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A general weak law of large numbers for sequences of Lp

random variables

Yu-Lin Chou

Abstract. Without imposing any conditions on dependence structure, we give a seem-
ingly overlooked simple sufficient condition for Lp random variables X1, X2, . . . with
given 1 ≤ p ≤ +∞ to satisfy

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞,

where (an)n∈N, (bn)n∈N are pre-specified unbounded sequences of positive integers.
Some unexpected convergences of sample means follow.

A law of large numbers is usually obtained by controlling both the dependence structure
and the distributional homogeneity (including moment conditions here) of the underlying
sequence of random variables. For classical treatments, one may refer to Etemadi [5] or
Folland [6]; for more recent treatments, Chen and Sung [3] or Seneta [9]. The prototypical,
most popular version of a weak law of large numbers is certainly the classical weak law
asserting in-probability vanishing of sample means of independent identically distributed
L2 centered random variables.

In the related literature, there are works giving weak laws that are “non-typically” gen-
eral in different directions. For instance, Loève [7] (p. 26) gives a necessary and sufficient
condition for sample means of Bernoulli random variables, not necessarily independent, to
obey a weak law; and Adler et al. [1] gives a weak law (in a suitable sense) for a class of
independent random elements, whose moments need not exist, of a class of Banach spaces.

On the other hand, there are known laws of large numbers asserting Lp-vanishing of
suitably scaled partial sums of centered random variables for special values of p. For in-
stance, the classical Khintchine’s theorem ensures L1-vanishing of sample means of centered
L1 random variables under suitable conditions controlling both dependence structure and
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distributional homogeneity; the classical Markov’s theorem asserts (under suitable condi-
tions) the L2-vanishing of the n−2-scaled partial sums of centered L2 random variables; and
Lemma 1.5.1 in Chandra [2] asserts L2-vanishing of sample means of uniformly bounded
pairwise-independent centered L2 random variables.

However, except possibly for the simple cases such as Bernoulli random variables, there
seems not a general weak law for random variables, in the present evident sense, completely
dropping control over dependence structure and at the same time offering a tractable
sufficient condition. For instance, Theorem 1.2.2a in Révész et al. [8] asserts (in particular)
in-probability vanishing of sample means of arbitrary random variables X1, X2, . . . under
the condition that the series

∑
i i
−1Xi converges almost surely.

Independently of the related existing literature, we wish to give an overlooked law of
large numbers suggested instead by the mathematical nature of the summation opera-
tors, which, without any dependence assumption, asserts in particular a generic weak law
for random variables with finite mean (a condition being “negligible” in general) under
precisely one simple distributional homogeneity condition in terms of the absolute first
moments of the underlying random variables:

Theorem 1. Given a probability space with P denoting the given probability measure, let
1 ≤ p ≤ +∞; let X1, X2, · · · ∈ Lp(P); let (an)n∈N, (bn)n∈N be unbounded sequences of
positive integers. If a−1n

∑bn
i=1 |Xi|Lp → 0 as n→∞, then

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞.

Proof. By Minkowski’s inequality we have∣∣∣∣ bn∑
i=1

(Xi − EXi)

∣∣∣∣
Lp

≤
bn∑
i=1

|Xi − EXi|Lp

for all n ∈ N.
Since |f |Lr ≤ |f |L∞ for all 1 ≤ r ≤ +∞ and all f ∈ Lr(P), Minkowski’s and Jensen’s

inequalities (whenever suitable) jointly imply1

|Xi − EXi|Lp ≤ |Xi|Lp + |EXi| ≤ |Xi|Lp + |Xi|L1 ≤ 2|Xi|Lp

for each i ∈ N. It follows that

1

an

bn∑
i=1

|Xi − EXi|Lp ≤ 2

an

bn∑
i=1

|Xi|Lp

for all n; but then the convergence assumption implies

1This observation appears in another preprint (Chou [4]) of the author for another purpose. At that
time I did not observe the present observation, and it is evidently illogical to incorporate one of these
works into the other. Mathematics happened to show itself in that way; I wrote it down.
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1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞.

This completes the proof.

Remark 2. In Theorem 1, if an = bn = n for all n, then the sufficient condition may be
replaced by the convergence |Xi|Lp → 0 as i→∞.

Moreover, Theorem 1 also holds for (an) an unbounded sequence of positive real num-
bers.

