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Structure of finite groups with restrictions on the set of
conjugacy classes sizes

Ilya Gorshkov

Abstract. Let N(G) be the set of conjugacy classes sizes of G. We prove that if
N(G) = Ω× {1, n} for specific set Ω of integers, then G ' A× B where N(A) = Ω,
N(B) = {1, n}, and n is a power of prime.

Introduction

Let A,B be finite groups andG := A×B. It is easy to check thatN(G) = N(A)×N(B).
We are interested in the converse of this assertion.

Question 0.1. Let G be a group such that N(G) = Ω×∆. Which ∆ and Ω guarantee that
G ' A×B, where A and B are subgroups such that N(A) = Ω and N(B) = ∆?

A. Camina proved in [4] that, if N(G) = {1, pm} × {1, qn}, where p and q are distinct
primes, then G is nilpotent. In particular, G = P × Q for a Sylow p-subgroup P and a
Sylow q-subgroup Q. Later A. Beltran and M. J. Felipe (see [1] and [2]) proved a more
general result asserting that, if N(G) = {1,m} × {1, n}, where m and n are positive
coprime integers, then G is nilpotent, n = pa and m = qb for some distinct primes p and q.

In [13], C. Shao and Q. Jiang showed that if N(G) = {1,m1,m2} × {1,m3}, where
m1,m2,m3 are positive integers such that m1 and m2 do not divide each other and m1m2

is coprime to m3, then G ' A×B, where A and B are such that N(A) = {1,m1,m2} and
N(B) = {1,m3}. In all these cases, the sets of prime divisors of the orders of A and B do
not intersect. It was proved in [11] that if N(G) = N(Alt5)×N(Alt5) and Z(G) = 1 then
G ' Alt5×Alt5.

In [7] a directed graph was introduced on the set N(G) \ {1}. Given Θ ⊆ N, with

|Θ| <∞, define the directed graph Γ(Θ), with the vertex set Θ and edges
−→
ab whenever a

divides b. Set Γ(G) = Γ(N(G) \ {1}).
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In this article, the following theorem is proved.

Theorem 0.2. Let Ω be a set of integers and Γ(Ω\{1}) be disconnected, and n be a positive
integer such that gcd(n, α) = 1 for each α ∈ Ω \ {1}. Let G be a finite group such that
N(G) = Ω×{1, n}. Then G ' A×B, where N(A) = Ω, N(B) = {1, n} and n is a prime
power.

1 Preliminaries

We fix the following notation: for an integer k, denote by π(k) the set of prime divisors
of k. If Ω is a set of integers, denote π(Ω) =

⋃
α∈Ω π(α). For a prime number r, denote by

kr the highest power of r dividing k. For integers m1, . . . ,ms, write gcd(m1,m2, . . . ,ms)
to denote their greatest common divisor, and write lcm(m1,m2, . . . ,ms) for their least
common multiple.

Let Ω be a set of integers, and order it by the relation of divisibility. The subset of
maximal elements is denoted by µ(Ω) and the set of minimal elements is denoted by ν(Ω).

Definition 1.1. We say that the set Ω is separated if, for each α ∈ Ω, there exists β ∈ µ(Ω)
such that α does not divide β.

Let G be a group and take a ∈ G. We denote by aG the conjugacy class of G containing
a. If N is a subgroup of G, then Ind(N, a) = |N |/|CN(a)|. Note that Ind(G, a) = |aG|.
Denote by |G||p the highest power pn of p such that N(G) contains multiples of pn while
avoiding multiples of pn+1. For π ⊆ π(G) put |G||π =

∏
p∈π |G||p. For brevity, write |G||

to mean |G||π(G). Observe that |G||p divides |G|p for each p ∈ π(G). In general, |G||p is
less than |G|p.

Definition 1.2. We say that a group G satisfies the condition R(p), or that G is an R(p)-
group, if there exists an integer α > 0 such that ap ∈ {1, pα} for each a ∈ N(G). In that
case, we write G ∈ R(p).

The set of R(p)-groups can be seen as the disjoints of the two subsets R(p)∗ and R(p)∗∗:

a) G ∈ R(p)∗ if G ∈ R(p) and contains a p-element h such that Ind(G, h)p > 1;

b) G ∈ R(p)∗∗ if G ∈ R(p) and Ind(G, h)p = 1 for each p-element h ∈ G.

