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Computing subalgebras and Z,-gradings of simple Lie alge-
bras over finite fields

Bettina Eick and Tobias Moede

Abstract. This paper introduces two new algorithms for Lie algebras over finite fields
and applies them to the investigate the known simple Lie algebras of dimension at
most 20 over the field Fo with two elements. The first algorithm is a new approach
towards the construction of Zs-gradings of a Lie algebra over a finite field of char-
acteristic 2. Using this, we observe that each of the known simple Lie algebras of
dimension at most 20 over Fy has a Zs-grading and we determine the associated
simple Lie superalgebras. The second algorithm allows us to compute all subalgebras
of a Lie algebra over a finite field. We apply this to compute the subalgebras, the
maximal subalgebras and the simple subquotients of the known simple Lie algebras of
dimension at most 16 over Fy (with the exception of the 15-dimensional Zassenhaus
algebra).

1 Introduction

The classification of the finite-dimensional simple Lie algebras depends heavily on their
underlying field. For algebraically closed fields of characteristic zero the classification
has been achieved long ago and is folklore nowadays. For algebraically closed fields of
characteristic p > 5 the classification has been completed more recently, see [16]. A
classification over fields of characteristic p € {2,3} has not been achieved so far. The
available evidence suggests that the classification over fields of characteristic 2 will differ
significantly from the other cases. This motivates the computational investigation of the
known simple Lie algebras over the field with two elements with the aim to gain further
insight into their structure.

In this paper we introduce two algorithms to investigate Lie algebras over finite fields.
Our first method determines Zs-gradings. A well-known construction for Z,-gradings of
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Lie algebras over fields I of characteristic different from 2 uses the Cartan decomposition of
L: If 9: L — L is an automorphism with 62 = 1, then 0 is diagonalizable with eigenvalues
1 and —1 and its eigenspaces form a Zs-grading. We introduce an alternative construction
for fields of characteristic 2: If [ € L with (adp(1))? = ad(l), then ady(l) is diagonalizable
with eigenvalues 0 and 1 and its eigenspaces form a Zs-grading. We call [ an idempotent
and we introduce an algorithm to compute the idempotents in a Lie algebra L over a
finite field F with char(F) = 2. We use this algorithm to determine the Aut(L)-orbits of
idempotents in the known simple Lie algebras of dimension at most 20 over the field Iy
with two elements, see Section 4 for details. Based on this computation, we propose the
following conjecture.

Conjecture 1.1. Fvery finite-dimensional simple Lie algebra over a field of characteristic
2 has a non-central idempotent, and hence a non-degenerate Zso-grading.

Lie algebras with Z,-grading are closely related to Lie superalgebras. The latter play
a role in physics where they are used to describe the mathematics of supersymmetry, we
refer to [11], [1] and [13] for details on Lie superalgebras. In [2] it has been shown that each
Zo-grading of a simple Lie algebra over a field of characteristic 2 determines a simple Lie
superalgebra. We recall this construction in Theorem 2.4 below for completeness, and use
it to determine the simple Lie superalgebras arising from the known simple Lie algebras
of dimension at most 20 over Fy. See Section 4 for details.

Our second aim in this paper is to describe an algorithm that computes all subalgebras
of a finite Lie algebra L up to the action of Aut(L). We apply this algorithm to determine
all subalgebras of the currently known simple Lie algebras of dimension at most 16 over
the field Fy with two elements, except for the 15-dimensional Zassenhaus algebra, which
we denote by W (4). The Lie algebra W (4) has more than two million orbits of subalge-
bras under the action of its automorphism group and it is the only case in our considered
range that we could not complete. Our algorithm also allows to determine maximal sub-
algebras, and the simple subquotients of a Lie algebra over a finite field. We exhibit our
computational results in Section 4 below.

