Communications in Mathematics **31** (2023), no. 1, 169–177 DOI: https://doi.org/10.46298/cm.10319 ©2023 Nadeem ur Rehman and Shuliang Huang This is an open access article licensed under the CC BY-SA 4.0

On commutativity of prime rings with skew derivations

Nadeem ur Rehman and Shuliang Huang

Abstract. Let \mathscr{R} be a prime ring of $\operatorname{Char}(\mathscr{R}) \neq 2$ and $m \neq 1$ be a positive integer. If S is a nonzero skew derivation with an associated automorphism \mathscr{T} of \mathscr{R} such that $([S([a, b]), [a, b]])^m = [S([a, b]), [a, b]]$ for all $a, b \in \mathscr{R}$, then \mathscr{R} is commutative.

1 Introduction

In all that follows, unless specifically stated otherwise, \mathscr{R} will be an associative ring, $Z(\mathscr{R})$ the center of \mathscr{R} , \mathscr{Q} its Martindale quotient ring and U its Utumi quotient ring. The center \mathscr{C} of \mathscr{Q} or U, called the extended centroid of \mathscr{R} , is a field (see [3] for further details). For any $a, b \in \mathscr{R}$, the symbol [a, b] denotes the Lie product ab - ba. Recall that a ring \mathscr{R} is prime if for any $a, b \in \mathscr{R}$, $a\mathscr{R}b = (0)$ implies a = 0 or b = 0, and is semiprime if for any $a \in \mathscr{R}$, $a\mathscr{R}a = (0)$ implies a = 0. An additive subgroup \mathscr{L} of \mathscr{R} is said to be a Lie ideal of \mathscr{R} if $[l, r] \in \mathscr{L}$ for all $l \in \mathscr{L}$ and $r \in \mathscr{R}$. By a derivation of \mathscr{R} , we mean an additive map $d : \mathscr{R} \longrightarrow \mathscr{R}$ such that d(ab) = d(a)b + ad(b) holds for all $a, b \in \mathscr{R}$. An additive map $F : \mathscr{R} \longrightarrow \mathscr{R}$ is called a generalized derivation if there exists a derivation $d : \mathscr{R} \longrightarrow \mathscr{R}$ such that F(ab) = F(a)b + ad(b) holds for all $a, b \in \mathscr{R}$, and d is called the associated derivation of F. The standard identity s_4 in four variables is defined as follows:

$$s_4 = \sum (-1)^{\tau} X_{\tau(1)} X_{\tau(2)} X_{\tau(3)} X_{\tau(4)}$$

where $(-1)^{\tau}$ is the sign of a permutation τ of the symmetric group of degree 4.

It is well known that any automorphism of \mathscr{R} can be uniquely extended to an automorphism of \mathscr{Q} . An automorphism \mathscr{T} of \mathscr{R} is called \mathscr{Q} -inner if there exists an invertible

Nadeem ur Rehman – Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India.

- *E-mail:* nu.rehman.mm@amu.ac.in
- Shuliang Huang School of Mathematics and Finance, Chuzhou University, Chuzhou-239000 China.

MSC 2020: 16W25, 16N60.

Keywords: Prime ring, Skew derivation, Generalized polynomial identity.

Affiliation:

E-mail: shulianghuang@163.com

element $\alpha \in \mathcal{Q}$ such that $\mathcal{T}(a) = \alpha a \alpha^{-1}$ for every $a \in \mathcal{R}$. Otherwise, \mathcal{T} is called \mathcal{Q} -outer. Following [10], an additive map $S : \mathcal{R} \to \mathcal{R}$ is said to be a skew derivation if there exists an automorphism \mathcal{T} of \mathcal{R} such that $S(ab) = S(a)b + \mathcal{T}(a)S(b)$ holds for every $a, b \in \mathcal{R}$. It is easy to see that if $\mathcal{T} = 1_{\mathcal{R}}$, where $1_{\mathcal{R}}$ the identity map on \mathcal{R} , then a skew derivation is just a usual derivation. If $\mathcal{T} \neq 1_{\mathcal{R}}$, then $\mathcal{T} - 1_{\mathcal{R}}$ is a skew derivation. Given any $b \in \mathcal{Q}$, obviously the map $S : a \in \mathcal{R} \to ba - \mathcal{T}(a)b$ defines a skew derivation of \mathcal{R} , called \mathcal{Q} -inner skew derivation. If a skew derivation S is not \mathcal{Q} -inner, then it is called \mathcal{Q} -outer. Hence the concept of skew derivations unites the notions of derivations and automorphisms, which have been examined many algebraists from diverse points of view (see [8], [19] and [20]).