Lemma 1.3 ([9, Main theorem]). If G ∈ R(p)∗, then G has a normal p-complement.

Lemma 1.4 ([9, Corollary]). If G ∈ R(p)∗ and P ∈ Sylp(G), then Z(P ) ≤ Z(G).

Lemma 1.5 ([8, Lemma 1.4]). For a finite group G, take K EG and put G = G/K. Take
x ∈ G and x = xK ∈ G/K. The following claims hold:

(i) |xK | and |xG| divide |xG|.
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(ii) For neighboring members L and M of a composition series of G, with L < M , take
x ∈M and the image x̃ = xL of x. Then |x̃S| divides |xG|, where S = M/L.

(iii) If y ∈ G with xy = yx and (|x|, |y|) = 1, then CG(xy) = CG(x) ∩ CG(y).

(iv) If (|x|, |K|) = 1, then CG(x) = CG(x)K/K.

(v) CG(x) ≤ CG(x).

Lemma 1.6 ([10, Lemma 4]). Let g ∈ G. If each conjugacy class of G contains an element
h such that g ∈ CG(h) then g ∈ Z(G).

Lemma 1.7 ([3, Theorem A]). Let G be a finite group, and let p and q be distinct primes.
Then some Sylow p-subgroup of G commutes with some Sylow q-subgroup of G if and only
if the class sizes of the q-elements of G are not divisible by p and the class sizes of the
p-elements of G are not divisible by q.

We call a p-element x of G p-central if x ∈ Z(P ) for some Sylow p-subgroup P of G.

Lemma 1.8 ([12, Theorem B]). Let G be a finite group and p a prime. Suppose that every
p-element of G is p-central. Then

Op′(G/Op′(G)) = S1 × · · · × Sr ×H,

where H has an abelian Sylow p-subgroup, r ≥ 0, and Si is a non-abelian simple group
with either

(i) p = 3 and: Si ' Ru, or J4, or Si ' 2F4(qi)
′, 9 6 |(qi + 1); or

(ii) p = 5 and Si ' Th for all i.

Lemma 1.9. If G ∈ R∗∗(p), then the Sylow p-subgroups of G are abelian.

Proof. Note that R∗∗(p)-groups satisfy the condition of Lemma 1.8. Hence, if a Sylow
p-subgroup is non-abelian, then p ∈ {3, 5} and Op′(G/Op′(G)) = S1× · · · × Sr ×H, where
Si is isomorphic to one of the groups Ru, J4,

2F4(qi)
′, Th. Note that if r > 1, then the

group G is not an R∗∗(p) group. It follows from the description of conjugacy class sizes
in [17] and [15] that S contains a p′-element g1 such that 1 < Ind(S, g1)p < |S|p and
a p′-element g2 such that Ind(S, g2)p = |S|p. Since p and |Op′(G)| are relatively prime,
there exists g′1 ∈ G such that g′1Op′(G) = g1 and Ind(G, g′1)p = Ind(G/Op′(G), g1)p. Let
g′2 ∈ G be such that g′2Op′(G) = g2. We have CG(g′2)Op′/Op′ ≤ CG/Op′ (G)(g2). In particular
Ind(G, g′2)p ≥ Ind(G/Op′(G), g2)p > Ind(G, g′1)p, contradicting the definition of R∗∗(p)-
groups.

Lemma 1.10. Any R∗∗(p)-group contains at most one non-abelian composition factor
whose order is divisible by p.
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Proof. Let G be an R∗∗(p)-group. Lemma 1.9 implies that the Sylow p-subgroup of G is
abelian. Let 1 < G1 < · · · < Gk = G be the chief series. Assume that Gi/Gi−1 = H is
a non-solvable group and the order of H is divisible by p. Lemma 1.5 implies that the
conjugacy class sizes of the group H divide the corresponding conjugacy class sizes of G.
We have H = S1 × S2 × · · · × St, where the Si are isomorphic non-abelian finite simple
groups, for 1 ≤ i ≤ t.

Assume that |Gi−1| is divisible by p. Let P ≤ Gi−1 be a Sylow p-subgroup of Gi−1.

