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On the p-biharmonic submanifolds and stress p-bienergy
tensors

Khadidja Mouffoki and Ahmed Mohammed Cherif

Abstract. In this paper, we consider p-biharmonic submanifolds of a space form. We
give the necessary and sufficient conditions for a submanifold to be p-biharmonic in
a space form. We present some new properties for the stress p-bienergy tensor.

1 Introduction

Consider a smooth map ¢ : (M, g) — (N, h) between Riemannian manifolds, and let
p > 2, for any compact domain D of M the p-energy functional of ¢ is defined by

1
Ey(p; D) = _/ |d90|pvg= (1)
PJp

where |dy| is the Hilbert-Schmidt norm of the differential dp, and v? is the volume element
on (M,g). A map is called p-harmonic if it is a critical point of the p-energy functional
over any compact subset D of M. Let {¢;}ic(—c) be a smooth variation of ¢ supported

in D. Then
d

GBleaD)|_ == [ hmiohvin, ®
where v = U] denotes the variation vector field of ¢,
t=0
7o) = div(|dp|""dy). (3)
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Let 7(¢) be the tension field of ¢ defined by

m

7(p) = trace, Vdp = Z {V?dp(e;) — d@(vgei)}. (4)
i=1
(see [2]), where {e1,...,e,} is an orthonormal frame on (M, g), m = dim M, VM is the

Levi-Civita connection of (M, g), and V¥ denotes the pull-back connection on o *T'N. If
|dp|. # 0 for all z € M, the map ¢ is p-harmonic if and only if (see [1], [3], [7])

|deP21(0) + (p — 2)dp P dip(grad™ |de]) = 0. (5)
Example 1.1. Let n > 2. The inversion map

v R0} — R™M\{0},
P ﬁ

is p-harmonic if and only if [ = ";TPIQ.

A natural generalization of p-harmonic maps is given by integrating the square of the
norm of 7,(¢). More precisely, the p-bienergy functional of ¢ is defined by

BayleiD) =5 [ (o), (©

We say that ¢ is a p-biharmonic map if it is a critical point of the p-bienergy functional,
that is to say, if it satisfies the Euler-Lagrange equation of the functional (6), that is
(see [11])

Taplp) = _|d90|p_2 traceg RN(TP(SD)u dp)dp — trace, V¢|d¢|p_2vw7—p(¢)
—(p — 2) trace, V(V#7,(p), dp)|de|P~dip = 0. (7)
Let {e1,..., ey} be an orthonormal frame on (M, g), we have
trace, RV (r,(¢p), dip)dep = > RN(7,(¢p), dip(es))dip(es),
i=1

trace, V¥|dgl" 2777, () = > (VE|del VT (9) = del” 2V, (%))
i=1 '

m

(V7(0),d) = > b (VET (), diles))

i=1

trace, V(V?7,(p), dp)|dpP*dp = (V“ei (V27,(), do)|deo [P~ dp(e;)

INNgE

)

—(V*7,(0), dop) \dwlp’4d¢(vﬁfei)> ’
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The p-energy functional (resp. p-bienergy functional) includes as a special case (p = 2)
the energy functional (resp. bi-energy functional), whose critical points are the usual
harmonic maps (resp. bi-harmonic maps), for more details on the concept of harmonic
and bi-harmonic maps see [6], [9].

p-harmonic maps are always p-biharmonic maps by definition. In particular, if (M, g) is a
compact orientable Riemannian manifold without boundary, and (N, h) is a Riemannian
manifold with non-positive sectional curvature. Then, every p-biharmonic map from (M, g)
to (N, h) is p-harmonic.

Example 1.2 ([11]). Let M the manifold R*\{(0,0)} x R equipped with the Riemannian

metric g = (22 + 22) "7 (da? + da? + dz?), and let N the manifold R? equipped with the
Riemannian metric h = dy? + dy3. The map

o:(M,g) — (N,h) defined by o(x1, Te, 13) = (\/x% + 23, xg)

is proper p-biharmonic.