A classical result of Divinsky [14] states that if \mathscr{R} is a simple Artinian ring, σ a nonidentity automorphism such that $[\sigma(a), a] = 0$ for all $a \in \mathscr{R}$, then \mathscr{R} must be commutative. Many authors have recently investigated and demonstrated commutativity of prime and semiprime rings using derivations, automorphisms, skew derivations, and other techniques that satisfy specific polynomial criteria (see [1], [9], [22], [23], [24] and references therein). Carini and De Filippis [4], showed if a 2-torsion free semiprime ring \mathscr{R} admits a nonzero derivation d such that $[d([a,b]), [a,b]]^n = 0$ for all $a, b \in \mathcal{R}$, then there exists a central idempotent element $e \subseteq U$ such that on the direct sum decomposition $eU \bigoplus (1-e)U$, d vanishes identically on eU and the ring (1-e)U is commutative. In [15], Scudo and Ansari studied the identity $[G(u), u]^n = [G(u), u]$ involving a nonzero generalized derivation G on a noncentral Lie ideal of a prime ring \mathscr{R} and they described the structure of \mathscr{R} . Wang [25] obtained that if \mathscr{R} is a prime ring, \mathscr{L} a non-central Lie ideal of \mathscr{R} such $[\sigma(a), a]^n = 0$ for all $a \in \mathscr{L}$, and if either $char(\mathscr{R}) > n$ or $char(\mathscr{R}) = 0$, then \mathscr{R} satisfies s_4 . Replaced the automorphism σ by a skew derivation d, it is proved in [12] the following result: Let \mathscr{R} be a prime ring of characteristic different from 2 and 3, \mathscr{L} a non-central Lie ideal of \mathscr{R}, d a nonzero skew derivation of \mathscr{R} , n is a fixed positive integer. If $[d(a), a]^n = 0$ for all $a \in \mathscr{L}$, then \mathscr{R} satisfies s_4 .

Motivated by the previous cited results, our aim here is to examine what happens if a prime ring \mathscr{R} admits a nonzero skew derivation S such that

$$([S([a, b]), [a, b]])^m = [S([a, b]), [a, b]]$$
 for all $a, b \in \mathscr{R}$.

2 Notation and Preliminaries

First, we mention some important well-known facts which are needed in the proof of our results.

Fact 1 ([2, Lemma 7.1]). Let V_D be a vector space over a division ring D with $\dim V_D \ge 2$ and $\phi \in End(V)$. If r and ϕr are D-dependent for every $r \in V$, then there exists $\lambda \in D$ such that $\phi r = \lambda r$ for every $r \in V$.

Fact 2 ([6, Theorem 1]). Let \mathscr{R} be a prime ring and I be a two-sided ideal of \mathscr{R} . Then I, \mathscr{R} and \mathscr{Q} satisfy the same generalized polynomial identities (GPIs) with automorphisms.

Fact 3 ([11, Fact 4]). Let \mathscr{R} be a domain and \mathscr{T} be an automorphism of \mathscr{R} which is outer. If \mathscr{R} satisfies a GPI $\Xi(r_i, \mathscr{T}(r_i))$, then \mathscr{R} also satisfies the nontrivial GPI $\Xi(r_i, s_i)$, where r_i and s_i are distinct indeterminates.

Lemma 2.1. Let \mathscr{R} be a dense subring of the ring of linear transformations of a vector space V over a division ring D and $m \neq 1$ a positive integer. If $\mathscr{T} : \mathscr{R} \to \mathscr{R}$ is an automorphism of \mathscr{R} and $\vartheta \in \mathscr{R}$ such that

$$([\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]])^m = [\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]],$$

for every $a, b \in \mathscr{R}$, then $dim_D V = 1$.

