
Communications in Mathematics 31 (2023), no. 1, 43–56
DOI: https://doi.org/10.46298/cm.10205
©2023 Ravi Dwivedi and Reshma Sanjhira
This is an open access article licensed under the CC BY-SA 4.0

43

On the matrix function pRq(A,B; z) and its fractional cal-
culus properties

Ravi Dwivedi and Reshma Sanjhira

Abstract. The main objective of the present paper is to introduce and study the
function pRq(A,B; z) with matrix parameters and investigate the convergence of this
matrix function. The contiguous matrix function relations, differential formulas and
the integral representation for the matrix function pRq(A,B; z) are derived. Certain
properties of the matrix function pRq(A,B; z) have also been studied from fractional
calculus point of view. Finally, we emphasize on the special cases namely the gen-
eralized matrix M -series, the Mittag-Leffler matrix function and its generalizations
and some matrix polynomials.

1 Introduction

Special matrix functions play an important role in mathematics and physics. In par-
ticular, special matrix functions appear in the study of statistics [6], probability theory
[25] and Lie theory [11], [14], to name a few. The theory of special matrix functions has
been initiated by Jódar and Cortés who studied matrix analogues of gamma, beta and
Gauss hypergeometric functions [15], [16]. Dwivedi and Sahai generalized the study of
one variable special matrix functions to n-variables [9]-[10]. Some of the extended work
of Appell matrix functions have been given in [3]. Certain polynomials in one or more
variables have been introduced and studied from matrix point of view, see [1], [2], [5], [7],
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[22], [23]. Recently, the generalized Mittag-Leffler matrix function have been introduced
and studied in [21].

It appears from the literature that the function pRq(α, β; z) were systematically studied
in [8]. In this article, we introduce a new class of matrix function, namely pRq(A,B; z)
and discuss its regions of convergence. We also give contiguous matrix function rela-
tions, integral representations and differential formulas satisfied by the matrix function

pRq(A,B; z). The matrix analogues of generalized M -series pM
α,β
q (γ1, . . . , γp, δ1, . . . , δq; z),

Mittag-Leffler functions and its generalizations have been presented as special cases of the
matrix function pRq(A,B; z). The paper is organized as follows:

In Section 2, we list the basic definitions and results from special matrix functions
that are needed in the sequel. In Section 3, we introduce the matrix function pRq(A,B; z)
and prove a theorem on its absolute convergence. In Section 4, we give contiguous ma-
trix function relations and differential formulas satisfied by pRq(A,B; z). In Section 5,
an integral representation of the matrix function pRq(A,B; z) motivated by the integral
of beta matrix function has been given. In Section 6, the fractional order integral and
differential transforms of the matrix function pRq(A,B; z) have been determined. Finally,
in Section 7, we present the Gauss hypergeometric matrix function and its generalization,
the matrix M -series, the Mittag-Leffler matrix function and its generalizations and some
matrix polynomials as special cases of pRq(A,B; z).

2 Preliminaries

Let the spectrum of a matrix A in Cr×r, denoted by σ(A), be the set of all eigenvalues
of A. Recall that a matrix A ∈ Cr×r is said to be positive stable when

β(A) = min{<(z) | z ∈ σ(A) } > 0.

For a positive stable matrix A ∈ Cr×r, the gamma matrix function is defined by [15]

Γ(A) =

∫ ∞
0

e−t tA−I dt

and the reciprocal gamma matrix function is defined as [15]

Γ−1(A) = A(A+ I) . . . (A+ (n− 1)I)Γ−1(A+ nI), n ≥ 1. (1)

The Pochhammer symbol for A ∈ Cr×r is given by [16]

(A)n =

{
I, if n = 0,

A(A+ I) . . . (A+ (n− 1)I), if n ≥ 1.
(2)

This gives
(A)n = Γ−1(A) Γ(A+ nI), n ≥ 1. (3)
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If A ∈ Cr×r is a positive stable matrix and n ≥ 1 is an integer, then the gamma matrix
function can also be defined in the form of a limit as [15]

Γ(A) = lim
n→∞

(n− 1)! (A)−1n nA. (4)