A submanifold in a Riemannian manifold is called a p-biharmonic submanifold if the

isometric immersion defining the submanifold is a p-biharmonic map. We will call proper
p-biharmonic submanifolds a p-biharmonic submanifols which is non p-harmonic.
In this paper, we will focus our attention on p-biharmonic submanifolds of space form, we
give the necessary and sufficient conditions for submanifolds to be p-biharmonic. Then,
we apply this general result to many particular cases. We also consider the stress p-
bienergy tensor associated to the p-bienergy functional, and we give the relation between
the divergence of the stress p-bienergy tensor and the p-bitension field (7). Finally, we
classify maps between Riemannian manifolds with vanishing stress p-bienergy tensor.

2 Main Results

Let M be a submanifold of space form N(c) of dimension m, i : M < N(c) be the
canonical inclusion, and let {ey, ..., e, } be an orthonormal frame with respect to induced
Riemannian metric g on M by the inner product {,) on N(c). We denote by V¥ (resp.
VM) the Levi-Civita connection of N™(c) (resp. of (M, g)), by grad™ the gradient operator
in (M, g), by B the second fundamental form of the submanifold (M, g), by A the shape
operator, by H the mean curvature vector field of (M, g), and by V! the normal connection
of (M, g) (see for example [2]). Under the notation above we have the following results.

Theorem 2.1. The canonical inclusion i is p-biharmonic if and only if
—AYH + trace, B(-, Au()) —m(c— (p—2)|H*) H = 0;
2trace; Ayry (") + (p— 2+ %) grad" |H|? = 0,

where AL is the Laplacian in the normal bundle of (M, g).
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Proof. First, the p-tension field of i is given by

m() = [dif'7*7(1) + (p — 2)|di["~di(grad™ |di),
since 7(i) = mH (see [1], [2]), and |di|* = m, we get 7,(i) = m5H. Let {e;,...,en} be an
orthonormal frame such that Vé‘fej =0atx € M for all i, =1,...,m, then calculating
at x

trace, RY (7, (i), di)di = ZRN 7,(i), di(e;))di(e;)

= m> Z RN(H, e;)e;
i=1

By the following equation RN(X,Y)Z = c¢((Y, Z)X — (X, Z)Y), with (H,e;) = 0, for all
X, Y, Ze€T'(I'N(c)) and i = 1,...,m, the last equation becomes
trace, RN (7,(i), di)di = m"® cH. (9)
We compute the term trace,(V')?7,(i) at =
ZV‘ ViH = ZV‘ — Anle;) + (VL H)Y)

m

= — Z VfAH(SZ) — Z B(eia AH(eZ))

= A (e + ) (VL(VEE)Y) (10)
=1 i=1

since (Ay(X),Y) =(B(X,Y), H) for all X,Y € I'(T'M), we get

m

> VM Au(e) =

=1

NE

<VMAH e) ej> e;

QN

<,
Il
—

Il
IMS

ei(<AH(ei),ej>) e;

N

&
I
—

I
IMS

6i(<B(ei’ ej)v H>) €j

-

<
Il
-

-(<Vgei, H>) €5,

@
&
Il

—

I
M3



On the p-biharmonic submanifolds and stress p-bienergy tensors 121

since VAVYZ = RV (X, Y)Z+VNVNZ+V[X y)Z, forall X, Y, Z € I'(T'N(c)), we conclude

m

S VMAu(e) = Y (VEIVNe Hyej+ > (VNei, Vi H)e,
=1 i,j=1 ij=1
= Z <RN<€Z', ej)ei, H> €; + Z <nggei, H> €;
z‘j—l ij=1
+ Z (€i,€5), ieiH)L>ej,
i,j7=1

since RN(X,Y)Z =c((Y, Z2)X — (X, 2)Y), for all X,Y,Z € I'(T'N(c)), we have

ZVfAH(ei) = Ze] <VN62, Z<VN61,V‘ H>ej
=1 i,7=1 i,j=1

m

+ E : 6]>6J
i,j=1
m

- %Zej«m H)) e+ 3 Ager,m (@0, (1

j=1 i=1

From equations (10) and (11), we obtain

p+2
trace, (V)27,(i) = _m22 grad |H|? — 2m? trace, Arm(-)
—m? trace, B(-, Ay (-)) + m2 AL H. (12)

Now, we compute the term trace, V(V'7,(i), di)di at =

ZV‘ (Vi Tp(1), di(ey))di(e;) = m%ZV;<ViejH,ej>ei,

i,7=1 4,7=1

by the compatibility of pull-back connection V! with the Riemannian metric of N(c), and
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the definition of the mean curvature vector field H of (M, g), we have

m

Z(v;jﬂ,ej> = Z{e] H,e;) — (H,V} ¢;)}
= _Z<H>B(ej7€j)>
= —m|H[%,

by the last two equations, we have the following
trace, V(V'7,(i), di)di = —m"T grad™ |H|? — mpTM\HFH. (13)
The Theorem 2.1 followed by (7), (9), (12), and (13). O
If p=2and N =8", we arrive at the following Corollary.

