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A regularity criterion in multiplier spaces to Navier-Stokes
equations via the gradient of one velocity component

Ahmad M. Alghamdi, Sadek Gala and Maria Alessandra Ragusa

Abstract. In this paper, we study regularity of weak solutions to the incompressible
Navier-Stokes equations in R3 × (0, T ). The main goal is to establish the regularity
criterion via the gradient of one velocity component in multiplier spaces.

1 Introduction

In this paper we consider the following Cauchy problemma for the incompressible
Navier-Stokes equations in R3 × (0, T )

∂tu+ (u · ∇)u−∆u+∇π = 0,
∇ · u = 0,

u(x, 0) = u0(x),
(1)

where u = (u1(x, t), u2(x, t), u3(x, t)) denotes the unknown velocity vector and π = π(x, t)
denotes the hydrostatic pressure respectively. While u0 is the prescribed initial data for
the velocity with properties ∇ · u0 = 0.

The global existence of smooth solutions for the 3D incompressible Navier-Stokes equa-
tions is one of the most outstanding open problemmas in fluid mechanics. Different criteria
for regularity of the weak solutions have been proposed and many interesting results were
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established (see, for example, [3], [8], [9], [17], [16], [14], [19], [24], [27], [32], [33], [34], [35],
[37] and references therein).

Recently, many authors became interested in the regularity criteria involving only one
velocity component, or its gradient, even though most of which are not scaling invariant
(see, for example, [4], [5], [7], [10], [11], [15], [18], [22], [29] and the references cited therein).
In particular, Zhou [30] showed that the solution is regular if

u3 ∈ Lp(0, T ;Lq(R3)) with
2

p
+

3

q
=

1

2
, 6 < q ≤ ∞. (2)

Later, Cao and Titi [5] obtained the regularity criterion

u3 ∈ Lp(0, T ;Lq(R3)) with
2

p
+

3

q
=

2

3
+

2

3q
, q >

7

2
. (3)

Motivated by the above work, Zhou and Pokorný [37] showed the following regularity
condition

u3 ∈ Lp(0, T ;Lq(R3)) with
2

p
+

3

q
=

3

4
+

1

2q
, q >

10

3
, (4)

while the limiting case u3 ∈ L∞(0, T ;L
10
3 (R3))was covered in [18]. Inspired by the work [3],

we are interested in criteria involving the gradient of one velocity component ∇u3. In fact,
He [15] first verified the following regularity result

∇u3 ∈ Lp(0, T ;Lq(R3)) with
2

p
+

3

q
= 1, 3 ≤ q ≤ ∞. (5)

The above result was significantly improved by Pokorný [23] and Zhou [31] independently
(see also [36]). More precisely, it reads as follows

∇u3 ∈ Lp(0, T ;Lq(R3)) with
2

p
+

3

q
=

3

2
, 2 ≤ q <∞. (6)

Very recently, Ye [26] improves the previous work of Zhou and Pokorný [36] by using of
a new anisotropic Sobolev inequality, and proved the following regularity criterion

∇u3 ∈ L
16q

15q−23 (0, T ;Lq(R3)) with q ∈ [2, 3]. (7)

Note that
2

16q
15q−23

+
3

q
=

15q + 1

8q
>

23

12
, for any 2 ≤ q < 3.

Consequently, (7) can be regarded as a further improvement of [36]. Moreover, the endpoint
case q = 3recovers the result of [28]. For some other interesting regularity criteria, we refer
the readers to [25], [26] and references therein.

The purpose of this work is to extend the regularity criterion of weak solutions in
terms of one gradient of velocity component to the multiplier space which is larger than
the Lebesgue space. The method is based on the following interpolation inequality

‖ϕ‖Lγ ≤ C ‖∂3ϕ‖
1
3
Lµ ‖∇hϕ‖

2
3

Lλ
,
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where µ, λand γsatisfy

1 ≤ µ, λ < +∞, 1

µ
+

2

λ
> 1 and 1 +

3

γ
=

1

µ
+

2

λ
.