If A and B are positive stable matrices in Cr×r, then the beta matrix function is defined
as [15]

B(A,B) =

∫ 1

0

tA−I (1− t)B−Idt. (5)

Furthermore, if A, B and A+B are positive stable matrices in Cr×r such that AB = BA,
then the beta matrix function is defined as [15]

B(A,B) = Γ(A) Γ(B) Γ−1(A+B). (6)

Using the Schur decomposition of A, it follows that [13], [27]

‖etA‖ ≤ etα(A)
r−1∑
k=0

(‖A‖r1/2t)k

k!
, t ≥ 0. (7)

We shall use the notation Γ

(
A1, . . . , Ap
B1, . . . , Bq

)
for Γ(A1) · · ·Γ(Ap) Γ−1(B1) · · ·Γ−1(Bq).

3 The matrix function pRq(A,B; z)

Jódar and Cortés [16] defined the Gauss hypergeometric function with matrix param-
eters denoted by 2F1(A,B;C; z), where A, B, C are matrices in Cr×r, and determined its
region of convergence and integral representation. A natural generalization of the Gauss
hypergeometric matrix function is obtained in [9] by introducing an arbitrary number of
matrices as parameters in the numerator and denominator and referring to this general-
ization as the generalized hypergeometric matrix function, pFq(A1, . . . , Ap;B1, . . . , Bq; z).
We now give an extension of the generalized hypergeometric matrix function. Let A, B,
Ci and Dj, 1 ≤ i ≤ p, 1 ≤ j ≤ q, be matrices in Cr×r such that Dj + kI are invertible for
all integers k ≥ 0. Then, we define the matrix function pRq(A,B; z) as

pRq(A,B; z) = pRq

(
C1, . . . , Cp
D1, . . . , Dq

| A,B; z

)
=
∑
n≥0

Γ−1(nA+B) (C1)n . . . (Cp)n (D1)
−1
n . . . (Dq)

−1
n

zn

n!
. (8)

In the following theorem, we find the regions in which the matrix function pRq(A,B; z)
either converges or diverges.
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Theorem 3.1. Let A,B,C1, . . . , Cp, D1, . . . , Dq be positive stable matrices in Cr×r. Then
the matrix function pRq(A,B; z) defined in (8) converges or diverges in one of the following
regions:

1. If p ≤ q + 1, the matrix function converges absolutely for all finite z.

2. If p = q + 2, function converges for |z| < 1 and diverges for |z| > 1.

3. If p = q + 2 and |z| = 1, the function converges absolutely for

β(D1) + · · ·+ β(Dq) > α(C1) + · · ·+ α(Cp).

4. If p > q + 2, the function diverges for all z 6= 0.

Proof. Let Un(z) denote the general term of the series (8). Then, we have

‖Un(z)‖ ≤ ‖Γ−1(nA+B)‖
p∏
i=1

‖(Ci)n‖
q∏
j=1

‖(Dj)
−1
n ‖
|z|n

n!

≤ ‖Γ−1(nA+B)‖
p∏
i=1

∥∥∥∥(Ci)nn
Cin−Ci(n− 1)!

(n− 1)!

∥∥∥∥
×

q∏
j=1

∥∥∥∥(Dj)
−1
n nDjn−Dj(n− 1)!

(n− 1)!

∥∥∥∥ |z|nn!
. (9)

The limit definition of gamma matrix function (4) and Schur decomposition (7) yield

‖Un(z)‖ ≤ N S ((n− 1)!)p−q−2 n
∑p

i=1 α(Ci)−
∑q

j=1 β(Dj)−1 |z|n, (10)

where N = ‖Γ−1(C1)‖ · · · ‖Γ−1(Cp)‖‖Γ(D1)‖ · · · ‖Γ(Dq)‖ and

S =

(
r−1∑
k=0

(max{‖C1‖, . . . , ‖Cp‖, ‖D1‖, . . . , ‖Dq‖} r
1
2 lnn)k

k!

)p+q

. (11)

Thus, it can be easily calculated from (10) and comparison theorem of numerical series that
the matrix series (8) converges or diverges in one of the region listed in Theorem 3.1.