Our algorithms are implemented in the computer algebra system GAP [19]. We use
the FinLie package [6] for the computation of automorphism groups of Lie algebras over Fy
and the list of known low-dimensional simple Lie algebras over the field Fy, which is also a
part of FinLie. This list contains the complete classification of Lie algebras of dimension at
most 9 obtained by Vaughan-Lee [20], the list determined by Eick [5] using computational
methods, three Lie algebras that have been computed recently using the methods of [5],
and a Lie algebra described by Skryabin [17]. Generators for the three new Lie algebras
can be found in Appendix 5 below.
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2 Idempotents, gradings and Lie superalgebras

Let L be a Lie algebra and let B be an abelian additive group. The Lie algebra L is
B-graded if L can be written as a direct sum of vector spaces

L:@Lb

so that [Lg, Ly] € Layp holds for all a,b € B. Such a grading is also called a group grading.
We say that a group grading is degenerate if there exists b € B with L, = {0}. Patera
& Zassenhaus [15] initiated a first systematic study of arbitrary non-degenerate gradings.
We also refer to [4] and [7] for further background on gradings.

Of particular interest are gradings with B = Z, being cyclic of order 2. In the following
section we introduce a construction for such a type of grading.

2.1 Idempotents and gradings

Let L be a Lie algebra over an arbitrary field F. For [ € L and a € F we define the
vector space E,(l) = {h € L | [l,h] = ah} to be the eigenspace of ad(l) to the eigenvalue

a and
E(l) = P E.().
acF
An element [ € L is diagonalizable if adp(l) is diagonalizable over F. We denote by
V() = (a € F| E,(l) # {0}) the additive subgroup of F generated by the eigenvalues of
adL(l)

Lemma 2.1. Let L be a Lie algebra over an arbitrary field and let | € L.
(a) E(l) is the direct sum of its non-zero subspaces E4(l) and [E,(1), Ep(l)] C Eqp(l)
holds for all a,b € F.

(b) Suppose that | is diagonalizable. Then E(l) is a group grading of L for the group
V().

Proof. (a) The set E,(l) is the eigenspace to the eigenvalue a of ady(l). Hence E,(l) is a

subspace and the eigenspaces form a direct sum. Now let h € E,(l) and k € Ej(l). Then

1L, [h, E]) = [[l, ], k] + [k, [, k]] = alh, k] + blh, k] = (a + b)[h, k]. Hence [h, k] € E,14(1).
(b) Follows readily from (a). O

Lemma 2.1 leads to the following central observation.

Theorem 2.2. Let L be a field of characteristic 2, and let | be a non-central idempotent of
L. Then L = Lo ® Ly is a non-degenerate Zs-grading, where Lo = Eo(l) and Ly = Eq(l).

Proof. Let m = adr(l). As m? = m, it follows that m(m — 1) = 0 and thus the minimal
polynomial of m divides z(x — 1). This implies that m is diagonalizable with Ly ® L; = L.
Next Ly # {0}, since | € Lo and Ly # {0}, since | ¢ Z(L). In summary, we obtain a
non-degenerate Zo-grading for L. O
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Remark 2.3. Let o € Aut(L) and let l;,l, € L'\ Z(L) be idempotents with Iy = a(ly). If
L = Lo ® Ly is the grading associated to [; as in Theorem 2.2, then a(Lg) @ a(Lq) is the
grading associated to lg, i.e., both gradings belong to the same Aut(L)-orbit.

The idempotents of a Lie algebra L over a field F with char(F) = 2 can be computed
easily. Let by,...,b, be a basis of L and let zq,...,x, be indeterminates. If v = x1b; +
..+ xpby, then adp(z) = x1adr(by) + ... + zpady(by,). Hence

adp(z)? — adg(z ZZJC xjadr,(b;)ady (b Zac adr,(b

=1 j=1

The equation ady(x)* — adr(z) = 0 now translates to n*? polynomial equations in the
indeterminates x4, ..., x, over the field F. We obtain the idempotents of L by determining
all (z1,...,2,) € F" solving all of the n? equations.