Corollary 2.2. Let M be a submanifold of sphere S™ of dimension m, then the canonical
inclusion i: M — S™ is btharmonic if and only if

% grad" |H|* + 2 trace, Awrm() =0,

—m H + trace, B(-, Ag(-)) — AYH = 0.
This result was deduced by B-Y. Chen and C. Oniciuc [4], [12].

Theorem 2.3. If M is a hypersurface with nowhere zero mean curvature of N™(c), then
M is p-biharmonic if only if

—A+H + (JAP 4+ m(p — 2)|H|* — me)H = 0;
(14)
2A(grad™ |H|) + (2(p — 2) + m)|H| grad™ |H| = 0.

Proof. Consider {ey,...,e,} to be alocal orthonormal frame field on (M, g), and let 7 the
unit normal vector field at (M, g) in N™*!(c). We have

H = <H77>77

= —Z (€5, €),
= E;Q(A €

1
= E(traceg A)n.
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Let ¢ =1,...,m, we compute
Anle) = D g(An(e) e;)es

= = (VNH, ej)e;

j=1

m m

= —Z€i<H,€j>€j —|—Z(H,B(ei,ej)>ej
= <H,77>Z<77,B(ei,€j)>€j,

J=1

by the last equation and the formula (1, B(e;, e;)) = g(Ae;, e;), we obtain the following
equation Ag(e;) = (H,n)A(e;). So that

m m

ZB(ei,AH(ei)) = ZB(€i7<H777>A<€i))

i=1 i=1

= <H> 77> Z B<ei> A(el))

NE

= Hm) ) g(Ale), Aled)n

= |APPH. (15)

In the same way, with n = H/|H|, we find that

m

ZAVELZH(ez) = Z<AVELZH(61)7€]>€J
=1

ij=1

= =) (VIViH.ej)e,

1,j=1

- — Z<€i<H’ mVon,e;e;

ij=1
= A(grad™ |H)). (16)
The Theorem 2.3 followed by equations (15), (16), and Theorem 2.1. O

Corollary 2.4. (i) A submanifold M with parallel mean curvature vector field in N™(c) is
p-btharmonic if and only if

trace, B(-, An (")) = m(c— (p— 2)|H|*) H, (17)
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(i1) A hypersurface M of constant non-zero mean curvature in N™(c) is proper p-
biharmonic if and only if
AP = me — m(p— 2)|HP (18)

Example 2.5. We consider the hypersurface

m+1
S™(a) = {(z',- -, 2™ 2™ b) € R Z(xl)2 =a’*} CcS"H,

i=1

with 7?2 = Z—j (r > 0), is a unit section in the normal bundle of S™(a) in S™*!.

Let X € I'(T'S™(a)), we compute

Viv 4—1?7 _ —Vﬂ;; +2(I‘1, L. ’xm+1’ _CL_> =X,
r r

Thus, Vin =0and A = —%]d. This implies that H = —%77, and so S™(a) has constant
mean curvature |H| = 1 in S™*!. Since |A|?> = %, according to Corollary 2.4. we conclude

T

that S™(a) is proper p-biharmonic in S™*! if and only if p = 1/b%

3 Stress p-bienergy tensors

Let ¢ : (M,g) — (N,h) be a smooth map between two Riemannian manifolds and

p > 2. Consider a smooth one-parameter variation of the metric g, i.e. a smooth family
of metrics (g;) (—e <t < €) such that gy = g, write § = & ‘t:07 then dg € T(®*T*M) is a
symmetric 2-covariant tensor field on M (see [2]). Take local coordinates (z%) on M, and

write the metric on M in the usual way as g, = g;;(t, z) da* dz?, we now compute

GEeiD)| =3 [ 8Py + 5 [ 1m(o)P50,). (19)

The calculation of the first term breaks down in three lemmas.