From Frattini’s argument, it follows that NGi
(P )/NGi−1

(P ) ' Gi/Gi−1. Let Ĥ ≤ NGi
(P )

be a subgroup generated by all Sylow p-subgroups of NGi
(P ). Since any Sylow p-subgroup

of G is abelian and H is generated by p-elements, we infer that ĤGi−1/Gi−1 = H and Ĥ
centralizes some Sylow p-subgroup of the group Gi−1.

Assume that g ∈ G/Gi−1 is a p-element acting on H as an outer automorphism. The
fact that the Sylow p-subgroups of G are abelian implies that Sgj = Sj for any 1 ≤ j ≤ t.
Assume that g acts non-trivially on Sj. Since the Sylow 2-subgroup of a simple alternating
group of degree greater than 5 is non-abelian and the outer automorphism group of an
alternating group is a 2-group, we obtain that Sj cannot be isomorphic to any of the
alternating groups. It follows from [17] and Lemma 1.8 that Sj cannot be isomorphic to
any of the sporadic groups, and therefore Sj is a group of Lie type. In [14, Theorem 1] and
in [16] it is described when a Sylow p-subgroup of a simple group of Lie type is abelian.
We can show that g acts on Sj as a field automorphism. It follows from the description of
the centralizers of field automorphisms (see [6, Theorem 4.9.1]) that the Sylow p-subgroup
of Sj.〈g〉 is non-abelian, and hence the Sylow p-subgroup of G is non-abelian, which is
a contradiction. Therefore, it can be considered that H contains a Sylow p-subgroup of
G/Gi−1.

Assume that t > 1. For each j ∈ {1, . . . , t}, there is an element hj ∈ Sj such that

Ind(Sj, hj)p = |Sj|p. Let g = h1 · · ·ht and ĝ ∈ Ĥ be some pre-image of the element g.

Since Ĥ centralizes a Sylow p-subgroup of Gi−1 and Ind(H, g) divides Ind(G, ĝ), we infer

that Ind(G, ĝ)p = (Ind(H, g))p = |H|p. If t > 1, then Ĥ contains an element ĥ1, which is

the pre-image of the element h1 such that 1 < Ind(G, ĥ1)p < |H|p. This contradicts the
definition of an R(p)-group.

Lemma 1.11 ([5, Theorem 5.2.3]). Let A be a π(G)′-group of automorphisms of an abelian
group G. Then G = CG(A)× [G,A].

Lemma 1.12. Let P C G be a Sylow p-subgroup of G. If P = A × B with A, B normal
subgroups of G, then CG(ab) = CG(a) ∩ CG(b) for any a ∈ A and b ∈ B.

Proof. The assertion of the lemma follows from the fact that any p-element x is uniquely
represented as x = xaxb where xa ∈ A and xb ∈ B.



Structure of finite groups with restrictions on the set of conjugacy classes sizes 67

2 Proof of the Main Theorem

Let G be as in the hypothesis of the theorem. We divide the proof of the theorem into
3 propositions. In the preliminary lemma and in Propositions 2.2 and 2.4, we only use the
separation property of the set Ω. The disconnection of the graph Γ(Ω \ {1}) is used only
in the proof of Proposition 2.

Note that G has the property R(p) for any p ∈ π(n). In Propositions 2.2 and 2.3
we prove that G 6∈ R∗∗(p). In Proposition 2.4 we analyze the case G ∈ R∗(p) and thus
complete the proof of the Main Theorem.

Assume that G ∈ R∗∗(p) for any p ∈ π(n). In this case, Lemma 1.9 implies that a Sylow
p-subgroup of G is abelian. It follows from Lemma 1.7 that a Hall π(n)-subgroup exists and
is abelian. It follows from the well-known Wielandt theorem that all Hall π(n)-subgroups
are conjugate.

Lemma 2.1. The order of any non-abelian composition factor of G is not divisible by p.

