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General terms of all almost balancing numbers of first and
second type

Ahmet Tekcan and Alper Erdem

Abstract. In this work, we determined the general terms of all almost balancing
numbers of first and second type in terms of balancing numbers and conversely we
determined the general terms of all balancing numbers in terms of all almost balancing
numbers of first and second type. We also set a correspondence between all almost
balancing numbers of first and second type and Pell numbers.

1 Introduction

Behera and Panda ([2]) defined that a positive integer n is called a balancing number
if the Diophantine equation

1424+ +(n—-1)=Mn+1)+n+2)+---+(n+r) (1)

holds for some positive integer r which is called balancer corresponding to n. If n is a
balancing number with balancer r, then from (1) they get

o —1++8n7 11 @
- 5 .

r

So from (2), they noted that n is a balancing number if and only if 8n? + 1 is a perfect
square. Though the definition of balancing numbers suggests that no balancing number
should be less than 2. But from (2), they noted that 8(0)? 41 =1 and 8(1)? + 1 = 3% are
perfect squares. So they accepted that 0 and 1 to be balancing numbers. Let B, denote
the n'" balancing number. Then By = 0,8, = 1,B, = 6 and B, = 6B, — B,_; for
n> 2.
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Later Panda and Ray ([12]) defined that a positive integer n is called a cobalancing
number if the Diophantine equation

142+ +n=Mn+1)+n+2)+---+(n+r) (3)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (3) they get

—2n—14+vV82+8n+1

: g

T =

So from (4), they noted that n is a cobalancing number if and only if 8n%+8n+1 is a perfect
square. Since 8(0)% +8(0) +1 = 1 is a perfect square, they accepted 0 to be a cobalancing
number just like Behera and Panda accepted 0 and 1 to be balancing numbers. Let b,
denote the n'" cobalancing number. Then by = b; = 0,b, = 2 and b, = 6b, — b,_1 + 2
for n > 2.

It is clear from (1) and (3) that every balancing number is a cobalancer and every
cobalancing number is a balancer, that is, B,, = r,+1 and R,, = b, for n > 1, where R, is
the n'" the balancer and r, is the n'® cobalancer. Since R, = b,, we get from (1) that

—2B, — 1+ /8BZ + 1 by + 1+ /862 + 8b, + 1
b, = J; ntloand B =T 2"+ kg (5)

n

Thus from (5), B, is a balancing number if and only if 8B + 1 is a perfect square and b,
is a cobalancing number if and only if 802 + 8b,, + 1 is a perfect square. So

C,=+/8B2+1 and ¢, = /82 +8b, +1 (6)

are integers which are called the n'® Lucas-balancing number and n'* Lucas-cobalancing
number, respectively.

Let @« = 1+ /2 and 8=1-— V/2 be the roots of the characteristic equation for Pell
numbers P,. Then Binet formulas for balancing numbers, cobalancing numbers, Lucas-
balancing numbers and Lucas-cobalancing numbers are
a?n +62n O[2n71 _’_627171

7Cn = —2 and Cp = 5

B a2n - 6271 b — a?nfl . 527171 1

B, = by,
42 4/2

for n > 1, respectively (see also [4], [10], [11], [17], [20]).

Balancing numbers and their generalizations have been investigated by several authors
from many aspects. In [8], Liptai proved that there is no Fibonacci balancing number
except 1 and in [9] he proved that there is no Lucas balancing number. In [19], Szalay
considered the same problem and obtained some nice results by a different method. In
6], Kovécs, Liptai and Olajos extended the concept of balancing numbers to the (a,b)-
balancing numbers defined as follows: Let a > 0 and b > 0 be coprime integers. If

N |

(a+b)+--+(a(n—1)+b)=(a(n+1)+b)+---+ (a(n+7) +b)
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for some positive integers n and r, then an+b is an (a, b)-balancing number. The sequence
of (a,b)-balancing numbers is denoted by B,(,f’b) for m > 1. In [7], Liptai, Luca, Pintér
and Szalay generalized the notion of balancing numbers to numbers defined as follows:
Let y,k,l € Z" such that y > 4. Then a positive integer x with z < y — 2 is called a

(k,l)-power numerical center for y if
Pt (@e=1)r=(+1) +- + (-1

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k,[)-power numerical centers. For positive integers
k,x, let

Mi(x)=a(z+1)...(z+k—1).

