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Solution of the equation y′ = f(y) and Bell Polynomials

Ronald Orozco López

Abstract. In this paper we use Faà di Bruno’s formula to associate Bell polynomial
values to differential equations of the form y′ = f(y). That is, we use partial Bell
polynomials to represent the solution of such an equation and use the solution to
compute special values of partial Bell polynomials.

1 Introduction

It is a known fact that Bell polynomials are closely related to the derivatives of the
composition of functions. For example, Faà di Bruno [5], Foissy [6], and Riordan [10]
proved that Bell polynomials are a very useful tool in mathematics to represent the n-th
derivative of the composition of functions. Also, Bernardini and Ricci [2], Yildiz et al. [12],
Caley [3], and Wang [13] showed the relationship between Bell polynomials and differential
equations. On the other hand, Orozco [9] studied the convergence of the analytic solution
of the autonomous differential equation y(k) = f(y) using Faà di Bruno’s formula. We
can then consider differential equations as a source for researching special values of Bell
polynomials.

In this paper we consider the solution y(t, x) = g(t+g−1(x)) of the autonomous differen-
tial equation y′ = f(y) and show how to express this solution by means of Bell polynomials.
This will then be used to find special values of partial Bell polynomials. Here we will not
consider convergence issues, but formal solutions of such a differential equation.

This paper is organized as follows. We start with basic results on partial and complete
Bell polynomials and special values of these. In the third section we show what condition
g(x) must satisfy for g(t+ g−1(x)) to be a solution of y′ = f(y). We conclude by showing
the relationship between Bell polynomials and the solution of the differential equation
y′ = f(y) when f(x) = ax, f(x) = ex, f(x) =

√
1− x2, f(x) = 1 + x2, f(x) =

√
x2 ± 1,

f(x) = 1− x2 and f(x) = 1
(x−1)α−1 , where a, α ∈ C.
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2 Preliminaries

The following basic results can be found in Comtet [4], and Riordan [11]. Exponential
Bell polynomials are used to encode information about the ways in which a set can be
partitioned, making them a very useful tool in combinatorial analysis. Bell polynomials
are obtained from the derivatives of composite functions and are given by the formula of
Faà Di Bruno [5]. Bell [1], Gould [7], Mihoubi [8], Wang [14] and Feng Qi [15], [16], [17]
(among many others) provided important results on these polynomials. We start with the
definition of the partial Bell polynomials.

Definition 2.1. The exponential partial Bell polynomials are the polynomials

Bn,k(x1, xn, . . . , xn−k+1)

in the infinite variables x1, x2, . . . defined by the series expansion

exp

(
u
∞∑
j=1

xj
tj

j!

)
= 1 +

∞∑
n=1

tn

n!

n∑
k=1

ukBn,k(x1, x2, . . . , xn−k+1). (1)

or equivalently defined by the series expansion of the k-th power

1

k!

(
∞∑
j=1

xj
tj

j!

)k

=
∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
. (2)

The following result gives the explicit way to calculate the partial Bell polynomials

Theorem 2.2. The partial or incomplete exponential Bell polynomials are given by

Bn,k(x1, . . . , xn−k+1) =
∑ n!

c1!c2! · · · cn−k+1!

(x1
1!

)c1
· · ·
(

xn−k+1

(n− k + 1)!

)cn−k+1

,

where the summation takes place over all integers c1, c2, . . . , cn−k+1 ≥ 0, such that

c1 + 2c2 + · · ·+ (n− k + 1)cn−k+1 = n,

c1 + c2 + · · ·+ cn−k+1 = k.

Some values of partial Bell polynomials are

Bn,k(0!, 1!, . . . , (n− k)!) =

[
n

k

]
(Unsigned Stirling number of first kind),

Bn,k(1!, . . . , (n− k)!) =

(
n− 1

k − 1

)
n!

k!
(Lah number),

Bn,k(1, 1, . . . , 1) =

{
n

k

}
(Stirling number of second kind),

Bn,k(1, 2, . . . , n− k + 1) =

(
n

k

)
kn−k (Idempotent number).
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Then we can see the beautiful relationship that exists between Bell polynomials and num-
bers like the above.

