutation on the set Em−1.
It is evident that if π = Id then for any α ∈ [0, 1] the operator Vα coincides with the

QSO V1. The dynamics of the operator V1 is given in the Theorem 3.1. In the below we
consider the cases π 6= Id.

The QSO (4) can be written as follow

Vα :


x′k = 2xm(αxk + (1− α)xπ(k)), k ∈ supp(π)
x′k = 2xmxk, k /∈ supp(π)

x′m = x2m +
(m−1∑

i=1

xi

)2 (5)

where π is a permutation on the set Em−1.
Consider the function f(x) = 2x2 − 2x + 1, x ∈ [0, 1]. We define fn to be the n-fold

composition of f with itself. One can easily verify the statements of the next proposition
about dynamics of the function f(x).
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Proposition 3.2. For the function f(x) the following statements are true:

i) Fix (f) = {1, 1/2};

ii) x = 1 is a repelling and the fixed point 1/2 is an attracting;

iii) for any value n ≥ 2 the function f(x) has no n− periodic points, different from fixed
points;

iv) lim
n→∞

fn(x) = 1/2 for any 0 < x < 1 and f(0) = f(1) = 1.

Denote supp(x) = {i : xi > 0} and let | supp(x)| be its cardinality.
In the next Proposition we will describe the invariant sets, all fixed points and we give

some Lyapunov function.

Proposition 3.3. For the operator Vα the following statements are true:

i) If | supp (π)| < m− 1 then Γβ = {x ∈ Sm−1 : xi = 0, ∀ i ∈ β} is an invariant set for
any β ⊂ Em−1 \ supp (π). Also the sets

Mµ,i =

{
x ∈ Sm−1 :

∑
k∈supp(τi)

xk = µ, xm = 1/2

}
and

Mν,i,j =

{
x ∈ Sm−1 :

∑
k∈supp(τi)

xk = ν
∑

k∈supp(τj)

xk

}
are invariant sets, where µ ≥ 0, ν > 0;

ii) Fix (Vα) = X ∪ {em}, where em = (0, . . . , 0, 1) and

X = {x ∈ Sm−1 : xk = xl, ∀ k, l ∈ supp(τi), i = 1, . . . , q, xm = 1/2};

iii) For any i ∈ {1, . . . , q} the function ϕi
(
x
)

=
∑

k∈supp(τi)
xk is a Lyapunov function;

iv) For any k /∈ supp(π) the function φk
(
x
)

= xk is a Lyapunov function.

Proof. i) Let | supp (π)| < m− 1 then for any k /∈ supp (π) from (5) one easily has x′k = 0.
Hence it follows that the set Γβ is a invariant set.

Let x ∈Mµ,i and τi is a cycle then from (3) we have∑
k∈supp(τi)

x′k =
∑

k∈supp(τi)

(
αxk + (1− α)xπ(k)

)
= α

∑
k∈supp(τi)

xk + (1− α)
∑

k∈supp(τi)

xπ(k)

= µ.
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Therefore V (Mµ,i) ⊂Mµ,i.
Let x ∈Mν,i,j and τi, τj cycles then from (3) we have∑

k∈supp(τi)
x′k∑

k∈supp(τj)
x′k

=

2xm
∑

k∈supp(τi)
xk

2xm
∑

k∈supp(τj)
xk

= ν.

Consequently V (Mν,i,j) ⊂Mν,i,j.
ii) The equation Vα(x) = x has the following form{

xk = 2xm(αxk + (1− α)xπ(k)), 1 ≤ k ≤ m− 1,

xm = 2x2m − 2xm + 1.
(6)

Due to Proposition 3.2 the last equation of the system (6) has the solutions xm = 1
and xm = 1/2.

Evidently that if xm = 1 then we get the vertex em = (0, . . . , 0, 1).
For xm = 1/2 from the system of equations

xk = αxk + (1− α)xπ(k), 1 ≤ k ≤ m− 1, and x1 + · · ·+ xm−1 =
1

2

it follows that
xk = xk′ for all k, k′ ∈ supp(τi), i = 1, . . . , q and

xk = xk for all k ∈ Fix(π).

Using the last one has that a point x = (x1, . . . , xm) ∈ X is a solution of the system (6).
iii) Let τi, i ∈ {1, . . . , q} be a cycle. Then f(x) ≥ 1/2 for any 0 < x < 1 and we can

assume that xm ≥ 1/2. Then from (3) we have

ϕi
(
Vα(x)

)
=

∑
k∈supp(τi)

x′k =
∑

k∈supp(τi)

2xm(αxk + (1− α)xπ(k))

= 2xm

(
α

∑
k∈supp(τi)

xk + (1− α)
∑

k∈supp(τi)

xπ(k)

)
= 2xm

(
αϕi(x) + (1− α)ϕi(x)

)
= 2xmϕi(x)

≥ ϕi(x).

Therefore the functions ϕi(x) are Lyapunov functions for any i ∈ {1, . . . , q}.
iv) Using xm ≥ 1/2 from (5) for any k /∈ supp(π) one easily has that

φk(Vα(x)) = 2xmxk ≥ xk = φk(x).
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Corollary 3.4. If p = |Em−1 \ supp (π)|, then

φ(x) = γ1φ1(x) + · · ·+ γpφp(x) and ϕ(x) = β1ϕ1(x) + · · ·+ βqϕq(x)

are Lyapunov function for the QSO Vα for any γ1 ≥ 0, . . . , γp ≥ 0 and β1 ≥ 0, . . . , βq ≥ 0.