Lemma 3.1. The vector field ¢ = (div™ §g)t — %gradM(trace dg) satisfies

(| (@)?) = —(p—2ldelP~ (¢ h,69)h(T (), ()
—2|de|P~*(W(Vdp, 7 (), 6g) — 2|deplP"*h(dp(€), ()
—(p = 2)(p — 4)|de|"*(¢*h, 5g)h(dp(grad" |de|), 7,())
—2(p — 2)|dep|P~*(d|de| © h(dp, T,(¢)), dg)
—(p — 2)|de[P~*h(dip(grad™ (o*h, 69)), T (),

where @*h is the pull-back of the metric h, and () is the induced Riemannian metric on
R*T*M.
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Proof. In local coordinates (z') on M and (y*) on N, we have

3(Imp(0)I) = 0(7p(#) *75(9) hag) = 20(7()*)7p(#) hag- (20)

By the definition of 7,(¢) we get

5(p(9)) = 0(ldelP?7(p)* 4 6%)
= 8(|deP2)T(0)* + |depP25(7(0)*) + 6(6%). (21)

where 7(p)* = g% (goffj +N TS 7 =M Ik f) is the component of the tension field 7(¢),

. i
and 0% = (p — 2)|de|" g |depli 5.
The first term in the right-hand side of (21) is given by

(ol () = (= 2ldep~s(2)r(p)e

= 2 ph, b)) (22)
The second term on the right-hand side of (21) is (see [10])
|dpP25(7()") = —|dpl" " 9" 8 (ga) (V)5 — Idip P2 o, (23)
Now, we compute the third term on the right-hand side of (21)
50 = (=20 3)dep~o5( 20 ) g oo

+(p = 2)|delP~*0(g7)|delipf
+(p — 2)|de|P g7 6(|del:) ¢S - (24)

|de|?
2

) = —1(¢*h, dg) with 6(|del;) = (6(|de]));, the equation (24) becomes

«a p_2 p_3 — * ij «a
507y = P2 i sg)g ol

+(p — 2)|dep|P*6(g7)|deplip
p— 2 —4 ij/, * o
— 5 lde"" g7 ("1, 0g):5]

p—= 2 —5 ij * a
+5—ldel” Pg|dp|i (R, 0g) . (25)

By using o(

Note that

26(|d ") (0)*Tp(0) has = —(p — 2)|dep|P~ (0", 69)T(0)*Tp(0) R
= —(p—2)|de|"" (", dg)h(T(p), T(¢)),
(26)
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2|delP25((0)* ) 7p(0) hag = —2|dp[P2g" g7 6(gan) (V@) 57(0) P
_2|d$0|p_25k90g7_p(90)5ha6
= =2[dp[P2(M(Vdyp, 1,()), dg)
—2|dp|P2h(dp (), (), (27)
and the following
20(0°)75() has = —(p —2)(p = 3)|dep|P~> (£ h, 69) " |doi 0 7 () Pas
+2(p — 2)|dg|"5(g7)|de i (0) has
—(p = 2)|dp|"* g7 (" h, 09) 5 T(0) has
+(p — 2)|de|P g7 dpli(p* . 69) 95 () hag
= —(p—2)(p—3)|de|"~>(£"h, bg) h(dp(grad™ |del), 7, ()
—2(p — 2)|deo[P~*(d|dep| © h(dp, T,()), bg)
—(p = 2)|dep [P~ *h(dip(grad™ (o*h, 59)), T())
+(p — 2)|dg|"* (" h, dg)h(dp(grad™ |de|), 7, (). (28)
Substituting (21), (26), (27) and (28) in (20), the Lemma 3.1 follows. O

Lemma 3.2 ([5]). Let D be a compact domain of M. Then
[ gl hiagt€) miee, = [ (s (Vidap2hdo o))

1 . _
5 div™ (|dol~*h(de, 7,(0))F) 9. 59) vy

Lemma 3.3. We set w = |dp[P~*h(dp, 7,(¢)). Then

= [l doterad e sg). e vy = [ (o7hdg) dives,
D D
Proof. Note that
div((p*h,8g)w) = (¢*h,dg) divw + w(grad™ (p*h, §g)),

and consider the divergence Theorem, Lemma 3.3 follows. O]

Theorem 3.4. Let v : (M, g) — (N, h) be a smooth map such that |dp|, # 0 for allz € M,
and let {g;} a one parameter variation of g. Then

d 1
—F - D — _
FEeiD)| =3 [ (Saal0). 85},
where S ,(¢) € T(©*T*M) is given by
1
Sap(@)(X,Y) = —3In(@)P9(X,Y) = o~ (dp, VE7,())g(X,Y)

+|de|P2h(de(X), V() + |deP 2 h(dp(Y), V()
+(p — 2)|dpP{dp, V7, (0)) h(dip(X), dp(Y)).
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Sop(p) is called the stress p-bienergy tensor of .