2.2 Simple Lie superalgebras from simple Lie algebras

We first recall the definition of a Lie superalgebra over a field F of characteristic 2 from
[13], see also [2] and [1]. Let L be a Lie algebra over a field F of characteristic 2. Then L is
a Lie superalgebra if there exists a Zo-grading L = Ly @ L; and a map s (called squaring)

s: L1 — Ly, x — s(z),

such that s(ax) = o?s(x) for all @ € F,z € Ly, and [z,y] = s(z +y) — s(z) — s(y) for
all z,y € Ly, and [s(x),y] = [z, [x,y]] for all x € Ly,y € L. The later condition translates
to adr(s(z)) = (adp(z))? for x € Ly, and, if the center of L is trivial, then this allows
to determine s(x) for x € L; if it exists. The following is in part also proved in [2]. We
include a proof here for completeness.

Theorem 2.4. Let L be a finite-dimensional Zo-graded Lie algebra with trivial center over
a field F of characteristic 2. Then L embeds into a finite-dimensional Lie superalgebra S
over F such that
(a) as a Lie algebra, L is an ideal of S and S/L is abelian of dimension at most dim(L).
(b) if L is a simple Lie algebra, then S is a simple Lie superalgebra.

Proof. Let ¢: L — End(L), | — adp(l). As the center of L is trivial, the homomorphism
¢ is injective and L = ¢(L). Therefore, in the following we identify L with ¢(L).

As a first step, we recall some details of the arithmetic of End(L). The Lie bracket in
End(L) is given by [z, y] = xy — yxr = xy + yx, since char(F) = 2. For x,y € End(L) and
a,b € F we obtain that
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(ax +by)* = (ax)* + axby + byax + (by)* (1)
= a’z® + b*y® + ablz, y),

[2%,y] = 2%y + ya?
= a:2y + ryr + ryxr + ny

= [z, [y, [y, ]]]-

Next, we define C' = (2 | € L;) to be the vector subspace of End(L) spanned by
the squares of elements in L; and we set S = L 4+ C. Then by construction S is a vector
space. Equation (2) asserts that S is a Lie algebra and L is an ideal of S with S/L being
abelian. Equation (1) yields that dim(S/L) < dim(L;).

We define Sy = Ly + C and S; = L, and show that this yields a Zj-grading of
S. Clearly, [S1,S51] = [L1,L1] € Ly € Sp. Furthermore, [Sy, So] € Lo by Equation
(2) and similarly, [Sy,S1] € Ly = S;. It remains to show that So NS; = {0}. Let
r € SoNS;. Then x € Ly and x = u + ¢ with u € Lg,c € C. If y € Ly, then
[z,y] € Ly and [z,y] = [u+ ¢,y] = [u,y] + [¢,y] € Lo. If y € Ly, then [z,y] € Ly and
[z,y] = [u+c,y] = [u,y] + [¢,y] € Ly. Since in both cases y € Ly and y € Ly, we obtain
that [z,y] = 0, and therefore z € Z(L) = {0} follows. In summary, if z € S, N Sy, then
x =0 and thus Sy N S; = {0}.

As S has a squaring by construction, it follows that S is a Lie superalgebra. It remains
to show that S is simple as Lie superalgebra. This is also shown in [2, Th. 3.3.1]. We
recall a proof here for completeness. By the remarks at the end of [18, Chapter 2| a
minimal 2-envelope G of L can be constructed as G = L + (z* | € L). We then have
L C S C G. Let I be a superideal in S; that is, I is a Lie ideal in the Lie algebra S
and s(I NSy) C I. Let H be the ideal generated by I in G. Then H N L is an ideal in
L and because L is simple, we have HN L = {0} or HNL = L. If HN L = {0}, then
[H,G] C HN[G,G] € HN L = {0}. It follows that H C Z(G) C L, where the second
inclusion follows from Theorem 5.8 (3) in [18, Chapter 2] and uses that G is a minimal
2-envelope of L. In conclusion H = {0} and because I C H also I = {0}. f HNL = L,
then L C I and thus also C' = (s(Ly)) C (s(I NSy)) C I and we deduce I = S. O

The proof of Theorem 2.4 readily translates into an algorithm for constructing a super-
ization S based on a given Zy-grading of L; that is, an algorithm that yields an embedding
of L into a simple Lie superalgebra S. We determine the superizations for gradings deter-
mined by idempotents for all known simple Lie algebras of dimension at most 20 over the
field IF, in Section 4 below.
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3 Computing all subalgebras

Let L be a finite-dimensional Lie algebra over a finite field F. Our aim is to introduce a
practical algorithm for computing all subalgebras of L. The automorphism group Aut(L)
acts on the set of all subalgebras of L. Given A < Aut(L), our method constructs orbit
representatives under the action of A. We remark that in our applications A = Aut(L),
but the algorithm works in the general setting. Section 4 exhibits the application of our
method to the simple Lie algebras over Fy of dimension at most 16.