Corollary 3. Given any probability space Ω with P denoting the given probability measure,
let X1, X2, . . . be uniformly bounded random variables on Ω, i.e. such that supi∈N |Xi|
≤M on Ω for some (fixed) real M ; let (an)n∈N, (bn)n∈N be unbounded sequences of positive
integers. If

bn
an
→ 0 as n→∞,

then
1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞

for all 1 ≤ p ≤ +∞.

The potential utilities of Theorem 1 are further suggested in the following

Example 4. For each x ∈ R, let δx be the Dirac measure B 7→ 1B(x) on the Borel sigma-
algebra of R concentrated at x. Let (Xi)i∈N be a sequence of Rademacher-type random
variables (on the same probability space) such that each Xi has i−1δ−1 + (1 − i−1)δi−1 as
its distribution. Then E|Xi| = 2i−1 − i−2 → 0 as i→∞, and so

1

n

n∑
i=1

E|Xi| → 0 as n→∞.

Since (Xi) is not necessarily independent and is by construction not identically dis-
tributed, no known law of large numbers seems to immediately assert a convergence of
the sequence (n−1

∑n
i=1(Xi − EXi))n∈N, if not logically impossible. However, Theorem 1

asserts that
1

n

n∑
i=1

(Xi − EXi)
L1

→ 0 as n→∞

and hence certainly
1

n

n∑
i=1

(Xi − EXi)→ 0 in probability

as n→∞.
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Example 5. Consider a sequence of normal random variables (Xi)i∈N with mean zero such
that each ξi has variance i−2. Then E|Xi| = i−1

√
2/π for all i, and so the sequence

X1, X2, . . . of random variables satisfies the assumptions of Theorem 1.
The random variables X1, X2, . . . are not necessarily independent and are by construc-

tion not identically distributed, and hence the known laws of large numbers seem unable
to assert a convergence of the sample mean of the centered random variables Xi − EXi.
But its L1-convergence and convergence in probability are ensured by Theorem 1.

Example 6. For a given sequence of Lp random variables X1, X2, . . . (with 1 ≤ p < +∞)
that are identically distributed, Theorem 1 need not imply a convergence of the sample
mean of the centered random variables Xi − EXi (except for the trivial cases). However,
since

1

na

n∑
i=1

|Xi|Lp =
1

na−1 |X1|Lp → 0 as n→∞, for all a > 1,

Theorem 1 does assert the Lp-convergence of the sequence (n−a
∑n

i=1(Xi − EXi))n for all
real a > 1. This covers some cases where the known laws of large numbers need not apply,
e.g. where the dependence structure of (Xi) is unspecified.

Having given the above example, we construct another example for comparison. Let
there be given some identically distributed sequence of non-negative L1 random variables
ξ1, ξ2, . . . with nonzero mean, and define Xi := iξi for all i ∈ N. Then each Xi is L1,
and the sequence (Xi) is by construction non-identically distributed with an unspecified
dependence structure; moreover, we have E|Xi| = iEξ1 →∞ as i→∞. Since

1

n2+a

n∑
i=1

|Xi|L1 → 0 as n→∞

for all real a > 0, Theorem 1 asserts for all real a > 0 the L1-convergence of the random
variables n−2−a

∑n
i=1(Xi− EXi) as n goes beyond every bound. The existing laws of large

numbers seem unable to assert this same conclusion.

For potential practical matters, we draw the following

Remark 7. The situations considered in the above examples would not be artificial. For
instance, one may naturally consider certain types of observational (in contrast with “ex-
perimental”) data as obtained from a time series of samples with finite mean for which it
would be reasonable to assume that the absolute means of the samples vanish (at least in
average) due to some systematic exogenous chronological structural factor such as contin-
ual technological advances over time. Thus Theorem 1 would also contribute to estimation
or testing problems in the context of structural equation modeling.

For technical matters, we draw the following

Remark 8. One of the weak laws that are both technically friendly and application-friendly
is the weak law for uncorrelated L2 random variables, not necessarily identically dis-
tributed, whose n−2-scaled partial sums of the variances of the first n random variables
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vanish, the conclusion being that the sample means of the centered random variables con-
verge in probability. This weak law is certainly a special case of the Bernstein- Khintchine
weak law (Theorem 1.5.1 in Chandra [2]).

The reader would then compare this common version of weak law with the implications
of Theorem 1.
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