4 Contiguous matrix function relations

In this section, we shall obtain contiguous matrix function relations and differential
formulas satisfied by the matrix function pRq(A,B; z). The following abbreviated notations
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will be used throughout the subsequent sections:

R = pRq(A,B; z) = pRq

(
C1, . . . , Cp
D1, . . . , Dq

| A,B; z

)
,

R(Ci+) = pRq

(
C1, . . . , Ci−1, Ci + I, Ci+1, . . . , Cp

D1, . . . , Dq
| A,B; z

)
,

R(Ci−) = pRq

(
C1, . . . , Ci−1, Ci − I, Ci+1, . . . , Cp

D1, . . . , Dq
| A,B; z

)
,

R(Dj−) = pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj − I,Dj+1, . . . , Dq
| A,B; z

)
,

pRq(A,B + I; z) = pRq

(
C1, . . . , Cp
D1, . . . , Dq

| A,B + I; z

)
,

pRq(A,B − I; z) = pRq

(
C1, . . . , Cp
D1, . . . , Dq

| A,B − I; z

)
. (12)

Following Desai and Shukla [8], we can find (p+q−1) contiguous matrix function relations
of bilateral type that connect either R, R(C1+) and R(Ci+), 1 ≤ i ≤ p or R, R(C1+)
and R(Dj−), 1 ≤ j ≤ q. Let Ci, 1 ≤ i ≤ p be positive stable matrices in Cr×r such that
CiCk = CkCi, 1 ≤ k ≤ p, k < i, CiA = ACi and CiB = BCi. Then, we have

R(Ci+) =
∑
n≥0

C−1i (Ci + nI)Γ−1(nA+B) (C1)n · · · (Cp)n (D1)
−1
n · · · (Dq)

−1
n

zn

n!
. (13)

If θ = z d
dz

is a differential operator, then we get

(θ + Ci)R =
∑
n≥1

(Ci + nI)Γ−1(nA+B) (C1)n · · · (Cp)n (D1)
−1
n · · · (Dq)

−1
n

zn

n!
. (14)

Equations (13) and (14) together yield

(θ + Ci)R = CiR(Ci+), i = 1, . . . , p. (15)

In particular, for i = 1, we write

(θ + C1)R = C1R(C1+). (16)

Similarly for matrices Dj ∈ Cr×r, 1 ≤ j ≤ q such that DjDk = DkDj, 1 ≤ k ≤ q, k > j, we
obtain a set of q equations, given by

θ R +R (Dj − I) = R(Dj−)(Dj − I). (17)

Now, eliminating θ from (15) and (17) gives rise to (p+ q− 1) contiguous matrix function
relations of bilateral type

CiR−R (Dj − I) = CiR(Ci+)−R(Dj−)(Dj − I), 1 ≤ i ≤ p, 1 ≤ j ≤ q. (18)
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Equations (15) and (16) produce (p− 1) contiguous matrix function relations

(C1 − Ci)R = C1R(C1+)− CiR(Ci+), i = 2, . . . , p. (19)

Furthermore, Equations (16) and (17) leads to q contiguous matrix function relations

C1R−R (Dj − I) = C1R(C1+)−R(Dj−)(Dj − I), 1 ≤ j ≤ q. (20)

The set of matrix function relations given in (19) and (20) are simple contiguous matrix
function relations.

Next, we give matrix differential formulas satisfied by the matrix function pRq(A,B; z).