Feng Qi [17] deduced the following identity that will be very useful to us

Bn,k(x, 1, 0, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n,

that together with the identity

Bn,k(abx1, ab
2x2, . . . , ab

n−k+1xn−k+1) = akbnBn,k(x1, x2, . . . , xn−k+1) (3)

leads us to

Bn,k(ax, a, 0, 0, . . . , 0) =
ak

2n−k
n!

k!

(
k

n− k

)
x2k−n. (4)

Finally we show Faà di Bruno’s formula. Let f and g be functions with exponential
generating functions

∑
an

xn

n!
and

∑
bn

xn

n!
respectively, with an, bn ∈ C. Then

f(g(x)) = f(b0) +
∞∑
n=1

n∑
k=1

f (k)(b0)Bn,k(b1, . . . , bn−k+1)
xn

n!
. (5)

3 Differential equation y′ = f(y) and Bell polynomials

This section contains the general results of this paper. Here we show the condition that
the function g(x) must satisfy for g(t+ g−1(x)) to be a solution of the differential equation
y′ = f(y). Then we will give a representation of g(t+ g−1(x)) in power series using partial
Bell polynomials and finally we use the solution of the equation y′ = f(y) to find special
values of partial Bell polynomials.

Theorem 3.1. The function y(t, x) = g(t+ g−1(x)) is solution of the differential equation
y′ = f(y) with initial value problem y(0) = x, where f(x) = 1

(g−1)′(x)
.

Proof. Using the method of separation of variables and the value of the function f(x) given
in the hypothesis, we find that∫

dy

f(y)
=

∫
(g−1)′(y)dy

= g−1(y) = t+ C.

As y(0) = x, then y(t, x) = g(t+ g−1(x)).

Theorem 3.2. The function g(t+ g−1(x)) has the following representation using Bell poly-
nomials

g(t+ g−1(x)) = x+ g′[g−1(x)]t

+
∞∑
n=1

n∑
k=1

f (k)(x)Bn,k(g
′[g−1(x)], . . . , g(n−k+1)[g−1(x)])

tn+1

(n+ 1)!
, (6)
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where g(n)[g−1(x)] satisfies

g(n+1)[g−1(x)] =
n∑
k=1

f (k)(x)Bn,k(g
′[g−1(x)], . . . , g(n−k+1)[g−1(x)]), n ≥ 1 (7)

with g−1(y) =
∫

dy
f(y)

.

Proof. Applying Taylor formula to g(t+ g−1(x)) we get

g(t+ g−1(x)) = x+
∞∑
n=1

g(n)(g−1(x))
tn

n!

= x+ g′[g−1(x)]t+
∞∑
n=1

g(n+1)(g−1(x))
tn+1

(n+ 1)!
.

Since g(t + g−1(x)) is solution of y′ = f(y) with initial value problem y(0) = x, then by
directly applying Faà di Bruno’s formula (5) to y′ = f(y) we obtain the desired result.

Theorem 3.3. Let y′ = f(y) be the autonomous differential equation with initial value
problem y(0) = x. For n ≥ k ≥ 1 we have

Bn,k(g
′[g−1(x)], g′′[g−1(x)], . . . , g(n−k+1)[g−1(x)])

=
1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−i

dn

dtn
gi(t+ g−1(x))

∣∣∣∣
t=0

. (8)

Proof. Making xm = g(m)[g−1(x)] in the equation (2) leads us to

∞∑
n=k

Bn,k(g
′[g−1(x)], . . . , g(n−k+1)[g−1(x)])

tn

n!

=
1

k!

(
∞∑
m=1

g(m)[g−1(x)]
tm

m!

)k

=
1

k!
(g(t+ g−1(x))− x)k

=
1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−igi(t+ g−1(x)).

Differentiating m ≥ k ≥ 0 times with respect to t

∞∑
n=k

Bn,k(g
′[g−1(x)], . . . , g(n−k+1)[g−1(x)])

tn−m

(n−m)!

=
1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−i

dm

dtm
gi(t+ g−1(x))
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and then by making t = 0, we obtain the desired result

Bm,k(g
′[g−1(x)], . . . , g(m−k+1)[g−1(x)]) =

1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−i

dm

dtm
gi(t+ g−1(x))

∣∣∣∣
t=0

.