127

Proof. By using 6(vy,) = 3(g,09)v, (see [2]), Lemmas 3.1, 3.2, and 3.3, the equation (19)

becomes
Sap(p) = —(—2)|del"*h(r(p), ()" h
—2|dg|"*h(Vdp, 7,(¢)) + 2sym (V|dg|P*h(dp, 7,(¢)))
— div™ (|delP~*h(de, 7 (9))") g
—(p = 2)(p — 4)|de["°h(dp(grad™ |dg|), 7,(#))*h
—2(p — 2)|de|"*d|di| © h(dp, 7,(¢))
Hp— 2)div™ [Jdol”~*h(dp, 7)) "h + 3 ().
Note that, for all X, Y € I'(T'M), we have
2sym (V]dp|P*h(dp, 7(9)))(X,Y) = 2|de[P*h(Vdp(X,Y), 7,())
+|dp|P~2h(de(X), V@Tp(@
+|dp|P*h(dp(Y ), Vi (0)
+X (|dp|P?)h(dep(Y ) (¢
+Y (|delP~?)h(dp(X), 7p(0

and the following formula
—2d|dip| © h(de, ,(0))(X,Y) = —X(|dp|)h(de(Y),

Calculating in a normal frame at x, we have

div™ (|del*h(de, 7p(0))) = D _eilglldel *h(de, (), e))

=1

ei(|delP~2h(de(e;), ()

I
NE

=1

ei(|del"~*)h(dip(e:), ()

Il

1

7

+ 3 [P h(VE dip(es), T ()
=1

+ 3 |l h(de(e;), VET, ()

(o — 2)ldel *h(dg(grad™ |dgl). 7 (¢))
T dglh(r(2), 7(0))
+|d [P (dp, VET,(0)).

(29)

(30)

(31)

(32)
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From the definition of 7,(y), and equation (32), we get

div" (|del""*h(de, 7())F) = I7p(@)* + lde P (dp, VZ7,(0)).- (33)
With the same method of (32), we find that
div™ (|dpl"*h(de, () = (p— 4)|dpl"h(dep(grad™ |de]), 7(¢))

+|dplP*h(T (@), ()
+|dplP~(dp, VT, (). (34)

Substituting (30), (31), (33) and (34) in (29), the Theorem 3.4 follows. O

By using the definition of divergence for symmetric (0, 2)-tensors (see [2], [5]) we have
the following result.

Theorem 3.5. Let ¢ : (M, g) — (N, h) be a smooth map such that |dpl|, # 0 for all x € M.
Then

div™ S, (0)(X) = —h(map(p),do(X)), VX € T(TM),

Remark 3.6. When p = 2, we have S5 ,(¢) = Sa(¢), where Sy(¢p) is stress bienergy tensor
in [10].

Corollary 3.7. Let ¢ : (M,g) — (N, h) be a smooth map. (1) Then Sa,(p) = 0 implies
that ¢ is m-harmonic, where m = dim M. (2) If M is compact without boundary, and
p# 5. Then Sy () = 0 implies o is p-harmonic.

Proof. Let {e;} be an orthonormal frame on (M, g). (1) We have
m m -
0=> Su()ene) = —In@ + (0 —m)lde]"*(de, Vo7,(¢))-
i=1

For p = m, the last equation becomes —%|7,,(¢)|* = 0. So ¢ is m-harmonic map. (2)
We set 0(X) = h(|dp|P~2do(X), 7,(¢)), for all X € T(T'M). The trace of Sy () gives the
equality

0= Sup(@)lene) = (G =D + (p—m)div™o.

By using the Green Theorem, we get

m

(5= [ Imle)fer o

Since p # %, we obtain |7,(¢)|*> = 0, that is ¢ is p-harmonic map. O
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