4.1 Matrix differential formulas

Theorem 4.1. Let A, B, C1, . . . , Cp, D1, . . . , Dq ∈ Cr×r such that each Dj +kI, 1 ≤ j ≤ q
is invertible for all integers k ≥ 0. Then the matrix function pRq(A,B; z) satisfies the
matrix differential formulas

(
d

dz

)r
pRq(A,B; z) = (C1)r · · · (Cp)r pRq

(
C1 + rI, . . . , Cp + rI
D1 + rI, . . . , Dq + rI

| A, rA+B; z

)
× (D1)

−1
r · · · (Dq)

−1
r , ClCm = CmCl, ClA = ACl, ClB = BCl,

DiDj = DjDi, 1 ≤ l,m ≤ p, 1 ≤ i, j ≤ q; (21)

(
d

dz

)r
(pRq(A,B; z)zDj−I) = pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj − rI,Dj+1, . . . , Dq
| A,B; z

)
× (−1)rzDj−(r+1)I(I −Dj)r, DiDj = DjDi; (22)

(
z2

d

dz

)r
(zCi−(r−1)I

pRq(A,B; z))

= (Ci)r z
Ci+rI

pRq

(
C1, . . . , Ci−1, Ci + rI, Ci+1, . . . , Cp

D1, . . . , Dq
| A,B; z

)
, CiCj = CjCi

CiA = ACi, CiB = BCi, 1 ≤ i, j ≤ p. (23)

Proof. Differentiating the Equation (8) with respect to z, we get

d

dz
pRq(A,B; z) =

∑
n≥1

Γ−1(nA+B) (C1)n . . . (Cp)n (D1)
−1
n . . . (Dq)

−1
n

zn−1

(n− 1)!

=
∑
n≥0

Γ−1(nA+ A+B) (C1)n+1 . . . (Cp)n+1 (D1)
−1
n+1 . . . (Dq)

−1
n+1

zn

n!

= (C1)1 · · · (Cp)1 pRq

(
C1 + I, . . . , Cp + I
D1 + I, . . . , Dq + I

| A,A+B; z

)
× (D1)

−1
1 · · · (Dq)

−1
1 . (24)
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Proceeding similarly r-times, we get the required relation (21). Using the commutativity
of matrices considered in the hypothesis and the way (21) is proved, we are able to prove
(22) and (23).

Theorem 4.2. Let A, B, C1, . . . , Cp, D1, . . . , Dq ∈ Cr×r such that each Dj +kI, 1 ≤ j ≤ q
is invertible for all integers k ≥ 0 and A, B − I are positive stable. Then the matrix
function pRq(A,B; z) defined in (8) satisfies the matrix differential formula

zA
d

dz
pRq(A,B; z) = pRq(A,B − I; z)− (B − I) pRq(A,B; z), AB = BA. (25)

Proof. Using the definition of matrix function pRq(A,B; z) and z d
dz
zn = nzn in the left

hand side of (25), we get

zA
d

dz
pRq(A,B; z) =

∑
n≥0

nAΓ−1(nA+B) (C1)n . . . (Cp)n (D1)
−1
n . . . (Dq)

−1
n

zn

n!

=
∑
n≥0

Γ−1(nA+B − I) (C1)n . . . (Cp)n (D1)
−1
n . . . (Dq)

−1
n

zn

n!

− (B − I)
∑
n≥0

Γ−1(nA+B) (C1)n . . . (Cp)n (D1)
−1
n . . . (Dq)

−1
n

× zn

n!
, AB = BA

= pRq(A,B − I; z)− (B − I) pRq(A,B; z). (26)

This completes the proof of (25).

5 Integral representation

We now find an integral representation of the matrix function pRq(A,B; z) using the
integral of the beta matrix function.

Theorem 5.1. Let A, B, C1, . . . , Cp, D1, . . . , Dq be matrices in Cr×r such that: Cp, Dq,
Dq − Cp are positive stable and CpDj = DjCp for all 1 ≤ j ≤ q. Then, for |z| < 1, the
matrix function pRq(A,B; z) defined in (8) can be presented in integral form as

pRq(A,B; z) =

∫ 1

0
p−1Rq−1

(
C1, . . . , Cp−1
D1, . . . , Dq−1

| A,B; t z

)
tCp−I(1− t)Dq−Cp−Idt

× Γ

(
Dq

Cp, Dq − Cp

)
. (27)

Proof. Since Cp, Dq, Dq − Cp are positive stable and CpDq = DqCp, we have [16]