3.1 The subalgebra algorithm

The basic idea of our method is induction. In the initial step of the induction, we deter-
mine the A-orbits of 1-dimensional subspaces of L. If U = (u) is a 1-dimensional subspace
of L, then [u,u] = 0 and thus U is a subalgebra of L. Hence all 1-dimensional subspaces
are subalgebras. We denote the A-orbits of 1-dimensional subspaces with Oy, ..., O,.

We now initialize a list £ containing A-orbit representatives of all constructed subalge-
bras. We choose the orbit representatives in a canonical way by choosing the subalgebra
with the lexicographically smallest upper triangular basis. With this convention, we obtain
each A-orbit of subalgebras exactly once. We only store a representative of the orbit and
we can easily check if two subalgebras belong to the same orbit. In the first step we add
canonical A-orbit representatives for the 1-dimensional subspaces to L.

In the induction step, we consider each subalgebra U in £ in turn. If dim(U) = dim(L)
then U = L and there is nothing to do. Thus assume that dim(U) < dim(L). Then we
determine B = Staba(U) and loop over the orbits Oy, ...,O,. Given O; we determine the
B-orbits in O;. Then for each B-orbit representative W, say, we construct the subalgebra
V generated by U and W. We add a canonical A-orbit representative of V' to L, if this is
not already contained in L.

Remark 3.1. We add a few remarks on efficiency of time and space of this method.

(a) Storing A-orbit representatives instead of all subalgebras reduces the space used to
store the results.

(b) By using canonical representatives of A-orbits we can readily check if a new A-orbit
representative is already existing in L.

Let U be a subalgebra in L. If there exists a subalgebra V' C L with U C V, then
[V,U] € V and hence the quotient space V/U is a submodule for the action of ad(U)
on L/U. The MeatAxe is able to determine all submodules of a given module over a
finite field and this is a highly efficient algorithm, provided that there are only rather
few submodules. If L/U as an ad(U)-module has only few submodules, then we use this
alternative to construct these submodules. Once the submodules are available, we then
check which of them are subalgebras.

3.2 Example: the 3-dimensional simple Lie algebra

Let L be the 3-dimensional simple Lie algebra over Fy. This has a basis {b1, by, b3}
with [by, ba] = bs, [b1,b3] = by and [by, b3] = by + be. Note that this is not the standard
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basis of the 3-dimensional Zassenhaus algebra, but the basis used in the FinLie package.
Its automorphism group A = Aut(L) is a non-abelian subgroup of order 6 in GL(3,2). It
has 3 orbits of 1-dimensional subspaces of L:

(01) {{(1,0,1))},

(O2) {{(0,0,1)),((1,1,0)), ((0,1,0))},

(03) {{(0,1,1)),((1,1,1)),((1,0,0))}.

Hence there are 7 subalgebras of dimension 1 falling into 3 orbits under A. The list £ is
then initialized with the representatives ((1,0, 1)), ((0,0,1)), ((0,1,1)).

In the next step of the algorithm, iterated extensions are determined. This starts with
the subalgebra U = ((1,0,1)). Its stabilizer B is equal to A and hence we extend U twice:
first with Wy, = ((0,0,1)) and second with W5 = ((0,1,1)). This yields Vi = (U, W)
and V, = (U, Ws,). Both are subalgebras and both have the same canonical representative
V' ={((1,0,0), (0,0, 1)) under the action of A. Hence they both represent the same A-orbit
of subalgebras of L and we add its canonical representative V' to L.