The detailed proof of this inequality can be found in the appendix of Cao and Wu [6].
In order to prove our theorem, let us recall the definition of weak solutions.

Definition 1.1. Let T > 0, u0 ∈ L2(R3) with ∇ · u0 = 0 in the sense of distributions. A
measurable function u(x, t) is called a weak solution to the Navier-Stokes equations (1) on
[0, T ] if the following conditions hold:

1. u(x, t) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));

2. system (1) is satisfied in the sense of distributions;

3. the energy inequality, that is,

‖u(·, t)‖2
L2 + 2

∫ t

0

‖∇u(τ)‖2
L2 dτ ≤ ‖u0‖2

L2 .

By a strong solution, we mean that a weak solution u of the Navier-Stokes equations
(1) satisfies

(u(x, t), θ(x, t)) ∈ L∞(0, T ;H1(R3)) ∩ L2(0, T ;H2(R3)).

It is well known that the strong solution is regular and unique.
For α ∈ R, the Homogeneous Sobolev Space Ḣα(R3)is the space of tempered distribu-

tions f for which

‖f‖Ḣα =

√∫
R3

|ξ|2α
∣∣∣f̂(ξ)

∣∣∣2 dξ < +∞.

For Homogeneous Sobolev Spaces, we refer to the book [2]. For instance, the following
basic interpolation inequality holds:

Lemma 1.2. For 0 < α ≤ β, the space L2 ∩ Ḣβ is a subset of Ḣα, and we have

‖f‖Ḣα ≤ ‖f‖
1−α

β

L2 ‖f‖
α
β

Ḣβ . (8)

Proof. This is a particular case of [2], Proposition 1.32.

We say that a function belongs to the multiplier spaces Ẋ1+α := M(Ḣα(R3) →
Ḣ−1(R3))if it maps, by pointwise multiplication, Ḣαin Ḣ−1 :

Ẋ1+α =
{
f ∈ S ′(R3) : ‖fg‖Ḣ−1 ≤ ‖g‖Ḣα

}
.

Ḣα(R3)denotes the homogeneous Sobolev space. The space Ẋ1+αhas been characterized
in [20], [21] (see also [13]). Now our regularity criterion for system (1) reads
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Theorem 1.3. Let u0 ∈ L2(R3) with ∇ · u0 = 0 in the sense of distributions. Assume that
u is a weak solution to system (1). If ∇u3 satisfies the following condition

∇u3 ∈ L
8

3−4α (0, T ; Ẋ1+α(R3)), for some 0 ≤ α <
3

4
, (9)

then the solution u is regular on (0;T ].

Remark 1.4. Since L
3

1+α (R3) ⊂ Ẋ1+α(R3) (see e.g. [35] for details), it is clear that our
result improves that in [26] and extend the regularity criterion (4) from Lebesgue space
Lα to multiplier space Ẋ1+α.

Thanks to
‖f‖BMO ≤ C ‖∇f‖Ẋ1

(see e.g. [12, Proposition 2]), where BMO denotes the homogeneous space of bounded
mean oscillations, it is easy to deduce the following regularity criterion.

Corollary 1.5. Let u0 ∈ L2(R3) with ∇ · u0 = 0 in the sense of distributions. Assume that
u is a weak solution to system (1). If u3 satisfies the following condition

u3 ∈ L
8
3 (0, T ;BMO(R3)), (10)

then the solution u is regular on (0;T ].

Remark 1.6. Since L∞(R3) ↪→ BMO(R3), our result recovers the limiting case q = ∞ in
(4), that is,

u3 ∈ L
8
3 (0, T ;L∞(R3)).

Consequently, (10) can be regarded as a further improvement of the previous work [37].

2 Proof of main result.

In this section, under the assumptions of the Theorem 1.3, we prove our main re-
sult. Before proving our result, we recall the following muliplicative Sobolev imbedding
inequality in the whole space R3(see, for example [5]):

‖f‖L6 ≤ C ‖∇hf‖
2
3

L2 ‖∂3f‖
1
3

L2 , (11)

where ∇h = (∂x1 , ∂x2)is the horizontal gradient operator. We are now give the proof of our
main theorem.