Then it was proved in [6] that the equation B,, = Il;(z) for fixed integer £ > 2 has
only infinitely many solutions and for k € {2,3,4} all solutions were determined. In [24]
Tengely considered the case

B, =x(x+1)(x +2)(x + 3)(x +4)

for £ = 5 and proved that this Diophantine equation has no solution for m > 0 and x € Z.
In [14], Panda, Komatsu and Davala considered the reciprocal sums of sequences involv-
ing balancing and Lucas-balancing numbers. In [16], Patel, Irmak and Ray considered
incomplete balancing and Lucas-balancing numbers and in [18], Ray considered the sums
of balancing and Lucas-balancing numbers by matrix methods. In [21], Tekcan and Erdem
considered the t-cobalancing numbers and t-cobalancers, in [22], Tekcan and Aydin con-
sidered the t-balancers, t-balancing numbers and Lucas t-balancing numbers and in [23],
Tekcan and Yildiz considered the balcobalancing numbers and balcobalancers.

2 Results

In this section we determine the general terms of almost balancing numbers, almost
cobalancing numbers, almost Lucas-balancing numbers and almost Lucas-cobalancing num-
bers of first and second type. Almost balancing numbers first defined by Panda and Panda
in [13]. A positive integer n is called an almost balancing number if the Diophantine equa-
tion

[(n+)+n+2)+--+n+r)]—-[14+2+---+(n—-1)]| =1 (7)

holds for some positive integer r which is called the almost balancer.

From (7), they have two cases: If [(n+1)+(n+2)+- - -+ (n+7r)]|—[14+2+ - -+(n—1)] = 1,
then n is called an almost balancing number of first type and r is called an almost balancer
of first type and in this case

= 2n—1+V8n?+9

) )

r
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fln+l)+n+2)+--+n+r)]—[1+2+ -4 (n—1)] = —1, then n is called an
almost balancing number of second type and r is called an almost balancer of second type

and in this case
B —2n—1++/8n2 -7 (9)
— 5 )

Let B} and B’* denote the n'® almost balancing number of first type and of second
type, respectively. Then from (8), B} is an almost balancing number of first type if and
only if 8(B;)% + 9 is a perfect square and from (9), B** is an almost balancing number of
second type if and only if 8(B:*)? — 7 is a perfect square. Thus

r

O = /8(B:)2+9 and C* = \/8(B )2 — 7 (10)

n

are integers which are called the n'" almost Lucas-balancing number of first type and of
second type, respectively.

Later in [15], Panda defined that a positive integer n is called an almost cobalancing
number if the Diophantine equation

(n+1)+m+2) 4+ m+r))—(1+2++n) =1 (11)

holds for some positive integer r which is called an almost cobalancer.

From (11), they have two cases: If [(n+1)+(n+2)+---+(n+7r)] —(1+2+---4+n) =1,
then n is called an almost cobalancing number of first type and r is called an almost
cobalancer of first type and in this case

_ 2n—1++8n?+8n+9
- 5 )

Ifn+l)+n+2)+--+n+7r)]—(1+2+---4+n)=—1, then n is called an almost
cobalancing number of second type and r is called an almost cobalancer of second type

and in this case
—2n—1++V82+8n—7
r = )
2

Let b and b** denote the n'" almost cobalancing number of first type and of second
type, respectively. Then from (12), b} is an almost cobalancing number of first type if and
only if 8(b%)? + 8b + 9 is a perfect square and from (13), b:* is an almost cobalancing
number of second type if and only if 8(b%*)? + 8b** — 7 is a perfect square. Thus

r

(12)

(13)

¢ =/8(bx)2 4 8bx +9 and ¢ = \/8(br*)2 4 8brr — 7 (14)

n

are integers which are called the n'® almost Lucas-cobalancing number of first type and of
second type, respectively.
Like in balancing numbers, we notice that every almost balancing number is an almost

cobalancer and every almost cobalancing number is an almost balancer, that is, B, = r}* |,
B =1k br = R, and b5 = R’ for n > 1, where R} is the n'" almost balancer of first

n’-n mn

type, R* is the n'® almost balancer of second type, 7% is the n'" almost cobalancer of first
type and r* is the n'® almost cobalancer of second type.
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2.1 Almost Balancing and Almost Lucas-Balancing Numbers of First and Second
Type.