In the second iteration the subalgebra ((0,0, 1)) is extended by subalgebras in Oy and
Os and in the third step the subalgebra ((0, 1,1)) is extended by subalgebras in Os. None
of these extensions yields a new A-orbit of subalgebras, and hence we conclude that the
list £ is already complete.

We summarize the subalgebras of L in the graph exhibited in Figure 1. The vertices
of the graph correspond to the subalgebras of L. The top vertex corresponds to L, the
next layer contains the three subalgebras of dimension 2, the third layer contains the
seven subalgebras of dimension 1, and at the bottom there is the trivial subalgebra. Two
subalgebras U and V are joined by an edge if U < V and there is no intermediate subalgebra
between them. The circles around subalgebras of dimension 1 and 2 indicate Aut(L)-orbits.

Figure 1: The Hasse diagram of the subalgebra lattice of Ls ;.

We note that the maximal nilpotent subalgebras of L are the subalgebras of dimension
1. Hence L is an example of a Lie algebra where the Cartan subalgebras are not all in one
orbit under Aut(L).
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3.3 Alternative approaches

A first naive approach to compute all subalgebras is to determine all subspaces of L
as an [F-vector space and then to select those subspaces that are closed under the Lie
multiplication. This naive approach is practical if |L| < 500.

If L has a non-trivial ideal I, then this can be used for an inductive approach. First,
construct all subalgebras of the quotient L /1. Second, consider each determined subalgebra
U/I in turn and determine all proper supplements to I in U that are subalgebras. This
idea is likely to more efficient than the method described above, but it does not apply to
the case of simple Lie algebras and this is our desired application.

4 Results

Let Ly, denote the i-th simple Lie algebra over [Fy of dimension d as contained in the
FinLie package. When possible, we also exhibit name(s) for these Lie algebras as follows:
A, B,C,D,E, F,G describe the simple constituents of the classical Lie algebras;

W, S, H, K describe the simple constituents of the Lie algebras of Cartan type;

P describes the Hamiltonian type Lie algebras, see [14];

() describes the Contact type Lie algebras, see [21];

Kap; (1 <i <4) describes four series of Lie algebras constructed by Kaplansky [12];
Bro; (1 < < 3) describes three series of Lie algebras constructed by Brown [3];

Vz, Vs and Vg are simple Lie algebras determined by Vaughan-Lee [20].

4.1 Idempotents, gradings and superizations

The following tables contain for each known simple Lie algebra L over Fy up to di-
mension 20 its name(s) as far as available, the number of Aut(L)-orbits of idempotents
of L, and the dimensions of the associated superizations. The orbits of idempotents are
described by m X [do, d;], which means that there are m orbits of idempotents such that
for the associated Zs-grading dim(Lg) = dy and dim(L,) = d; holds.
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‘ Lie alg H names ‘ gradings ‘ dim of superizations ‘
[ Ls1 | W(2) | 1< [L2] | : |
| Lex | W(2)®F, | 1% [2,4] | 10 |

L7 W(3) 2 % [3,4] 9,9

Lz, V7, P(1,2) 1 x [3,4] 10

L. Ay, W(1,1),Q(1,1,1) 1 x [4,4] 3

Ls,» Vs 1 x [4,4] 8
[ Los [ W(2) @ Fg, Vy | 1 x[3,6] | 15 |
| Loy | Kaps(5) | 1x[4,6], 1x[6,4] | 12,14 |
(L1 | W(2) @ F | 1 x[4,8] | 20 |