(Cp)n(Dq)
−1
n =

(∫ 1

0

tCp+(n−1)I(1− t)Dq−Cp−Idt

)
Γ

(
Dq

Cp, Dq − Cp

)
. (28)
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Using (28) in (8), we get

pRq(A,B; z) =
∑
n≥0

∫ 1

0

Γ−1(nA+B) (C1)n · · · (Cp−1)n (D1)
−1
n · · · (Dq−1)

−1
n

× zn

n!
tCp+(n−1)I (1− t)Dq−Cp−Idt Γ

(
Dq

Cp, Dq − Cp

)
. (29)

To interchange the integral and summation, consider the product of matrix functions

Sn(z, t) = Γ−1(nA+B) (C1)n · · · (Cp−1)n (D1)
−1
n · · · (Dq−1)

−1
n

zn

n!
tCp+(n−1)I

× (1− t)Dq−Cp−I Γ

(
Dq

Cp, Dq − Cp

)
. (30)

For 0 < t < 1 and n ≥ 0, we get

‖Sn(z, t)‖

≤
∥∥∥∥Γ

(
Dq

Cp, Dq − Cp

)∥∥∥∥ ∥∥∥∥Γ−1(nA+B) (C1)n · · · (Cp−1)n (D1)
−1
n · · · (Dq−1)

−1
n

zn

n!

∥∥∥∥
× ‖tCp−I‖‖(1− t)Dq−Cp−I‖. (31)

The Schur decomposition (7) yields

‖tCp−I‖ ‖(1− t)Dq−Cp−I‖ ≤ tα(Cp)−1(1− t)α(Dq−Cp)−1

(
r−1∑
k=0

(‖Cp − I‖ r1/2 ln t)k

k!

)

×

(
r−1∑
k=0

(‖Dq − Cp − I‖ r1/2 ln (1− t))k

k!

)
. (32)

Since 0 < t < 1, we have

‖tCp−I‖ ‖(1− t)Dq−Cp−I‖ ≤ A tα(Cp)−1(1− t)α(Dq−Cp)−1, (33)

where

A =

(
r−1∑
k=0

(max{‖Cp − I‖, ‖Dq − Cp − I‖} r1/2)k

k!

)2

. (34)

The matrix series Γ−1(nA+B) (C1)n · · · (Cp−1)n (D1)
−1
n · · · (Dq−1)

−1
n

zn

n!
converges absolutely

for p ≤ q + 2 and |z| < 1; suppose it converges to S ′. Thus, we get∑
n≥0

‖Sn(z, t)‖ ≤ f(t) = NS ′A tα(Cp)−1 (1− t)α(Dq−Cp)−1. (35)

Since α(Cp), α(Dq − Cp) > 0, the function f(t) is integrable and by the dominated con-
vergence theorem [12], the summation and the integral can be interchanged in (29). Using
CpDj = DjCp, 1 ≤ j ≤ q, we get (27).
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6 Fractional calculus of the matrix function pRq(A,B; z)

Let x > 0 and µ ∈ C such that <(µ) > 0. Then the Riemann-Liouville type fractional
order integral and derivatives of order µ are given by [17], [24]

(Iµaf)(x) =
1

Γ(µ)

∫ x

a

(x− t)µ−1f(t)dt (36)

and

Dµ
af(x) = (In−µa Dnf(x)), D =

d

dx
. (37)

Bakhet and his co-workers, [4], studied the fractional order integrals and derivatives of
Wright hypergeometric and incomplete Wright hypergeometric matrix functions using the
operators (36) and (37). To obtain such they used the following lemma:

Lemma 6.1. Let A be a positive stable matrix in Cr×r and µ ∈ C such that <(µ) > 0.
Then the fractional integral operator (36) yields

Iµ(xA−I) = Γ(A)Γ−1(A+ µI)xA+(µ−1)I . (38)

In the next two theorems, we find the fractional order integral and derivative of matrix
function pRq(A,B; z).