We see in (8) that x is an almost balancing number of first type if and only if 82% + 9
is a perfect square and in (9), x is an almost balancing number of second type if and only
if 822 — 7 is a perfect square. Let 822 + 9 = 3% and let 822 — 7 = w? for some positive
integers y and w. Then we get the Pell equations ([1], [5])

82 —y* = —9 and 82° —w® =T. (15)

For the set of all (positive) integer solutions of (15), we need some notations: Let A be a
non-square discriminant. Then the A-order Oy is defined to be the ring

Oa ={z+ypa : 2,y € L},

where pp = \/é if A = 0(mod 4) or %E if A = 1(mod 4). So Op is a subring of

@(\/Z):{x+y\/g :x,y € Q}. The unit group OY is defined to be the group of units of the
ring O . We can rewrite an integral indefinite quadratic form ([3]) F(z,y) = ax®+bry+cy?
of discriminant A to be

b+\f)( bf)

(ra+y ra+y

F(x,y) = "

So the module My of F is Mp = {za + y%z x,y € Z} € Q(WA). Therefore we get

u+vpa)(ra + b+\r =2'a + 'b+\r , where
(u+vpa)(za +y=5= Y
_?b
[z v u_ 2" cwg if A = 0(mod 4)
[x’ ,]: v U+ U (16)
y u+17_bv av . _
[z y] Cen u LBy if A =1(mod 4).
2

Let m be any integer and let Q2 denote the set of all integer solutions of F'(x,y) = m, that
is, Q = {(z,y) : F(z,y) = m}. Then there is a bijection ¥ : Q — {y € Mg : N(v) = am}.
The action of OX; = {a € OX : N(a) = 1} on the set 2 is most interesting when
A is a positive non-square since O ; is infinite. Therefore the orbit of each solution
will be infinite and so the set () is either empty or infinite. Since OF ; can be explicitly
determined, the set € is satisfactorily described by the representation of such a list, called
a set of representatives of the orbits. Let ea be the smallest unit of O, that is grater than
1 and let 7o = ep if N(ea) = 1 or €3 if N(ea) = —1. Then every O, orbit of integral
solutions of F(x,y) = m contains a solution (z,y) € Z x Z such that 0 < y < U, where
U= ‘%ﬁ (1-)ifam>00r U = ’%‘% (1+ =) if am < 0. So for finding a set
of representatives of the Of ; orbits of integral solutions of F'(x,y) = m, we must find for
each integer yo in the range 0 < yo < U, whether Ay2 + 4am is a perfect square or not
since
azy + bxoyo + cys = m < Ay2 + dam = (2axo + byo)>.
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If Ay2 + 4am is a perfect square, then zy = “hoty Ay°+4am . So there is a set of represen-
tatives Rep = {[zo wo|}. Thus for the matrix M deﬁned in (16), the set of all integer
solutions of F(z,y) =mis Q = {£(z,y) : [z y] = [v0 yo|M™,n € Z}.

For the set of all integer solutions of (15), we can can give the following theorem.

Theorem 2.1. The set of all integer solutions of 8x*—y* = —9 is Q = {(3B,,,3C,,) : n > 1},
and the set of all integer solutions of 8x* — w? = T is

Q={(B,.1+Cp1,8B,1+Cr1):n>1}U{(-B,+C,,8B, — C,) :n > 1}.

Proof. For the Pell equation 822 — y*> = —9, we have F(z,y) = 8% — y* of discriminant
A = 32. So we get T35 = 3 + /8. Thus the set of representatives is Rep = {[0 3]} and

M = [ if 2 } by (16). Here we notice that [0 3]M™ generates all integer solutions (z,, y,)
of 822 — y? = —9 for n > 1. It can be easily seen that the n'" power of M is
M" = [ B, C, }

for n > 1. Thus the set of all integer solutions is 2 = {(3B,,3C,,) : n > 1}.
For the second Pell equation 8z% — w? = 7, we get 735 = 3 + /8. So the set of

representatives is Rep = {[+1 1]} and in this case [I ~ 1]JM" ! generates all integer
solutions (9, 1, ws,—1) and [I —1]M™ generates all integer solutions (xs,, ws,) for n > 1.
Thus the result is obvious. [

From Theorem 2.1, we can give the following theorem.