4 Some examples

We will use the Theorem 3.2 to represent the solution g(t+g−1(x)) by Bell polynomials
when f(x) is any of the following functions: f(x) = ax, f(x) = ex, f(x) =

√
1− x2,

f(x) = 1 + x2, f(x) =
√
x2 ± 1, f(x) = 1 − x2 and f(x) = 1

(x−1)α−1 , where a, α ∈ C.
In addition by using the Theorem 3.3 we will find identities for Bell polynomials, some
of which were constructed by Feng Qi et al in [15], [16], [17]. In particular, we will note
that we can associate Stirling numbers and Lah numbers with autonomous differential
equations of order one.

4.1 Equation y′ = ay

The solution to this equation is y(t, x) = xeat where f(x) = ax, f (k)(x) = 0 for k ≥ 2,
and g(n)[g−1(x)] = anx. By the Theorem 3.2, we have the representation of xeat using Bell
polynomials

xeax = x+ axt+ a
∞∑
n=1

n∑
k=1

f (k)(x)Bn,k(ax, a
2x, . . . , an−k+1x)

tn+1

(n+ 1)!

= x+ axt+ a
∞∑
n=1

Bn,1(ax, a
2x, . . . , anx)

tn+1

(n+ 1)!

and by the Theorem 3.3 we find the following value of Bell polynomial using the solution
y(t, x) = xeat

Bn,k(ax, a
2x, . . . , an−k+1x) =

1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−i

dn

dtn
xieait

∣∣∣∣
t=0

=
anxk

k!

k∑
i=0

(
k

i

)
(−1)k−iin

= anxk
{
n

k

}
,

where we have used that {
n

k

}
=

1

k!

k∑
i=0

(
k

i

)
(−1)k−iin.

We then relate the Stirling numbers of the second kind to the differential equation
y′ = ay. When we make x = 1, a = 1, the above provides another proof for the known
result Bn,k(1, 1, . . . , 1) =

{
n
k

}
.
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4.2 Equation y′ = ey

The solution to this equation is y(t, x) = − ln(−t + e−x). Then by the Theorem 3.2,
with f(x) = ex and g(n)[g−1(x)] = (n− 1)!enx, we have the representation of the function
− ln(−t+ e−x), that is,

− ln(−t+ e−x) = x+ ext

+ ex
∞∑
n=1

n∑
k=1

Bn,k

(
0!ex, 1!e2x, . . . , (n− k)!e(n−k+1)x

) tn+1

(n+ 1)!

= x+ ext+ ex
∞∑
n=1

enx
n∑
k=1

Bn,k (0!, 1!, . . . , (n− k)!)
tn+1

(n+ 1)!

= x+ ext+ ex
∞∑
n=1

enxBn (0!, 1!, . . . , (n− 1)!)
tn+1

(n+ 1)!
.

By the Theorem 3.3 we find another special value of Bell polynomials, i.e.

∞∑
n=k

Bn,k

(
0!ex, 1!e2x, . . . , (n− k + 1)!e(n−k+1)x

) tn
n!

=
(− ln(−t+ e−x)− x)k

k!
=

(− ln(−tex + 1))k

k!
=
∞∑
n=k

enx
[
n

k

]
tn

n!

and by comparing the coefficients of the two sums we get

Bn,k

(
0!ex, 1!e2x, . . . , (n− k + 1)!e(n−k+1)x

)
= enx

[
n

k

]
.

Clearly the unsigned Stirling numbers of the first kind are related to the differential equa-
tion y′ = ey.

4.3 Equation y′ =
√

1− y2

The solution of the equation with initial value problem y(0) = x is

y(t, x) = sin(t+ arcsin(x))

= x cos(t) +
√

1− x2 sin(t).

Then, due to the Theorem 3.2, we reach

x cos(t) +
√

1− x2 sin(t) = x+
√

1− x2t

+
∞∑
n=1

n∑
k=1

f (k)(x)Bn,k

(√
1− x2,−x, . . . ,− cos

[
arcsin(x) + (n− k)

π

2

]) tn+1

(n+ 1)!
,
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where

f (k)(x) =
k∑
i=1

(−1)i22i−kk!