Proof. Lemma 1.10 implies that G contains at most one non-abelian composition factor S
whose order is divisible by p. Let RCG be such that S ≤ G/R. Let g ∈ G be a p-element
such that its image gR ∈ S is not trivial. Let x ∈ G be an element of minimal order
such that Ind(G, x) = n. Since n is minimal with respect to divisibility in N(G), we infer
that |x| = rα is a power of a prime r. We have that x centralizes Sylow t-subgroups for
any t ∈ π(Ω) and, in particular, x centralizes Sylow t-subgroups for any t ∈ π(Ind(G, g)).
Put C = CG(x). Since S is the unique non-abelian composition factor whose order is
divisible by p, we infer that S is a normal subgroup of G/R. Note that CR/R contains
Sylow t-subgroups of G/R for any t ∈ π(Ind(S, g)). Let T be a Sylow t-subgroup of G/R
for some prime t ∈ π(G/R). Since S is a normal subgroup of G/R we infer that T ∩ S
is a Sylow t-subgroup of S. From the fact that finite simple groups do not have Hall
p′-subgroups for each prime divisor p of its order, we get that group S is generated by its
Sylow t-subgroups, where t ∈ π(Ind(S, g)). Hence S ≤ CR/R. In particular, C contains a
pre-image of the group S. Therefore, C contains an r′-element y such that Ind(C, y)p > 1.
Thus, Ind(G, xy)p > Ind(G, x)p, which is a contradiction.

Let O = Oπ(n)′(G). Lemma 2.1 implies that G/O contains a normal p-subgroup P , for
some p ∈ π(n). Let T = Oπ(n)(G/O). Assume that T is not a Hall π(n)-subgroup of G/O.
Since a Hall π(n)-subgroup of G is abelian, we have T is abelian. The centralizer of R in
G/O is a normal subgroup of G/O for each Sylow subgroup R of T . For any g ∈ G/O it
follows from the inequality Ind(G/O, g)p > 1 that Ind(G/O, g)π(n) = n. Using these facts
it is easy to obtain a contradiction. Therefore, G/O contains a normal Hall π(n)-subgroup
H. In particular, we can assume that P is a Sylow p-subgroup of G/O. Let x ∈ G be
an element of minimal order such that Ind(G, x) = n. Since n is minimal by divisibility
number of N(G), we infer that x is an element of order tα, where t is some prime and
t 6∈ π(n).

Proposition 2.2. The image x ∈ G/O of x is trivial.
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Proof. Assume that x is not trivial. Lemma 1.11 implies that P = [x, P ] × CP (x). Let
x̃ ∈ G/OH denote the image of x. Since π(G/OH) does not contain numbers from the set
π(n) = π(Ind(G, x)), and Ind(G/OH, x̃) divides Ind(G, x), we infer that Ind(G/OH, x̃) is
equal to 1. Hence x̃ ∈ Z(G/OH). Thus the subgroup CP (x) is a normal subgroup of G/O.
Since p 6∈ π(G/OH), it follows from Maschke’s theorem that CP (x) has compliment in P .
In particular [x, P ] is a normal subgroup of G/O.

Let P be a Sylow p-subgroup of G, and let P1, P2 ≤ P be such that P1.O/O = [x, P ]
and P2O/O = CP (x). Since lcm(Ind(O, x), O) = 1, we have x ∈ CG(O). The group CG(O)
is a normal subgroup of G. We have CG(O)O/O EG and x ∈ CG(O)O/O. From the fact
that x acts without fixed points on [x, P ] and [x, P ]EG it follows that [x, P ] is the minimal
normal subgroup of G which includes x. In particular P1 < CG(O).

The fact that the number Ind(G, x)p is maximal implies that centralizer of any t′-
element of CG(x) contains some Sylow p-subgroup of the group CG(x). Since O.P2 E G,
we infer that the centralizer of any t′-element from O contains a subgroup conjugate to
P2 in O.P2. Suppose there is a t-element y ∈ O such that Ind(O.P2, y)p > 1. Since
Ind(G, x)t = 1, we infer that CG(x) contains some Sylow t-subgroup of G. In particular,
one can assume that y ∈ CG(x). Consider CG(xy). Let R be a Sylow p-subgroup of G

such that R̃ = R ∩ CG(xy) is a Sylow p-subgroup of CG(xy). Since P1 ≤ CG(O), we have
P1 ≤ R and P1∩CG(xy) = 1. It follows from the fact that Ind(G, x)p = Ind(G, xy)p = |P1|
and the fact that R is an abelian group that R = P1× R̃. Note that R̃ < CG(x), and hence

R̃ is conjugate to P2 in CG(x). In particular, R̃ is conjugate to P2 in O.P2. Therefore

y centralizes R̃ and Ind(O.P2, y)p = 1, which is a contradiction. Thus any element of O
centralizes some Sylow p-subgroup. Lemma 1.6 implies that P2 < CG(O). Thus G contains
a normal abelian Hall π(n)-subgroup N .