Theorem 2.2. The general terms of almost balancing and almost Lucas-balancing numbers

of first type are
B, =3B,, C, =3C,

forn > 1, and the general terms of almost balancing and almost Lucas-balancing numbers
of second type are

B;:_l - Bn—l + Cn—17 B;;z = _Bn + Cn
C =8By +Coyy CFF = 8B, — C,
forn > 1.

Proof. We proved in Theorem 2.1 that the set of all integer solutions of 822 — y? = —9 is
Q={(3B,,3C,) : n > 1}. Since z = B, we get B} = 3B,. So from (10), we deduce that

= /8(B:)2+9=1/8(3B,)2+9=3/8B2+1=3C,.
Similarly since the set of all integer solutions of 822 — w? = 7 is
Q= {(Bn—l + Cn—b 8Bn—1 + Cn—l) n Z 1} U {(—Bn + Cn, 8Bn - On) n Z 1},

we get B2n 1= n—l +On—17 C;:;—l = 8Bn_1 +Cn—l7 B;,: = —Bn—i—C’n and C;;: = 8Bn - Cn
for n > 1. O
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Here we note that B; = 0,Cy = 3, Bg* = 1,C5* = —1. Also since 8(1)2 =7 = 1 and
8(2)% — 7 = 52 are perfect squares by (9), we accept 1 and 2 be almost balancing numbers
of second type.

2.2 Almost Cobalancing and Almost Lucas-Cobalancing Numbers of First and Sec-
ond Type.

In this subsection, we will determine the general terms of almost cobalancing and almost
Lucas-cobalancing numbers of first and second type. Since n is an almost cobalancing
number of first type if and only if 8n? + 8n + 9 is a perfect square by (12) and n is an
almost cobalancing number of second type if and only if 812 + 8n — 7 is a perfect square
by (13), we set 8n% +8n + 9 = y? and 8n? + 8n — 7 = w? for some positive integers y and
w. Then we get the equations 2(2n + 1)*> — y*> = —7 and 2(2n + 1)? — w? = 9. Taking
2n 4+ 1 = x, we get the Pell equations

222 —y? = —7 and 227 —w? =0. (17)
For the set of all integer solutions of (17), we can can give the following theorem.
Theorem 2.3. The set of all integer solutions of 2x* — y?> = —7 is
O = {(6By1 + Cpr,4Bp_1 +3C,_1) :n > 1} U{(6B, — Cr, —4B,, +3C,) : n > 1},
and the set of all integer solutions of 22% — w? =9 is
Q={(6B,-1+3C,-1,12B,_1 +3C,_1) : n > 1}.

Proof. For the Pell equation 22? — y? = —7, we get F(z,y) = 22% — y? of discriminant
A = 8. So 75 = 3+ 2v/2 and hence the set of representatives is Rep = {[+1 3]} and
M = [ g ;l } Here [1 3]M™ ! generates all integer solutions (22, 1, Y2,_1) and [—1 3]M™

generates all integer solutions (g, ya,) for n > 1. Since the n'™® power of M is

M" = lwn C, }

for n > 1, we deduce that the set of all integer solutions is
Q={(6B,-1+C,1,4B, 1+ 3C,—1) :n>1}U{(6B, — C,,—4B,, + 3C,,) : n > 1}.

For the second Pell equation 222 — w?> = 9, we get 75 = 3 + 2v/2 and the set of
representatives is Rep = {[+3 3|}. In this case [3 3]M"! generates all integer solutions
(2, wy) for n > 1. Thus the result is obvious. ]

From Theorem 2.3, we can give the following theorem.
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Theorem 2.4. The general terms of almost cobalancing and almost Lucas-cobalancing num-
bers of first type are

b;n = 2bn+1 - b”’ b;n—l = 4b’n - bn—l + 1,

Con = Cny2 — 4Cni1, Copy = Cny1 — 20y

for n > 1, and the general terms of almost cobalancing and almost Lucas-cobalancing

numbers of second type are
by =3b,+ 1, ¢." =3¢,

forn > 1.