Proof. We have

$$([\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]])^m = [\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]],$$

for every $a, b \in \mathscr{R}$. As \mathscr{R} and \mathscr{Q} satisfy the same GPIs with automorphisms by Fact 2, and hence it is a GPI for \mathscr{Q} . We prove it by contradiction. We assume that $dim_D V \ge 2$. There exists a semi-linear automorphism $\Phi \in End(V)$, by [17, p.79], such that $\mathscr{T}(a) = \Phi a \Phi^{-1}$ $\forall a \in \mathscr{Q}$. Hence, \mathscr{Q} satisfies

$$([\vartheta[a,b] - \Phi[a,b]\Phi^{-1}\vartheta,[a,b]])^m = [\vartheta[a,b] - \Phi[a,b]\Phi^{-1}\vartheta,[a,b]].$$

Suppose that $\Phi u \notin span_D\{u, \Phi^{-1}\vartheta u\}$, then $\{u, \Phi u, \Phi^{-1}\vartheta u\}$ is linearly *D*-independent. By density theorem for \mathscr{R} , there exists $a, b \in \mathscr{R}$ such that

$$au = 0 \qquad a\Phi^{-1}\vartheta u = 2u \quad a\Phi u = u$$

$$bu = -u \quad b\Phi^{-1}\vartheta u = 0 \qquad b\Phi u = 0.$$

The above relation gives [a, b]u = 0, $[a, b]\Phi^{-1}\vartheta u = 2u$ and $[a, b]\Phi u = u$. This implies that

$$(2^{m}-2)u = \left(([\vartheta[a,b] - \Phi[a,b]\Phi^{-1}\vartheta, [a,b]])^{m} - [\vartheta[a,b] - \Phi[a,b]\Phi^{-1}\vartheta, [a,b]] \right) u = 0,$$

a contradiction.

Now, we assume that $\Phi u \in Span_D\{u, \Phi^{-1}\vartheta u\}$, then $\Phi u = u\zeta + \Phi^{-1}\vartheta u\theta$ for some $\zeta, \theta \in D$. We see that $\theta \neq 0$ otherwise if $\theta = 0$, then we get $\Phi u = u\zeta$ and hence this gives that $u = \Phi^{-1}u\zeta$. Again by density theorem for $\mathscr{R}, \exists a, b \in \mathscr{R}$, we have

$$au = 0 \qquad a\Phi^{-1}u = 2u$$

$$bu = -u \qquad b\Phi^{-1}u = 0.$$

The above expression again gives that a contradiction

$$(2^{m}\theta^{m} - 2\theta)u = \left(([\vartheta[a, b] - \Phi[a, b]\Phi^{-1}\vartheta, [a, b]])^{m} - [\vartheta[a, b] - \Phi[a, b]\Phi^{-1}\vartheta, [a, b]] \right)u = 0.$$

For $u \in V$, the set $\{u, \Phi^{-1}\vartheta u\}$ is *D*-dependent. By Fact 1, $\exists \Delta \in D$ such that $\Phi^{-1}\vartheta u = u\Delta$, $\forall u \in V$ and hence we have

$$\mathscr{T}(a)\vartheta u = (\Phi a \Phi^{-1})\vartheta u = \Phi a u \Delta$$

and

$$(\mathscr{T}(a)\vartheta - \vartheta a)u = \Phi(au\Delta) - \vartheta au = \Phi(\Phi^{-1}\vartheta au) - \vartheta au = 0.$$

The last expression forces that $(\mathscr{T}(a)\vartheta - \vartheta a)V = (0) \ \forall a \in \mathscr{R}$, and hence $\mathscr{T}(a)V = (0) \ \forall a \in \mathscr{R}$ and as V is faithful, it yields that $\mathscr{T}(a) = 0 \ \forall a \in \mathscr{R}$. This is a contradiction. \Box

3 Main Results

Proposition 3.1. Let $m \neq 1$ be a positive integer, \mathscr{R} be a prime ring of $char(\mathscr{R}) \neq 2$ and $\vartheta \in \mathscr{Q}$ such that

$$([\mathscr{T}([a,b])\vartheta,[a,b]])^m = [\mathscr{T}([a,b])\vartheta,[a,b]].$$

Then $\vartheta \in \mathscr{C}$.