We have that P2 is a Sylow p-subgroup of CG(x) and P2 E CG(x). From the fact that
Ind(G, x)p is maximal it follows that any t′-element centralizes P2. Therefore, we have that
π(Ind(CG(x), h)) ⊆ {t} for any h ∈ P2. Since CG(x) contains Sylow r-subgroups of G for
any r ∈ π(Ω) and a Hall π(n)-subgroup of G is abelian, we infer that π(Ind(G, h)) ⊆ {t}
for any h ∈ P2. Let g ∈ CG(x) be some t′-element. Then g acts on P1, and

Ind(G, g)p = Ind(P1, g)p.

Since Ind(P1, g)p ∈ {1, |P1|}, we see that g acts on P1 either trivially or without fixed points.
Note that xG = xN . Thus, Ind(G, a)t′ = Ind(G, b)t′ for any a, b ∈ P1 and π(Ind(G, c)) ⊆ {t}
for any c ∈ P2. It follows from Lemma 1.12 that, for any p-element a, there exists k such
that Ind(G, a)t′ ∈ {1, k}. Thus, Ω contains a number α dividing the index of any p-element.
Let h1 ∈ P1 be such that Ind(G, h1) is minimal among {Ind(G, g)|g ∈ P1}, and let h2 ∈ P2

be such that Ind(G, h2) is minimal among {Ind(G, g)|g ∈ P2}.
Assume that Ind(G, h2)t ≤ Ind(G, h1)t. Then Ind(G, h2) divides Ind(G, g) for any p-

element g. Since Ω is separated, we obtain that µ(Ω) contains an element β that is not
divisible by Ind(G, h2). Let l ∈ G be such that Ind(G, l) = β. Since Ind(G, h2) does not
divide β, we infer that CG(l) does not contain p-elements. But β is not divisible by p and
hence CG(h) contains some Sylow p-subgroup, therefore we have a contradiction.
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Thus, Ind(G, h2)t > Ind(G, h1)t. Since Ω is separated, we infer that µ(Ω) contains an
element β that is not divisible by Ind(G, h2). Let l ∈ G be such that Ind(G, l) = β. Since
Ind(G, h2) does not divide β, we see that |l| is divisible by p. Further, we have l = ab,
where a is a p-element and b is a p′-element. We have that Ind(G, a) divides β. From
Lemma 1.12 and the fact that β is not divisible by numbers in {Ind(G, g)|g ∈ P2}, it
follows that a ∈ P1. It follows from Lemma 1.12 that Ind(G, abh2) is divisible by β and
Ind(G, h2) contradicting the fact that β is maximal in Ω.

Proposition 2.3. The element x 6∈ O.

Proof. Assume that x ∈ O. Since Ind(G, x) is relatively prime to |O|, we have O ≤ CG(x).
Let X = 〈xG〉. The fact that O is a normal subgroup of G implies that O ≤ CG(X).
Hence, X is an abelian t-subgroup of the group O. Let P be a Sylow p-subgroup of G such
that P1 = P ∩ CG(x) is a Sylow p-subgroup of CG(x). The fact that xG = xO.H implies
that P1 < CG(X). Thus, any t′-element of O centralizes some subgroup conjugate to P1.

Consider X as a P̃ = P/P1-module. It follows from Lemma 1.11 that the group X can

be represented as [X, P̃ ] × CX(P̃ ). Since P̃ acts non-trivially on X, we see that [X, P̃ ] is

non-trivial. Since for any element y ∈ [X, P̃ ] we have P̃ ∩ CO.P̃ (y) = 1, we infer that P̃

acts without fixed points on [X, P̃ ]. Hence P̃ is a cyclic group.
Assume that P1 contains an element f such that Ind(G, f) > 1. We will use the fact

that graph Γ(Ω \ {1}) is disconnected. Let Γ1 be a connected component of the graph
Γ(Ω \ {1}) such that Ind(G, f) ∈ Γ1. Since any t′-element centralizes some element from
fG, we infer that Ind(G, g)π(n)′ ∈ Γ1 ∪ {1} for any {p, t}′-element g.