Proof. We proved in Theorem 2.3 that the set of all integer solutions of 22? — y? = —7 is
Q={(6B,-1+Cp_1,4B,_1 +3C,—1) : n > 1} U{(6B,, — Cy,, —4B,, + 3C,,) : n > 1}. Since
r=2n-+1, we get

., 6B, +C,—1
b2n:f
O52n_2n a2n 2n
G e
N 2

(20 —a™) +B(=28+87") 1

42 2
a2n+1 _ B2n+1 1 a2n71 _ ﬁ2n71
Y R
- 2bn+1 - bn.

:2(

Thus from (14), we get

G = V/8(3,)? + 805, +9
= /820,41 — bp)? + 8(2bpy1 — by) + 9
11+ 6v/2 11-6v2, 7
= \/O/M( 1 \/—) +64n( \/_) +

4 2

_ \/ (a2n+3;62n+3)2 - 4(a2n+3232n+3)(a2n+1 +ﬁ2n+1) +4(a2n+1 +B2n+1)2

a2n+1 + 52n+1

a2n+3 +ﬁ2n+3
— —4 2
Jre= (R S
a2n+3 +ﬁ2n+3 a2n+1 +ﬁ2n+1
S i S T—

= Cpy2 — 4Cn+1-

The others can be proved similarly. ]
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Here we note that b5 = 0,¢f = 3, b5* = 1 and ¢§* = 3. Also since 8(1)2+8(1) =7 =3%1is
a perfect square by (13), we accept 1 to be an almost cobalancing number of second type.

In Theorems 2.2 and 2.4, we deduce the general terms of all almost balancing numbers
of first and second type in terms of balancing numbers. Conversely, we can deduce the
general terms of all balancing numbers in terms of all almost balancing numbers of first
and second type as follows:

Theorem 2.5. The general terms of all balancmg numbers are

B Don—1 = D3 — C* Con—1 ~ Con—2
B, = -2 b, = -2 n , C, = S S
3 2 30 ° 2
form >1, or
Bn 2n+1 2n bn _ n Cn _ 2n+1 2n = “n_
2 3 2 T3
forn > 1.
Proof. The result is obvious from Theorems 2.2 and 2.4. m

Thus we construct a one-to-one correspondence between all balancing numbers and
all almost balancing numbers of first and second type. Moreover, the general terms of
all almost balancing numbers of first type can be given in terms of all almost balancing
numbers of second type and conversely the general terms of all almost balancing numbers
of second type can be given in terms of all almost balancing numbers of first type as follows.

Theorem 2.6. The general terms of all almost balancing numbers of first type are

B:L BBQTL+1 - 335:17 O:L _ 3 2n+1 3 2 :
2 2
4b:z* - :(1*—1 * 2bn+1 bn* -1
bon—1 = 3 0 PmT 3 ,
C;n_l — n+1 3 n ’ C;n — n+2 ; n+1
forn > 1, and the general terms of all almost balancing numbers of second type are
*k B';;*l + C’I)’klfl Hk _B:z + C;”;
Bopr=——F—, an =" a
3 3
*% 3b§n 1 Ban 2 % 3C;n—1 _ 36;71—2
b’n, = Y CTL = Y
2 2
*ok 8BZ—1 + C';:—l ] SB;; — C;;
on—1 = #7 2n — T

forn > 1.

Proof. Since B! = 3B, and B,, = M by Theorems 2.2 and 2.5, we deduce that

_ 3B3ny1—385,

B = 5 . The others can be proved similarly. ]

Thus we construct a one-to-one correspondence between all almost balancing numbers
of first type and all almost balancing numbers of second type.
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3 Relationship with Pell Numbers.

In this section, we consider the relationship between all almost balancing numbers of
first and second type and Pell numbers. It is known that the general terms of all balancing
numbers can be given in terms of Pell numbers, namely

7Cn:P2n+P2n—lvcn:P2n—1+P2n—2 (18>

for n > 1. Similarly we can give the following theorem.