Proof. First we assume that \mathscr{T} is an identity automorphism of \mathscr{R} . Then we have that $([[a,b]\vartheta, [a,b]])^m = [[a,b]\vartheta, [a,b]]$ is a GPI of \mathscr{R} . On contrary we assume that $\vartheta \notin \mathscr{C}$. Since the identity $([[a,b]\vartheta, [a,b]])^m = [[a,b]\vartheta, [a,b]]$ is satisfied by \mathscr{Q} (Fact 2). As $\vartheta \notin \mathscr{C}$, then the above identity is an non-trivial GPI for \mathscr{Q} . By Martindale's theorem in [21], \mathscr{Q} is primitive ring which is isomorphic to a dense ring of linear transformations of a vector space V over \mathscr{C} .

Assume that dim $\mathscr{C}(V) = l$, where $1 < l \in \mathbb{Z}^+$. For this situation, we take $\mathscr{Q} = M_l(\mathscr{C})$ as a ring of $l \times l$ matrices over the field \mathscr{C} such that $([[a, b]\vartheta, [a, b]])^m = [[a, b]\vartheta, [a, b]]$ for all $a, b \in M_l(\mathscr{C})$.

Let e_{ij} be the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. First, we claim that ϑ is a diagonal matrix. Say $\vartheta = \sum_{ij} e_{ij} \vartheta_{ij}$, where $\vartheta_{ij} \in \mathscr{C}$. Choose $a = e_{ij}, b = e_{jj}$. Then by the hypothesis, we have $([e_{ij}\vartheta, e_{ij}])^m = [e_{ij}\vartheta, e_{ij}]$, i.e., $e_{ij}\vartheta_{ij} = 0$ and so $\vartheta_{ji} = 0$, for any $i \neq j$ and hence ϑ is a diagonal matrix.

Since $\xi \in Aut_{\mathscr{C}}(\mathscr{Q})$, the expression

$$([[a,b]\xi(\vartheta),[a,b]])^m = [[a,b]\xi(\vartheta),[a,b]]$$

is also a GPI for \mathscr{Q} , therefore $\xi(\vartheta)$ is also diagonal. The automorphism, in particular $\xi(\vartheta) = (1 + e_{ij})\vartheta(1 - e_{ij})$, for any $i \neq j$ and say $\vartheta^{\xi} = \sum_{ij} e_{ij}\vartheta'_{ij}$, where $\vartheta'_{ij} \in \mathscr{C}$. Since $\vartheta'_{ij} = 0$, then we get $0 = \vartheta'_{ij} = \vartheta_{jj} - \vartheta_{ii}$, by easy computation. So that $\vartheta_{jj} = \vartheta_{ii}$ hold for any $i \neq j$, and we get a contradiction that $\vartheta \in \mathscr{C}$.

Assume that $\dim_{\mathscr{C}} V = \infty$.

$$([[a,b]\vartheta, [a,b]])^m = [[a,b]\vartheta, [a,b]], \text{ for all } a, b \in \mathscr{Q}.$$
(1)

By Martindale's theorem [21], it observes that $Soc(\mathscr{Q}) = F \neq (0)$ and eFe is finite dimensional simple central algebra over \mathscr{C} , for any minimal idempotent element $e \in F$. We can also suppose that F is non-commutative, because else \mathscr{Q} must be commutative. Clearly, F satisfies $([[a, b]\vartheta, [a, b]])^m = [[a, b]\vartheta, [a, b]]$ (see, for example, the proof of [18, Theorem 1]). As F is a simple ring, either F does not contain any non-trivial idempotent element or F is generated by its idempotents. In this last case, assume that F contains two minimal orthogonal idempotent elements e and f. Using the assumption, one can see that, for [a, b] = [ea, f] = eaf, we have

$$eaf\vartheta eaf = 0, (2)$$

in this case we get $f \vartheta eaf \vartheta eaf \vartheta e = 0$, and primeness of \mathscr{R} , we get $f \vartheta e = 0$ for any rank 1 orthogonal idempotent element e and f. Notably, for any rank 1 idempotent element e,

we have $e\vartheta(1-e) = 0$ and $(1-e)\vartheta e = 0$, that is, $e\vartheta = e\vartheta e = \vartheta e$. Hence, $[\vartheta, e] = 0$ gives that F is commutative or $\vartheta \in \mathscr{C}$. We get a contradiction, in this case.