Theorem 6.2. Let A, B, C1, . . . , Cp, D1, . . . , Dq be matrices in Cr×r and µ ∈ C such
that DiDj = DjDi, 1 ≤ i, j ≤ q and <(µ) > 0. Then the fractional integral of the matrix
function pRq(A,B; z) is given by

Iµ[pRq(A,B; z)zDj−I ]

= pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj + µI,Dj+1, . . . , Dq
| A,B; z

)
zDj+(µ−1)I

× Γ(Dj)Γ
−1(Dj + µI). (39)

Proof. From Equation (36), we have

Iµ[pRq(A,B; z)zDj−I ]

=
1

Γ(µ)

∫ z

0

(z − t)µ−1pRq(A,B; t)tDj−Idt

=
1

Γ(µ)

∑
n≥0

(C1)n . . . (Cp)n

(∫ z

0

(z − t)µ−1tDj+(n−1)Idt

)
(D1)

−1
n . . . (Dq)

−1
n

1

n!

=
∑
n≥0

(C1)n . . . (Cp)n
(
Iµ zDj+(n−1)I) (D1)

−1
n . . . (Dq)

−1
n

1

n!
. (40)
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Using the Lemma 6.1, we get

Iµ[pRq(A,B; z)zDj−I ] =
1

Γ(µ)

∑
n≥0

(C1)n . . . (Cp)nΓ(Dj + nI)Γ−1(Dj + nI + µI)

× zDj+(n+µ−1)I(D1)
−1
n . . . (Dq)

−1
n

1

n!

= pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj + µI,Dj+1, . . . , Dq
| A,B; z

)
× zDj+(µ−1)I Γ(Dj)Γ

−1(Dj + µI). (41)

This completes the proof.

Theorem 6.3. Let A, B, C1, . . . , Cp, D1, . . . , Dq be matrices in Cr×r and µ ∈ C such
that DiDj = DjDi, 1 ≤ i, j ≤ q and <(µ) > 0. Then the fractional integral of the matrix
function pRq(A,B; z) is given by

Dµ[pRq(A,B; z)zDj−I ]

= pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj − µI,Dj+1, . . . , Dq
| A,B; z

)
zDj−(µ−1)I

× Γ(Dj)Γ
−1(Dj − µI). (42)

Proof. The fractional derivative operator (37) and Theorem 6.2 together yield

Dµ[pRq(A,B; z)zDj−I ]

=

(
d

dz

)r
pRq

(
C1, . . . , Cp

D1, . . . , Dj−1, Dj + (r − µ)I,Dj+1, . . . , Dq
| A,B; z

)
zDj+(r−µ−1)I

× Γ(Dj)Γ
−1(Dj + (r − µ)I). (43)

Now, proceeding exactly in the same manner as in Theorem 4.1, we get (42).

7 Special Cases

The matrix function pRq(A,B; z) reduces to several special matrix functions. These
matrix functions are considered as matrix generalizations of respective classical matrix
functions such as the generalized hypergeometric matrix function, the Gauss hypergeomet-
ric matrix function, the confluent hypergeometric matrix function, the matrix M-series, the
Wright matrix function and the Mittag-Leffler matrix function and its generalizations. We
also discuss some matrix polynomials as particular cases.

We start with the special case A = B = I and Cp = I. The matrix function pRq(A,B; z)
reduces to

pRq

(
C1, . . . , Cp−1, I
D1, . . . , Dq

| I, I; z

)
=
∑
n≥0

(C1)n . . . (Cp−1)n (D1)
−1
n . . . (Dq)

−1
n

zn

n!

= p−1Fq(C1, . . . , Cp−1, D1, . . . , Dq; z), (44)
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which is known as generalized hypergeometric matrix function with p−1 matrix parameters
in the numerator and q in the denominator [9]. For C1 = A1, C2 = B1, C3 = I,D1 = C
and A = B = I, the matrix function pRq(A,B; z) reduces to the Gauss hypergeometric
matrix function 2F1(A1, B1;C; z). Similarly, for C1 = A1, C2 = I,D1 = C and A = B = I,

pRq(A,B; z) reduces to the confluent hypergeometric matrix function 1F1(A1;C; z).
For Cp = I, the matrix function pRq(A,B; z) leads to the matrix analogue of the

generalized M -series [26].