Proof. To prove our result, it suffices to show that for any fixed T > T ∗, there holds

sup
0≤t≤T ∗

‖∇u(t)‖2
L2 ≤ CT ,
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where T ∗, which denotes the maximal existence time of a strong solution and CT is an
absolute constant which only depends on T and u0.

The method of our proof is based on two major parts. The first one establishes the
bounds of ‖∇hu‖2

L2 , while the second gives the bounds of the H1−norm of velocity u in
terms of the results of part one.

Step I. Taking the inner product of (1)1 with −∆hu, we obtain after integrating by
parts that

1

2

d

dt
‖∇hu‖2

L2 + ‖∇∇hu‖2
L2 =

∫
R3

(u · ∇)u ·∆hudx = I. (12)

where ∆h = ∂2
x1

+ ∂2
x2

is the horizontal Laplacian. For the notational simplicity, we set

L2(t) = sup
τ∈[Γ,t]

‖∇hu(τ)‖2
L2 +

∫ t

Γ

‖∇∇hu(τ)‖2
L2 dτ,

J 2(t) = sup
τ∈[Γ,t]

‖∇u(τ)‖2
L2 +

∫ t

Γ

‖∆u(τ)‖2
L2 dτ,

for t ∈ [Γ, T ∗). In view of (9), we choose ε > 0 to be precisely determined subsequently
and then select Γ < T ∗ sufficiently close to T ∗ such that for all Γ ≤ t < T ∗,∫ t

Γ

‖∇u(τ)‖2
L2 dτ ≤ ε� 1. (13)

Integrating by parts and using the divergence-free condition, it follows that

I ≤
∫
R3

|∇u3| |∇u| |∇hu| dx

≤ ‖|∇u3| |∇u|‖Ḣ−1 ‖∇hu‖Ḣ1

≤ C ‖∇u3‖Ẋ1+α
‖∇u‖Ḣα ‖∇∇hu‖L2

≤ C ‖∇u3‖Ẋ1+α
‖∇u‖1−α

L2

∥∥∇2u
∥∥α
L2 ‖∇∇hu‖L2

≤ C ‖∇u3‖2
Ẋ1+α

‖∇u‖2(1−α)

L2 ‖∆u‖2α
L2 +

1

2
‖∇∇hu‖2

L2 ,

by Young’s inequality and (8). Inserting the above estimate into (12) and integrating with
respect to time, we deduce for every τ ∈ [Γ, t]:

sup
τ∈[Γ,t]

‖∇hu(τ)‖2
L2 +

∫ t

Γ

‖∇∇hu(τ)‖2
L2 dτ

≤ ‖∇hu(Γ)‖2
L2 + C

∫ t

Γ

‖∇u3(τ)‖2
Ẋ1+α

‖∇u(τ)‖2(1−α)

L2 ‖∆u(τ)‖2α
L2 dτ

≤ ‖∇hu(Γ)‖2
L2 + C

(
sup
τ∈[Γ,t]

‖∇u(τ)‖
3
2
−2α

L2

)∫ t

Γ

‖∇u3(τ)‖2
Ẋ1+α

‖∇u(τ)‖
1
2

L2 ‖∆u(τ)‖2α
L2 dτ

≤ C + C

(
sup
τ∈[Γ,t]

‖∇u(τ)‖
3
2
−2α

L2

)(∫ t

Γ

‖∇u3(τ)‖
8

3−4α

Ẋ1+α
dτ

) 3
4
−α(∫ t

Γ

‖∇u(τ)‖2
L2 dτ

) 1
4
(∫ t

Γ

‖∆u(τ)‖2
L2 dτ

)α
≤ C + CJ

3
2
−2α(t)

(∫ t

Γ

‖∇u3(τ)‖
8

3−4α

Ẋ1+α
dτ

) 3
4
−α

ε
1
4J 2α(t)

≤ C + Cε
1
4J

3
2 (t),



86 Ahmad M. Alghamdi, Sadek Gala and Maria Alessandra Ragusa

which leads to
L2(t) ≤ C + Cε

1
4J

3
2 (t). (14)