(
1/2

i

)(
i

k − i

)
(1− x2)1/2−ix2i−k

has been obtained by applying Faà di Bruno’s formula to f(x) = g(h(x)) with g(x) =
√
x

and h(x) = 1− x2 and by the equation (4)

Bn,k(−2x,−x, 0, . . . , 0) = (−1)k22k−nn!

k!

(
k

n− k

)
x2k−n.

A simple application of the previous result with x = 0, x = 1, x = 1
2
, x =

√
3
2

and

x =
√
2
2

leads us to the representation of the functions sin(t), cos(t), 1
2

cos(t) +
√
3
2

sin(t),
√
3
2

cos(t) + 1
2

sin(t) and
√
2
2

(cos(t) + sin(t)), respectively.
Feng Qi [16] showed the following result

Bn,k(cosx,− sinx,− cosx, sinx, . . . ,− cos
[
x+ (n− k)

π

2

]
)

=
(−1)k

k!

k∑
i=0

1

2i

(
k

i

)
sink−i x

i∑
j=0

(−1)j
(
i

j

)
(2j − i)n

× cos
[
(n− i)π

2
+ (2j − i)x

]
, (9)

which when composing with arcsinx leads to the following result

Bn,k

(√
1− x2,−x,−

√
1− x2, x, . . . ,− cos

[
arcsin(x) + (n− k)

π

2

])
=

(−1)k

k!

k∑
i=0

(
k

i

)
xk−i

2i

i∑
j=0

(−1)j
(
i

j

)
(2j − i)m

× cos
[
(n− i)π

2
+ (2j − i) arcsin(x)

]
. (10)

Analogously, we can find similar results for the solution cos(t + arccos(x)) of the dif-
ferential equation y′ = −

√
1− y2, with y(0) = x.

4.4 Equation y′ = 1 + y2

The solution of this equation is tan(t + arctan(x)) with f(x) = 1 + x2. By the Theo-
rem 3.3 it follows that

Theorem 4.1.

tan(n+1)(arctan(x)) = 2x tan(n)(arctan(x))

+
n−1∑
k=1

(
n

k

)
tan(k)(arctan(x)) tan(n−k)(arctan(x)) (11)
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Proof. It is clear that f (k)(x) = 0 for all k ≥ 3. Then the theorem follows by keeping in
mind that

Bn,1(tan′(arctan(x)), . . . , tan(n)(arctan(x))) = tan(n)(arctan(x))

and

Bn,2(tan′(arctan(x)), . . . , tan(n−1)(arctan(x)))

=
1

2

n−1∑
k=1

(
n

k

)
tan(k)(arctan(x)) tan(n−k)(arctan(x)).

Now using the Theorem 3.2 together with the previous result we obtain

Theorem 4.2. The representation of the function tan(t+ arctan(x)) is

tan(t+ arctan(x)) = x+ (1 + x2)t+

= x+ (1 + x2)t+ 2x(1 + x2)
t2

2!
+ 2x

∞∑
n=2

tan(n)(arctan(x))
tn+1

(n+ 1)!

+
∞∑
n=2

n−1∑
k=1

(
n

k

)
tan(k)(arctan(x)) tan(n−k)(arctan(x))

tn+1

(n+ 1)!
,

where composing the equation (1.12) in [16] with arctan(x) leads us to

tan(n)(arctan(x)) = −
n+1∑
k=1

1

k

k∑
l=0

(−1)l

2l

(
k

l

)
(x2 + 1)l/2

×
l∑

q=0

(
l

q

)
(2q − l)n+1 sin

[π
2
n+ (2q − l) arctan(x)

]
.

Analogous results are obtained for the solution cot(t + arccot(x)) of the differential
equation y′ = −1− y2 with y(0) = x.

4.5 Equation y′ =
√
y2 ± 1

The solution of the equation y′ =
√
y2 + 1 with initial value problem y(0) = x is

y(t, x) = sinh(t+ arcsinh(x))

= x cosh(t) +
√

1 + x2 sinh(t).