Lysa W (3) ® F, 2 % [6, 8] 18,18

Liyo Vi@RF, 1 x [6, 8] 20

Lyyg 5(2,2) 3% [6,8] 16,17,17

Lisa P(1,1,1,1), Kap,(4) 2% [6, 8] 16,17

L14,5 As, Bs, C3, G2, 8(1,1,1), H(1,1,1,1) 1x [6, 8] 14

L14,6 BI'OQ(]., 1) 1x [6, 8] 16

L15,1 W(2> &® Fgg 1 x [5, 10] 25

L5 W(4) 4% [7,8] 17,17,17,17

L15’3 Kap3(6), Kap2(4) 2 X [7, 8] 17, 19

L1s.4 P(2,1,1) 6 % [7,8] 18,19, 19,19, 19

Lys5 P(3,1) 3% [7,8] 18,18, 18

Lise P(2,2) 5% [7,9] 18,19,19, 19, 19

Lis7 from [5] 6 x [7,8] 18,18,19,19, 19, 19

Lisg from [5] 6 x [7,8] 17,17,18,18,19,19

Lis9 new 3 x[7,8] 17,17,19

Lis10 new 8 x [7,8] 17,17,18,18,19,19,19,19

Lis 11 new 3 x [7,8] 17,17,19

Lis12 from [8],[17] 4 x (7,8 18,19,19,19

Lig, W(1,1) @Fy, Ao QF, V@ TF, 1x[8,8] 16

Liga W(2,1),Q(2,1,1) 1% (8,8 16,17,17,17

Ligs from [5] 4% [8,8] 16,17,17,17

Liga from [5] 10 x [8, 8] 16,16,17,17,17,17,17,17,17,17

Ligs from [5] 6 % [3,3] 17,17,17,17, 17,17

Liss from [5] 4 x [8,8] 16,17,17,17
| Lisi | W(2) @ Fey | 1x[6,12] | 30 |
2 Kaps(5) @ Fy [1x[8,12], 1 x [12,8] | 24, 28 |

Table 1: Idempotents and superizations

Note that the FinLie package contains simple Lie algebras up to dimension 30 over Fy. It
is possible to compute idempotents and associated superizations for these algebras, but
the automorphism group computation is not feasible in all cases.

Furthermore, we remark that in all cases except for Kaps(5) (and its tensor product
with Fy) the simple Lie algebra L uniquely determines the dimensions of Ly and L; in the
Zo-gradings associated to idempotents of L.
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Remark 4.1. Let L be a simple Lie algebra over Fy and let E be a finite field extension of
Fy. If [ is an idempotent of L, then [ ® 1 is an idempotent of L ®p, E.

4.2 Subalgebras and maximal subalgebras

The following tables contain for each simple Lie algebra L over Fy up to dimension 16
(with the exception of W (4) = Ly52) the number of Aut(L)-orbits of subalgebras of given
dimension and the number of Aut(L)-orbits of maximal subalgebras of given dimension.

The Lie algebra Ly54 is W(4), and it is excluded in the list below. It has more than
two million orbits of subalgebras and our algorithm did not succeed in listing all of them.

’Liealg H diml\dimQ \ dim 3 \ dim4\dim5 \ dim6\dim7\dim8\ ‘

L3, 3 1 0 0 0 0 0 0 all
0 1 0 0 0 0 0 0 | max
L1 5 5 3 1 0 0 0 0 all
0 0 1 1 0 0 0 0 | max
Lzq 39 85 79 48 9 1 0 0 all
0 0 1 1 0 1 0 0 | max
L7 43 43 26 9 2 0 0 0 all
0 0 4 5 2 0 0 0 | max
Lg, 6 10 10 7 4 1 0 0 all
0 0 0 0 1 1 0 0 | max
Lgo 6 8 6 4 2 0 0 0 all
0 0 0 1 2 0 0 0 | max
Lgq 7 9 6 3 3 1 0 0 all
0 0 1 0 0 1 0 0 | max
Lo 16 31 41 26 12 6 2 0 all
0 0 0 0 0 2 2 0 | max
Lig; 11 28 19 7 5 12 5 1 all
0 0 0 0 0 1 0 1 | max

Table 2: Subalgebras of simple Lie algebras of dimension at most 12

[ Lie alg [ dim 1 [ dim 2 [ dim 3 [ dim 4 [ dim 5 | dim 6 [ dim 7 | dim 8 | dim 9 [ dim 10 | dim 11 | dim 12 | \