Denote by Γ2 some connected component of the graph Γ(Ω \ {1}) different from Γ1.
Let y ∈ G be such that Ind(G, y) ∈ Γ2. We have that y is a {p, t}-element. Assume that
y is a t-element. Since Ind(G, y)p = 0, we infer that CG(y) contains a subgroup conjugate
to P1, and hence Ind(G, y) ∈ Γ1 ∪ {1}, deriving a contradiction.

Therefore, if Ind(G, g)p = 1, then g is the product of a p-element and an element from
the center of G. In particular, if Ind(G, g) ∈ Γ2, where g is an element of primary order,
then π(g) = {p}. It also follows from here that π(n) = {p}.

Since Γ2 is an arbitrary connected component of Γ(Ω \ {1}) different from Γ1, then we
can assume that there exists z ∈ P such that Ind(G, z) ∈ Γ2. Then Ind(G, y) ∈ Γ2 ∪ {1}
for any y ∈ 〈z〉. This means that 〈z〉 ∩ P1 ≤ Z(G). Let g ∈ P be such that z ∈ 〈g〉. Since
Ind(G, z) divides Ind(G, g) it follows that Ind(G, g) ∈ Γ2. Since P/P1 is a cyclic group and
P is an abelian group, we can write P = 〈z, P1〉.

We have Ind(G, g) ∈ Γ1 for any non-central {p, t}′-element g. Therefore for any h
such that Ind(G, h) ∈ Γ2 it is true that CG(h)/Z(G) is a {p, t}-group. In particular,
Ind(G, h){p,t}′ = |G||{p,t}′ . Assume that there exists z′ ∈ P \ P1 such that Ind(G, z′) ∈ Γ1.
If CG(z′) does not contain non-central {p, t}′-elements, then Ind(G, z) is connected to
Ind(G, z′) in Γ(Ω \ {1}) and hence Ind(G, z′) ∈ Γ2, contradicting Ind(G, z′) ∈ Γ1. Let
s ∈ CG(z′) be a {p, t}′-element and E ∈ Sylp(CG(z′)). Since CG(x) contains some Sylow p-
subgroup of CG(s), we can assume that CG(xg) contains E for some g. But CG(xg)∩P = P1,
and we have a contradiction.
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Let y ∈ CG(z) \ (Z(G) ∪ P ). As noted above, y is a t-element. We can assume that
CG(y) ∩ P ∈ Sylp(CG(y)). Hence CG(xy) ∩ P ∈ Sylp(CG(xy)). Obviously, z and P1 do
not lie in CG(xy). Let zg ∈ CG(xy), where g ∈ P1 \ Z(G). Let ˜ : G → G/O be a

natural homomorphism. Note (̃xy) = ỹ. Hence z̃ ∈ CG̃(x̃y), and thus g̃ ∈ CG̃(x̃y). Since

|O| is coprime to |g|, then C̃G(g) = CG̃(g̃). Hence CG(g) contains the group O.〈ỹ〉, and
therefore y ∈ CG(g) contradicting the fact that CG(y)∩P < Z(G). Thus, it is proved that
P1 < Z(G).

Since z acts without fixed points on xG, Ind(G, z) > 1. Denote by Γ′ the connected
component of Γ(Ω \ {1}) containing Ind(G, z). Note that Ind(G, g)p′ ∈ Γ′ ∪ {1} for any
g ∈ CG(z). Assume that there exists h 6∈ 〈z〉 such that Ind(G, h) ∈ Ω \ (Γ′ ∪ {1}). Then
h centralizes some Sylow p-subgroup and, therefore, we can assume that h ∈ CG(z). Thus
Ind(G, h) ∈ Γ′, contradicting the hypotesis on h. We have |Γ′| = 1 and CG(z)/Z(G) = 〈z〉.
Therefore Ω = N(〈z〉), and in particular Γ(Ω) is connected, which is a contradiction.

It follows from the proposition 2.2 and 2.3 that G ∈ R(p)∗.

Proposition 2.4. If G ∈ R(p)∗ for some p ∈ π(n) then G = A× B, where N(A) = Ω and
N(B) = {1, pα}. In particular, n is a p-number.