For n ≥ 1 denote φn(x) the function

φn(x) =

{
x, if n is an even number;√

1 + x2, if n is an odd number.
(12)
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By the Theorem 3.2 we have

x cosh(t) +
√

1 + x2 sinh(t) = x+
√

1 + x2t

+
∞∑
n=1

n∑
k=1

f (k)(x)Bn,k (φ1(x), φ2(x), . . . , φn−k+1(x))
tn+1

(n+ 1)!
,

where

f (k)(x) =
k∑
i=1

22i−kk!

(
1/2

i

)(
i

k − i

)
(1 + x2)1/2−ix2i−k.

has been obtained by applying Faà di Bruno’s formula to f(x) = g(h(x)) with g(x) =
√
x

and h(x) = 1 + x2 and by the equation (4)

Bn,k(2x, 2, 0, . . . , 0) = 22k−nn!

k!

(
k

n− k

)
x2k−n.

Theorem 4.3. For n ≥ k ≥ 1 we have

Bn,k(φ1(x), φ2(x), . . . , φn−k+1(x))

=
(−1)kxk

k!

k∑
i=0

(
k

i

)
1

2i

i∑
l=0

(
i

l

)
(−1)l(2l − i)n

(√
1 + x2 + x

)2l−i
. (13)

Proof. Using sinh(t) = et−e−t
2

we will obtain dn

dtn
sinhi(t), that is,

dn sinhi(t)

dtn
=

dn

dtn
(et − e−t)i

2i

=
dn

dtn
1

2i

i∑
l=0

(
i

l

)
(−1)i−le(2l−i)t

=
1

2i

i∑
l=0

(
i

l

)
(−1)i−l(2l − i)ne(2l−i)t.

Then by the Theorem 3.3

Bn,k(φ1(x), φ2(x), . . . , φn−k+1(x))

=
1

k!

k∑
i=0

(
k

i

)
(−1)k−ixk−i

1

2i

i∑
l=0

(
i

l

)
(−1)i−l(2l − i)ne(2l−i)arcsinh(x)

=
(−1)kxk

k!

k∑
i=0

(
k

i

)
1

2i

i∑
l=0

(
i

l

)
(−1)l(2l − i)n

(√
1 + x2 + x

)2l−i
and the theorem follows.
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Analogously, we can find similar results to the previous ones for the solution cosh(t +
arccosh(x)) of the differential equation y′ =

√
y2 − 1, with y(0) = x, changing x2 + 1 into

x2 − 1 and φn(x) into ψn(x), where

ψn(x) =

{
x, if n is even;√
x2 − 1, if n is odd.

(14)

4.6 Equation y′ = 1− y2

The solution of this equation is tanh(t+arctanh(x)). Before applying the Theorems 3.2
and 3.3 to the differential equation, we first calculate the n-th derivative of the function
tanh(x).

Theorem 4.4.

dn tanh(x)

dtn
= −

n+1∑
k=1

tanhk(x)

k

k∑
i=0

(
k

i

)
1

2i

i∑
l=0

(
i

l

)
(−1)l(2l − i)ne(2l−i)x.

Proof.

dn tanh(x)

dtn
=
dn+1 ln(cosh(x))

dtn+1

=
n+1∑
k=1

(lnu)(k)Bn+1,k(ψ1(sinh(x)), ψ2(sinh(x)), . . . , ψn−k+2(sinh(x)))

=
n+1∑
k=1

(−1)k−1(k − 1)!

coshk(x)
Bn+1,k(ψ1(sinh(x)), ψ2(sinh(x)), . . . , ψn−k+2(sinh(x))).

Changing x2 + 1 into x2−1 and φn(x) into ψn(x) in the equation (13) and then composing
with sinh(x) we reach

dn tanh(x)

dtn
= −

n+1∑
k=1

tanhk(x)

k

k∑
i=0

(
k

i

)
1

2i

i∑
l=0

(
i

l

)
(−1)l(2l − i)ne(2l−i)x.

By the Theorem 3.2 we obtain the following result

Theorem 4.5.

tanh(n+1)(arctanh(x)) = −2x tanh(n)(arctanh(x))

−
n−1∑
k=1

(
n

k

)
tanh(k)(arctanh(x)) tanh(n−k)(arctanh(x)). (15)

Finally, by the Theorems 3.2 and 4.4
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Theorem 4.6. The representation of the function tanh(t+ arctanh(x)) is

tanh(t+ arctanh(x))

= x+ (1− x2)t− 2x(1− x2)t
2

2!
− 2x

∞∑
n=2

tanh(n)(arctanh(x))
tn+1

(n+ 1)!