Theorem 3.1. The general terms of all almost balancing numbers of first type are

3Pn 4Pn Pn— -1 *
By = S5t b= I G = 3Py, 8P,

* *
Cop_1 = 5P2n71 + P2n727 Cop = 3P2n+1 - P2n

forn > 1, and b5, | = 8P2"*2+;’P2"*371 for m > 2, and the general terms of all almost

balancing numbers of second type are

wx  Pon +2P 1 . 3Py —1
b= W=y —

;:L = 3P2n - P2n—17 Cp = 3P2”—1 + 3P2n_2

n

3Pan_2+2Pon—
forn>1, and By = 222=2320m=s Cox = 5Py, o+ P,_3 forn > 2.

Proof. Note that B} = 3B, and B, = 2. So B, = 322 Since B | = B,_1 +C,_1 by
Theorem 2.2 and B,, = %, Cy = Pop + Py, 1 by (18), we easily get

P, 3P, o+ 2P,
By 1 = 22 Pong+ Pong = 2 2+ 2l
2 2
for n > 2 as we wanted. The other cases can be proved similarly. O]

In Theorem 3.1, we can give the general terms of all almost balancing numbers of first
and second type in terms of Pell numbers. Conversely, we can give the general terms of
Pell numbers in terms of almost balancing numbers of first and second type as follows:

Theorem 3.2. The general terms of Pell number*s are Py, = 2? and Py, =05, ;1 —b5, _,
forn > 1, or Py, = By: | — B3 and Pap—1 = Qb"TH forn > 1.

Proof. 1t can be easily deduced from Theorem 3.1. O]

Thus we construct a one-to-one correspondence between all almost balancing numbers
of first and second type and Pell numbers.
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4 Concluding Remarks

For almost balancing and almost Lucas-balancing numbers of first and second type, in
[13] Panda and Panda proved in Theorem 3.1 that the solutions of the Diophantine equation
8x2 + 9 = y? in positive integers are given by x = 3B,, and y = 3C,, for n > 1. Similarly
they proved in Theorem 3.2 that the solutions of the Diophantine equation 8z% —7 = 3% in
positive integers constitute two classes: the first class is (z,y) = (B, —2B,_1, C,, —2C,,_1),

a2n_52n

and the second class is (z,y) = (2B, — Bp_1,2C,, — Cy,_1), for n > 1. Since B,, = NG
and C),, = a%;ﬁ Qn, we easily deduce that
an — o a2 _ =2
VA 2A— 7 )
a® (14 2v2) + 72 (=1 4+ 2V2)
42

B a2n72 _ 62n72 N a2n72 + 52n72
42 2

= Bn—l + Cn—l

_ Dk
- Banl

B, —-2B, 1=

for n > 1. Similarly it can be shown that:

Cn - 201171 = Sanl + Cnfl = 05:2717 2811 - anl = _Bn + Cn = B;;;
2C, —C,-1 =8B, - C, =C5,

for n > 1, that is, we get same result in Theorem 2.4. Similarly for the almost cobalancing
numbers of first and second type in [15], Panda proved in Theorem 4.3.1 that the values of
x satisfying the Diophantine equation 822 +8z+9 = y? in positive integers partition in two
classes. The first class is given by U,, = 3BntBn1=1 and the second class is V, = W+H

2
for n > 1. Here we notice that
3B, + B,_1 —1
2

a2n752n
(s +

U, =
C‘{277,—2718211—2

42 -1

2
a2n762n a2n+52n
6( 5 ) ——=——1

2
_6B,—C,—1
N 2
=4b, — b, +1

_ *
- b2n71

and similarly it can be shown that V,, = b3, as we proved in Theorem 2.4. But he did
not determine the general terms of almost Lucas-cobalancing numbers of first and second
type. Apart from these in this paper,
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1. we determined the general terms of almost Lucas-cobalancing numbers of first and
second type in Theorem 2.4.

2. we can give the general terms of all balancing numbers in terms of all almost balancing
numbers of first and second type in Theorem 2.5. Thus we construct a one-to-one
correspondence between all balancing numbers and all almost balancing numbers of
first and second type.

3. We can give the general terms of all almost balancing numbers of first type in terms of
all almost balancing numbers of second type and conversely give the general terms of
all almost balancing numbers of second type in terms of all almost balancing numbers
of first type in Theorem 2.6. Thus, we construct a one-to-one correspondence between
all almost balancing numbers of first type and of second type.