Ligq 211 | 2712 | 8011 | 9548 | 9827 | 8345 | 6564 | 2778 316 28 5 1 all
0 0 0 0 0 1 1 1 0 0 0 1 | max
Liso 237 481 532 251 116 58 36 19 4 2 0 0 all
0 0 0 0 0 7 1 6 0 2 0 0 | max
Ly 135 790 | 1988 | 2545 | 2315 | 1489 822 298 56 11 2 1 all
0 0 0 0 0 1 3 1 0 0 1 1 | max
Liga 78 289 538 545 360 204 139 56 14 3 1 0 all
0 0 0 0 0 1 3 2 0 3 1 0 | max
Ly 6 14 25 32 28 19 13 10 4 1 1 0 all
0 0 0 0 0 0 0 1 0 1 1 0 | max
Lisg 19 70 143 171 126 81 53 30 10 1 2 0 all
0 0 0 0 0 1 1 0 0 1 2 0 | max

Table 3: Subalgebras of simple Lie algebras of dimension 14
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‘ Lie alg H dim 1 ‘ dim 2 ‘ dim 3 ‘ dim 4 ‘ dim 5 ‘ dim 6 ‘ dim 7 ‘ dim 8 ‘ dim 9 ‘ dim 10 ‘ dim 11 ‘ dim 12 | dim 13 ‘ ‘

L5, 15 67 72 19 5 7 31 31 7 1 0 0 0| all
0 0 1 0 0 0 0 0 0 1 0 0 0 | max

Liss 37 156 318 447 366 57 159 94 30 10 3 1 0| all
0 0 0 0 0 2 0 0 0 1 2 1 0 | max

Lisa 911 | 3177 | 5925 | 7027 | 5250 | 3260 | 1714 721 167 34 10 2 0| all
0 0 14 0 0 1 15 13 2 0 4 2 0 | max

Liss 455 | 4199 | 14178 | 23832 | 26523 | 22453 | 13857 | 5663 | 1555 316 53 8 2| all
0 0 2 0 0 0 3 4 0 0 0 0 2 | max

Lisg 511 | 2975 | 7644 | 11384 | 9992 | 6933 | 4018 | 1948 625 143 24 5 1 all
0 0 5 0 0 2 5 4 0 0 1 1 1 | max

Lis7 1663 | 4823 | 7807 | 8280 | 5229 | 2978 | 1547 826 162 21 4 1 0| all
0 0 26 0 0 1 30 22 7 1 3 1 0 | max

Lisg 475 | 1885 | 3410 | 4010 | 2720 | 1631 861 472 97 18 5 1 0| all
0 0 5 0 0 3 6 6 2 1 4 1 0 | max

Lis9 117 542 | 1146 | 1603 | 1245 807 464 273 81 17 4 2 0 all
0 0 1 0 0 0 2 1 0 0 2 2 0 | max

L1510 491 | 2307 | 4946 | 6504 | 5070 | 3214 | 1666 706 152 34 11 2 0| all
0 0 6 0 0 1 9 6 1 1 3 2 0 | max

Lis 11 7 304 608 781 575 385 223 125 41 10 2 1 0| all
0 0 1 0 0 1 3 1 0 0 1 1 0 | max

L1510 687 | 3449 | 8572 | 11602 | 8502 | 4533 | 2120 895 206 30 9 3 0| all
0 0 6 0 0 0 10 8 1 0 2 3 0 | max

Table 4: Subalgebras of simple Lie algebras of dimension 15 except W (4) = L15 5
[ Lic alg [ dim 1 [dim 2 | dim 3 [ dim 4 | dim 5 [ dim 6 [ dim 7 | dim 8 | dim 9 | dim 10 | dim 11 [ dim 12 | dim 13 | dim 14 | |

L6 13 51 56 70 49 52 41 42 16 6 2 1 0 0 all
0 0 0 0 0 0 0 2 0 1 0 1 0 0 | max

Ligo 157 | 1445 | 5214 | 10302 | 11518 | 10008 | 6604 | 3878 | 1414 351 68 19 5 1 all
0 0 0 0 0 0 0 2 4 1 0 1 0 1 | max

Ligs 168 | 1086 | 2658 | 4248 | 3838 | 2485 | 1420 879 344 74 16 5 2 0 all
0 0 0 0 0 0 0 2 3 1 0 3 2 0 | max