−
∞∑
n=2

n−1∑
k=1

(
n

k

)
tanh(k)(arctanh(x)) tanh(n−k)(arctanh(x))

tn+1

(n+ 1)!
,

where

tanh(n)(arctanh(x)) = −
n+1∑
k=1

xk

k

k∑
i=0

(
k

i

)
1

2i

i∑
l=0

(
i

l

)
(−1)l(2l − i)n

(√
1 + x√
1− x

)2l−i

.

4.7 Equation y′ = 1
(y±1)α−1 , α ∈ C

The solution of the equation is

y(t, x) =

∓1 + (x± 1)
(

1 + αt
(x±1)α

)1/α
, if α 6= 0,

∓1 + (x± 1)et, if α = 0.
(16)

Assume α 6= 0, since the case α = 0 is obtained from the solution of y′ = ay. Then by
the Theorem 3.2 we get the representation

∓ 1 + (x± 1)

(
1 +

αt

(x± 1)α

)1/α

=

x+
t

(x± 1)α−1
+
∞∑
n=1

n∑
k=1

(−1)k〈α + k − 2〉k
(x± 1)α+k−1

×Bn,k

(
α

(x± 1)α−1

〈 1

α

〉
1
, . . . ,

αn−k+1

(x± 1)α(n−k+1)−1

〈 1

α

〉
n−k+1

)
tn+1

(n+ 1)!
, (17)

where

〈a〉n =
n−1∏
k=0

(a− k) =

{
a(a− 1) · · · (a− n+ 1), if n ≥ 1;

1, if n = 0,
(18)

is called the falling factorial.
Now we apply (3) to obtain

Bn,k

(
α

(x± 1)α−1

〈 1

α

〉
1
, . . . ,

αn−k+1

(x± 1)α(n−k+1)−1

〈 1

α

〉
n−k+1

)
=

αn

(x± 1)αn−k
Bn,k

(〈 1

α

〉
1
, . . . ,

〈 1

α

〉
n−k+1

)
. (19)
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Then by Theorem 2.1 in [15]

Bn,k

(
α

(x± 1)α−1

〈 1

α

〉
1
, . . . ,

αn−k+1

(x± 1)α(n−k+1)−1

〈 1

α

〉
n−k+1

)
=

(−1)k

k!

αn

(x± 1)αn−k

k∑
i=0

(−1)i
(
k

i

)〈 i
α

〉
n
. (20)

Now by the equation (7)

Theorem 4.7.
n∑
k=1

〈α + k − 2〉k
k!

k∑
i=0

(−1)i
(
k

i

)〈 i
α

〉
n

= α
〈 1

α

〉
n+1

. (21)

Finally we will note the relationship that exists between the solution of the differential
equation y′ = (y+ 1)2, with y(0) = 0, and the Lah numbers. We will make α = −1 in (19)
to obtain

Bn,k(−〈−1〉1, 〈−1〉2, . . . , (−1)n−k+1〈−1〉n−k+1)

= (−1)nBn,k(−1!, 2!,−3!, . . . , (−1)n−k+1(n− k + 1)!)

= Bn,k(1!, 2!, 3!, . . . , (n− k + 1)!) =

(
n− 1

k − 1

)
n!

k!
.

Then by (20) it is proved that(
n− 1

k − 1

)
n!

k!
=

(−1)n+k

k!

k∑
i=0

(−1)i
(
k

i

)
〈−i〉n (22)

and in combination with the equation (21)

Theorem 4.8. For n ≥ 1

n∑
k=1

(−1)k〈k − 3〉k
(
n− 1

k − 1

)
n!

k!
= (n+ 1)!. (23)

5 Conclusion

As noted, Faà di Bruno’s formula allows us to connect Bell polynomials with au-
tonomous differential equations of order one. In particular, we find differential equations
for the Stirling and Lah numbers. The same procedure should allow us to find differential
equations for the vast amount of Bell polynomial values found in the existing literature.
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