In the next Theorem we give the description of the set of limit points of the trajectories.

Theorem 3.5. For the operator Vα the following statements are true:

i) if x(0) ∈ Γ = {x ∈ Sm−1 : xm = 0} ∪ {em} then ωVα
(
x(0)
)

= {em};

ii) if α ∈ (0, 1), π 6= Id then ωVα
(
x(0)
)

= {b}, b ∈ X for any x(0) ∈ Sm−1 \ (Γ ∪X);

iii) if α = 0, π 6= Id then ωVα
(
x(0)
)

= {xξ,x1
ξ , . . . ,x

s−1
ξ };

iv) if α = 1, π 6= Id then ωVα
(
x(0)
)

= {x̃} for any x(0) ∈ Sm−1 \ Γ.

Proof. i) Evidently that Vα
(
x(0)
)

= em for any x(0) ∈ Γ.

ii) Let α ∈ (0, 1) and x(0) ∈ Sm−1 \ (Γ ∪ X). Then by assertion of Proposition 3.2

we obtain lim
n→∞

x
(n)
m = 1/2. Since f(x) ≥ 1/2 for any 0 < x < 1 and we can assume that

xm ≥ 1/2.
Let k /∈ supp (π). Due to Proposition 3.3 the function φk

(
x
)

is a Lyapunov function
for the QSO (4). Therefore, we have

φk(x
(n+1)) ≥ φk(x

(n)), k /∈ supp (π), n = 0, 1, . . . , (7)

that is there exists lim
n→∞

x
(n)
k = lim

n→∞
φk(x

(n)) = ξk for any k /∈ supp (π).

Denote X̃ =
{
x ∈ Sm−1 : bk = ξk, ∀ k /∈ supp (π), bm = 1/2

}
.

Let τi, i ∈ {1, . . . , q} be a cycle. Consider the function ψi(x) = min
k∈supp(τi)

xk. Then

from (3) we have

ψi
(
Vα(x)

)
= min

k∈supp(τi)
2xm(αxk + (1− α)xπ(k)) ≥ αψi(x) + (1− α)ψi(x) = ψi(x). (8)

Consequently, we have

ψi(x
(n+1)) ≥ ψi(x

(n)), i = 1, . . . , q, n = 0, 1, . . . (9)

Therefore the sequence
{
ψi(x

(n))
}

is an increasing and bounded sequence. Hence it follows

existence the following limit lim
n→∞

ψi(x
(n)) = ξi.

Let k ∈ supp (π). It is easy to see that for any i ∈ {1, . . . , q}

ψi
(
x
)
≤ ψi

(
b
)

and ψi
(
x
)

= ψi
(
b
)

iff x = b, b ∈ X̃ ∩X.
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Indeed if x = b, b ∈ X̃ ∩ X then it is easily follows that ψi
(
x
)

= ψi
(
b
)

for any

i ∈ {1, . . . , q}. Let ψi
(
x
)

= ψi
(
b
)
, x ∈ X̃ for any i ∈ {1, . . . , q} and b ∈ X̃ ∩X then for

any i ∈ {1, . . . , q} we get ψi
(
x
)

= xi1 ≤ xi2 ≤ · · · ≤ xit , where t = ord(τi). If we assume
that some of the inequalities xi1 ≤ xi2 ≤ · · · ≤ xit are strong inequalities in this case we
have contradiction to x ∈ Sm−1. Therefore we have if ψi

(
x
)

= ψi
(
b
)

for any i ∈ {1, . . . , q}
and b ∈ X̃ ∩X then for any i ∈ {1, . . . , q} we obtain ψi

(
x
)

= xi1 = xi2 = · · · = xit .

Next we prove that if ξi < ψi(b) for any i ∈ {1, 2, . . . , q}, then lim
n→∞

x(n) = b. Suppose

the converse. Then there is a sequence {x(nt)}t=1,2,3,... such that

lim
t→∞

x(nt) = c 6= b. (10)

Using minf(x) = 1/2 one has

1 =
ψi(b)− ξi
ψi(b)− ξi

= lim
t→∞

ψi(b)− ψi(x(nt+1))

ψi(b)− ψi(x(nt))

= 1 + lim
t→∞

ψi(x
(nt))− 2x

(nt)
m

(
αx

(nt)
k + (1− α)x

(nt)
π(k)

)
ψi(b)− ψi(x(nt))

≤ 1 + lim
t→∞

ψi(x
(nt))−

(
αx

(nt)
k + (1− α)x

(nt)
π(k)

)
ψi(b)− ψi(x(nt))

≤ 1 + lim
t→∞

ψi(x
(nt))− 1

ψi(b)− ψi(x(nt))

< 1.

This is a contradiction. It follows that ξi = ψi(b) for any i ∈ {1, 2, . . . , q}.
Thus lim

n→∞
x(n) = b for any α ∈ (0, 1) and an initial x(0) ∈ Sm−1 \ (Γ ∪X).

The proofs of parts iii) and iv) follows from the Theorem 3.1.

Corollary 3.6. The QSO Vα is an ergodic transformation.
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