Proof. Lemma 1.3 implies that G = N h P where P is a Sylow p-subgroup of G. Lemma
1.4 implies that Z(P ) ≤ Z(G).

Assume that there is z ∈ P such that Ind(G, z)p′ > 1. The separation of Ω implies
that there exists k ∈ µ(Ω) such that k is not divisible by Ind(G, z)p′ . Let g ∈ G be such
that Ind(G, g) = k. We have g = g1g2, where g1 is a p′-element and g2 is a p-element.
Since CG(g) = CG(g1)∩CG(g2) and Ind(G, g)p = 1, it follows that Ind(G, g2)p = 1. Hence
g2 ∈ Z(G). Thus, Ind(G, g) = Ind(G, g1). We have that CG(g1) contains some Sylow
p-subgroup of G, and therefore there is z′ ∈ CG(g1) ∩ zG, deriving a contradiction.

Thus any p-element centralizes N and hence G ' N ×P . Therefore for each g ∈ P we
have π(Ind(G, g)) = {p}. In particular n is a {p}-number.

The assertion of the theorem follows from Propositions 2.2, 2.3 and 2.4.

Acknowledgment

The work was supported by the grant of the President of the Russian Federation for
young scientists (MD-1264.2022.1.1).

References

[1] Beltran A., Felipe M.J.: Some class size conditions implying solvability of finite groups. J. Group
Theory 9 (2006) 787–797.

[2] Beltran A., Felipe M.J.: Variations on a theorem by Alan Camina on conjugacy class sizes. J.
Algebra 296 (1) (2006) 253–266.



Structure of finite groups with restrictions on the set of conjugacy classes sizes 71

[3] Beltran A., Felipe M.J., Malle G., Moreto A., Navarro G., Sanus L., Solomon R., Tiep P.H.:
Nilpotent and abelian Hall subgroups in finite groups. Trans. Amer. Math. Soc. 368 (4) (2016)
2497–2513.

[4] Camina A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J.
London Math. Soc. 5 (2) (1972) 127–132.

[5] Gorenstein D.: Finite groups. New York-London (1968).

[6] Gorenstein D., Lyons R., Solomon R.: The classification of the finite simple groups. Number 3.
Part I. Chapter A. Almost simple K-groups. American Mathematical Society, Providence, RI
(1998).

[7] Gorshkov I.B.: Towards Thompson’s conjecture for alternating and symmetric groups. J. Group
Theory 19 (2) (2016) 331–336.

[8] Gorshkov I.B.: On Thompson’s conjecture for alternating and symmetric groups of degree more
then 1361. Proceedings of the Steklov Institute of Mathematics 293 (1) (2016) 58–65.

[9] Gorshkov I.B.: On existence of normal p-complement of finite groups with restrictions on the
conjugacy class sizes. Communications in Mathematics 30 (1) (2022) .

[10] Gorshkov I.B.: On a finite group with restriction on set of conjugacy classes size. Bull. Malays.
Math. Sci. Soc. 43 (4) (2020) 2995–3005.

[11] Gorshkov I.B.: On characterisation of a finite group by the set of conjugacy class sizes. Journal of
Algebra and Its Applications 21 (11) (2022) .

[12] Navarro G., Solomon R., Tiep P.H.: Abelian Sylow subgroups in a finite group, II. J. Algebra 421
(2015) 3–11.

[13] Shao C., Jiang Q.: Determining group structure by set of conjugacy class sizes. Comm. Algebra
48 (4) (2020) 1626–1631.

[14] Rulin S., Yuanyang Z.: Finite simple groups with some abelian Sylow subgroups. Kuwait J. Sci 43
(2) (2016) 1–15.

[15] Shinoda K.: The conjugacy classes of the finite Ree groups of type F4. J. Fac. Sci. Univ. Tokyo
Sect. I A Math. 22 (1975) 1–15.

[16] Walter J.: The Characterzation of Finite Groups with Abelian Sylow 2-Subgroup. Ann. Math. 89
(1969) 405–514.

[17] ATLAS of Finite Group Representations - Version 3: http://brauer.maths.qmul.ac.uk/Atlas/v3.

Received: June 22, 2022
Accepted for publication: January 11, 2023
Communicated by: Ivan Kaygorodov