Liga 495 | 2988 | 6900 | 10355 | 8700 | 5457 | 2968 | 1752 651 109 18 6 1 0 all
0 0 0 1 0 0 0 7 9 3 0 4 1 0 | max

Lig5 379 | 2267 | 5857 | 9320 | 8037 | 5220 | 2930 | 1832 696 137 23 8 2 0 all
0 0 0 2 0 0 0 7 8 1 0 2 2 0 | max

Ligs 297 972 | 1311 | 1397 791 232 89 86 34 5 1 1 0 0 all
0 0 0 3 0 0 0 9 6 4 1 1 0 0 | max

Table 5: Subalgebras of simple Lie algebras of dimension

4.3 Subquotients

16

The following tables exhibit for each simple Lie algebra L over Fy up to dimension
16 (with the exception of W(4) = Ly52) the simple Lie algebras which arise as proper
subquotients. An entry “+” in the row of L;; and column Ly ; indicates that L;; embeds
as a proper subquotient into Lg.
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Table 6: Simple subquotients of simple Lie algebras
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5 Appendix

We list explicit generators for the three new simple Lie algebras that have been found
using the random search methods described in [5]. We note that the Lie algebras described
in [8] are isomorphic to the Lie algebra obtained in [17] over Fy and hence are already
contained in our list of known simple Lie algebras.

Explicit generators for the Lie algebra number 9 of dimension 15:

.1 -1 -1 - - 1. -1 ... . . .1 -1 -1+ 11
111-.-11.--1-111 -1 - -1 .- .11 |
i11-111--1.- .- .-11 1---1-111111 1
1 - -1 -1 - -1 - « « . ... . .11 - 11 111
-1 1 - -1 1 - 11 - 1 11 -1111
11111 - 1 .o 11 - 111111 -1
-1 -1 .- 111 .o 11 - 1 11 -1 -
- 11 1 - 1. - 1 - 111
...... 11 -111-11 . 111 - -1
...... 1 1 - - 1. - 11 111 -1 -
------ 111 -1 -1 - 11 -1 - 11 -1
11 . 1 -1 L. o111 - e e
~~~~~~ 111-11111 11 11 -1
AAAAAAA 1 - 111 ... . . .1 .-111 -1 -1
AAAAAAAAAA 1111 - ... . . . .11 111

------- 1 11-111 ©o. 11 <11 -111
-1+ - -1 .. .-1-.-11: -1 111 1111 -11
1 111 .11 - 11 1-111- -1 - 11
1 1 .11 -1 1 - -1 - 11 1 11 -
1 . 1111 - L1111 . 1 -1 - -
S 11 - - ... 111 . 1 1 -1
11111 1 1 .o 1 -11 - 1 - . .
11 11 1 1], |- - 1 - 1 1111 -
........ 111111 .. 1 - 111 - - -
......... 111 - . 1 111 1 -
...... T - 1 1 11
111111 PO T [ 1 -
...... 11 1 111 - -1 1
....... 1. . .11 . - ... . . .11 - -111 - -
......... 111 -1 - ... . . . . 1111-111

Explicit generators for the Lie algebra number 11 of dimension 15:

111 111 11-11 1 -1 -1 -1 -1 -11
-1 - 11 - 11 1 - 1 1-11 111-11.--1-:
111 11 1 111 1 -1 -1 11 -1-1- .-
111 11 1 - -111 111 111111 -
-1 -1 11 1 1 - 111 . -11- -
11 1 1. - 11 1111-11-1
11 « « « . . 11 11 1 .« 111 -
AAAAAAAA 1 -1 - N .11 -+-1 .+« 11 -1 -
1 11 -1 -1 1 -1 -1 . -1 -11
11..-1-111 -1 -1 .-1111 -
-111..-111 - -111-.-11.- -1

-1 -1 -1 - - - -111-1111-1
------ 11-11111 111-11- -1 -
....... 1 -11 . -1 - 1 - 11 - o1
........ 1 11 -1 111 1 -1 -
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