pRq

(
C1, . . . , Cp−1, I
D1, . . . , Dq

| A,B; z

)
=
∑
n≥0

Γ−1(nA+B)(C1)n . . . (Cp−1)n

× (D1)
−1
n . . . (Dq)

−1
n zn

= p−1M
(A,B)
q (C1, . . . , Cp−1, D1, . . . , Dq; z). (45)

With p = 1, q = 0, C1 = I and B = I, the matrix function pRq(A,B; z) reduces to

1R0

(
I
− | A, I; z

)
=
∑
n≥0

Γ−1(nA+ I)zn = EA(z), (46)

for p = 1, q = 0 and C1 = I, the matrix function pRq(A,B; z) gives

1R0

(
I
− | A,B; z

)
=
∑
n≥0

Γ−1(nA+B) zn = EA,B(z), (47)

with one matrix parameter, C1 = C, pRq(A,B; z) becomes

1R0

(
C
− | A,B; z

)
=
∑
n≥0

Γ−1(nA+B) (C)n
zn

n!
= EC

A,B(z) (48)

and for two numerator matrix parameter, C1 = C, C2 = I and one denominator matrix
parameter D1 = D, pRq(A,B; z) reduces to

2R1

(
C, I
D
| A,B; z

)
=
∑
n≥0

Γ−1(nA+B) (C)n (D)−1n zn = EC,D
A,B (z). (49)

We define the matrix functions obtained in (46)-(49) as the matrix analogue of the classical
Mittag-Leffler function [18], Wiman’s function [28], the generalized Mittag-Leffler function
in three parameters [19] and the generalized Mittag-Leffler function in four parameters
[20], respectively.

For p = q = 0, with replacement of B by B + I and z by −z, the matrix function

pRq(A,B; z) turns into the generalized Bessel-Maitland matrix function [21]

0R0

(
−
− | A,B + I;−z

)
=
∑
n≥0

Γ−1(nA+B + I) (−z)n

n!
= JBA (z). (50)
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Matrix polynomials such as the Jacobi matrix polynomial, the generalized Konhauser
matrix polynomial, the Laguerre matrix polynomial, the Legendre matrix polynomial, the
Chebyshev matrix polynomial and the Gegenbauer matrix polynomial can be presented as
particular cases of the matrix function pRq(A,B; z). The matrix polynomial dependency
chart is given below:

Figure 1: Special cases

pRq(A,B; z)

The Konhauser
matrix polynomial

Laguerre
matrix

polynomial

Jacobi
matrix polynomial

Chebyshev
matrix

polynomial

Gegenbauer
matrix

polynomial

Legendre
matrix

polynomial

More explicitly, the Jacobi matrix polynomial can be written in term of the matrix
function pRq(A,B; z), for p = 2, q = 1, C1 = A + C + (k + 1)I, C2 = −kI, D1 = C + I,
A = 0, B = C + I and z = 1+x

2
, as

P
(A,C)
k (x) =

(−1)k

k!
2R1

(
A+ C + (k + 1)I,−kI

C + I
| 0, C + I;

1 + x

2

)
× Γ(C + (k + 1)I). (51)

For p = 2, q = 1, C1 = (k + 1)I, C2 = −kI, D1 = D, A = 0 and z = 1−x
2

, the matrix
function pRq(A,B; z) reduces to the Legendre matrix polynomial

Pk(x,D) = 2R1

(
(k + 1)I,−kI

D
| 0, B;

1− x
2

)
. (52)

Similarly, the Gegenbauer matrix polynomial in terms of the matrix function pRq(A,B; z)
can be expressed as

CD
k (x) =

(2D)k
k!

2R1

(
2D + kI,−kI

D + 1
2
I

| 0, B;
1− x

2

)
. (53)

The Konhauser matrix polynomial in terms of the matrix

ZC
m(x, k) =

Γ(C + (km+ 1)I)

Γ(m+ 1)
1R0

(
−mI
− | kI, C + I;xk

)
. (54)

The Laguerre matrix polynomial can be obtained by taking k = 1 in Equation (54).
Note that the properties of these matrix functions and polynomials can be deduced

from the corresponding properties of the matrix function pRq(A,B; z).
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