Step II. Now, we will establish the bounds of H1−norm of the velocity field. In order
to do it, taking the inner product of (1)1 with −∆u in L2(R3). Then, integration by parts
gives the following identity:

1

2

d

dt
‖∇u‖2

L2 + ‖∆u‖2
L2 =

∫
R3

(u · ∇)u ·∆udx

Integrating by parts and using the divergence-free condition, one can easily deduce that
(see e.g. [37])∫

R3

(u · ∇)u ·∆udx ≤ C

∫
R3

|∇hu| |∇u|2 dx ≤ C ‖∇hu‖L2 ‖∇u‖2
L4

≤ C ‖∇hu‖L2 ‖∇u‖
1
2

L2 ‖∇u‖
3
2

L6

≤ C ‖∇hu‖L2 ‖∇u‖
1
2

L2 ‖∇h∇u‖L2 ‖∆u‖
1
2

L2

by Hölder’s inequality, Nirenberg-Gagliardo’s interpolation inequality and (11). Integrat-
ing this last inequality in time, we deduce that for all τ ∈ [Γ, t]

J 2(t) ≤ ‖∇u(Γ)‖2
L2

+ C sup
τ∈[Γ,t]

‖∇hu(τ)‖L2

(∫ t

Γ

‖∇u(τ)‖2
L2 dτ

) 1
4
(∫ t

Γ

‖∇∇hu(τ)‖2
L2 dτ

) 1
2
(∫ t

Γ

‖∆u(τ)‖2
L2 dτ

) 1
4

≤ ‖∇u(Γ)‖2
L2 + 2CL(t)ε

1
4L(t)J

1
2 (t)

= ‖∇u(Γ)‖2
L2 + Cε

1
4L2(t)J

1
2 (t). (15)

Inserting (14) into (15) and taking ε small enough, then it is easy to see that for all
Γ ≤ t < T ∗, there holds

J 2(t) ≤ ‖∇u(Γ)‖2
L2 + Cε

1
4J

1
2 (t) + Cε

1
2J 2(t) <∞,

which proves
sup

Γ≤t<T ∗
‖∇u(t)‖2

L2 < +∞.

This completes the proof of Theorem 1.3.

Acknowledgments

Part of the work was carried out while the second author was long-term visitor at
University of Catania. The hospitality of Catania University is graciously acknowledged.
This research is partially supported by Piano della Ricerca 2016-2018 - Linea di intervento
2: “Metodi variazionali ed equazioni differenziali”. The second author wish to thank the
support of “RUDN University Program 5-100”. The authors thank the anonymous referee
for careful reading of the manuscript, many valuable comments and helprooful suggestions
for its improvement.



A regularity criterion in multiplier spaces to Navier-Stokes equations 87

References
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Navier-Stokes equations. Ann. Sci. Éc. Norm. Supér. 49 (1) (2016) 133–169.

[8] Fan, Jishan; Ozawa, Tohru: Regularity criterion for weak solutions to the Navier-Stokes equations
in terms of the gradient of the pressure. J. Inequal. Appl. Art. ID 412678 (2008) 6.

[9] Fan, Jishan; Jiang, Song; Nakamura, Gen; Zhou, Yong: Logarithmically improved regularity
criteria for the Navier-Stokes and MHD equations. J. Math. Fluid Mech. 13 (4) (2011) 557–571.

[10] Daoyuan Fang and Chenyin Qian: Regularity criterion for 3D Navier-Stokes equations in Besov
spaces. Commun. Pure Appl. Anal. 13 (2) (2014) 585–603.

[11] Fang, Daoyuan and Qian, Chenyin: The regularity criterion for 3D Navier-Stokes equations
involving one velocity gradient component. Nonlinear Anal. International Multidisciplinary
Journal 78 (2013) 86–103.

[12] Sadek Gala: Regularity criterion on weak solutions to the Navier-Stokes equations. J Korean
Math. Soc. 45 (2) (2008) 537–558.
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