4. We can give the general terms of all almost balancing numbers of first and second
type in terms of Pell numbers in Theorem 3.1 and conversely give the general terms
of Pell numbers in terms of almost balancing numbers of first and second type in
Theorem 3.2. Thus, we construct a one-to-one correspondence between all almost
balancing numbers of first and second type and Pell numbers.

References

[1] Barbeau E.J.: Pell’s Equation. Springer-Verlag New York, Inc (2003).

[2] Behera A. and Panda G.K.: On the Square Roots of Triangular Numbers. Fibonacci Quart. 37 (2)
(1999) 98-105.

[3] Flath D.E.: Introduction to Number Theory. Wiley (1989).

[4] Gozeri G.K., Ozkog¢ A. and Tekcan A.: Some Algebraic Relations on Balancing Numbers. Utilitas
Mathematica 103 (2017) 217-236.

[5] Jacobson M. and Williams H.: Solving the Pell Equation CMS Books in Mathematics. Springer
Science, Business Media, LLC (2009).

[6] Kovacs T. Liptai K. and Olajos P.: On (a,b)-Balancing Numbers. Publ. Math. Deb. 77 (3-4)
(2010) 485-498.

[7] Liptai K., Luca F., Pinter A. and Szalay L.: Generalized Balancing Numbers. Indag. Mathem.
N.S. 20 (1) (2009) 87-100.

[8] Liptai K.: Fibonacci Balancing Numbers. Fibonacci Quart. 42 (4) (2004) 330-340.

[9] Liptai K.: Lucas Balancing Numbers. Acta Math. Univ. Ostrav. 14 (2006) 43-47.

[10] Olajos P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Ann. Math.
Inform. 37 (2010) 125-138.

[11] Panda G.K. and Ray P.K.: Some Links of Balancing and Cobalancing Numbers with Pell and
Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica 6 (1) (2011) 41-72.

[12] Panda G.K. and Ray P.K.: Cobalancing Numbers and Cobalancers. Int. J. Math. Math. Sci. 8

(2005) 1189-1200.



General terms of all almost balancing numbers of first and second type 167

[13] Panda G.K. and Panda A.K.: Almost Balancing Numbers. Jour. of the Indian Math. Soc. 82 (3-4)
(2015) 147-156.

[14] Panda G.K, Komatsu T. and Davala R.K.: Reciprocal Sums of Sequences Involving Balancing and
Lucas-balancing Numbers. Mathematical Reports 20 (2018) 201-214.

[15] Panda A.K.: Some Variants of the Balancing Sequences. Ph.D. dissertation, National Institute of
Technology Rourkela, India (2017).

[16] Patel B.K., Irmak N. and Ray P.K.: Incomplete Balancing and Lucas-balancing Numbers.
Mathematical Reports 20 (2018) 59-72.

[17] Ray P.K.: Balancing and Cobalancing Numbers. Ph.D. dissertation, National Institute of
Technology Rourkela, India (2009).

[18] Ray P.K.: Balancing and Lucas-balancing Sums by Matrix Methods. Mathematical Reports 17
(2015) 225-233.

[19] Szalay L.: On the Resolution of Simultaneous Pell Equations. Ann. Math. Inform. 34 (2007)
77-87.

[20] Tekcan A., Ozkog A. and Ozbek M.E.: Some Algebraic Relations on Integer Sequences Involving
Oblong and Balancing Numbers. Ars Combinatoria 128 (2016) 11-31.

[21] Tekcan A. and Erdem A.: t-Cobalancing Numbers and ¢-Cobalancers. Notes on Number Theory
and Discrete Maths. 26 (1) (2020) 45-58.

[22] Tekcan A. and Aydin S.: On ¢-Balancers, t-Balancing Numbers and Lucas t-Balancing Numbers.
Libertas Mathematica 41 (1) (2021) 37-51.

[23] Tekcan A. and Yildiz M.: Balcobalancing Numbers and Balcobalancers. Creative Mathematics
and Informatics 30 (2) (2021) 203-222.

[24] Tengely S.: Balancing Numbers which are Products of Consecutive Integers. Publ. Math. Deb. 83
(1-2) (2013) 197-205.

Received: February 25, 2019
Accepted for publication: March 16, 2021
Communicated by: Attila Bérczes