Now, we consider when F cannot contain two minimal orthogonal idempotent elements and so, F = D for suitable finite dimensional division ring D over its center which implies that $\mathscr{Q} = F$ and $\vartheta \in F$. By [17, Theorem 2.3.29] (see also [18, Lemma 2]), there exists a field \mathbb{K} such that $F \subseteq M_n(\mathbb{K})$ and $M_n(\mathbb{K})$ satisfies $([[a, b]\vartheta, [a, b]])^m = [[a, b]\vartheta, [a, b]]$. If n = 1 then $F \subseteq \mathbb{K}$ and we have also a contradiction. Moreover, as we have just seen, if $n \ge 2$, then $\vartheta \in Z(M_n(\mathbb{K}))$.

Finally, if F does not contain any non-trivial idempotent element, then F is finite dimensional division algebra over \mathscr{C} and $\vartheta \in F = \mathscr{RC} = \mathscr{Q}$. If \mathscr{C} is finite, then F is finite division ring, that is, F is a commutative field and so \mathscr{R} is commutative too. If \mathscr{C} is infinite, then $F \bigotimes_{\mathscr{C}} \mathbb{K} \cong M_n(\mathbb{K})$, where \mathbb{K} is a splitting field of F. We get the conclusion.

Henceforward, ${\mathscr T}$ is non-identity automorphism of ${\mathscr R}.$ Now, we have two cases:

Case I: If \mathscr{T} is \mathscr{Q} -inner, then there exists an invertible element α of \mathscr{Q} such that $\mathscr{T}(a) = \alpha a \alpha^{-1}$ for every $a \in \mathscr{R}$. Thus, $([\alpha[a, b]\alpha^{-1}\vartheta, [a, b]])^m = [\alpha[a, b]\alpha^{-1}\vartheta, [a, b]]$ for every $a, b \in \mathscr{R}$. If $\alpha^{-1}\vartheta \in \mathscr{C}$, then \mathscr{R} satisfies $([\alpha[a, b], [a, b]])^m = [\vartheta[a, b], [a, b]]$ and we get the conclusion as above. Now we assume that $\alpha^{-1}\vartheta \notin \mathscr{C}$, therefore

$$([\alpha[a,b]\alpha^{-1}\vartheta,[a,b]])^m = [\alpha[a,b],[a,b]]$$

is a non-trivial GPI for \mathscr{R} and hence for \mathscr{Q} by Fact 2. In light of "Martindale's theorem [21], \mathscr{Q} is isomorphic to a dense subring of linear transformations of a vector space V over D, where D is a finite dimensional division ring over \mathscr{C} ". By Lemma 2.1, the result follows.

Case II: If \mathscr{T} is \mathscr{Q} -outer, and \mathscr{Q} satisfies $([\mathscr{T}([a,b])\vartheta, [a,b]])^m = [\mathscr{T}([a,b])\vartheta, [a,b]]$, then by Lemma 2.1 we get $\dim_D V = 1$, that is \mathscr{Q} is a domain. By Fact 3, \mathscr{Q} satisfies $[[r,s]\vartheta, [a,b]]^m = [[r,s], [a,b]]$ and in particular, for r = a and s = b, we have $[[a,b]\vartheta, [a,b]]^m = [[a,b]\vartheta, [a,b]]$ for every $a, b \in \mathscr{Q}$. Hence, using the same technique as above we get the required conclusion.

Theorem 3.2. Let \mathscr{R} be a prime ring of $Char(\mathscr{R}) \neq 2$ and $m \neq 1$ be a positive integer. If S is a nonzero skew derivation with an associated automorphism \mathscr{T} of \mathscr{R} such that $([S([a,b]), [a,b]])^m = [S([a,b]), [a,b]]$ for all $a, b \in \mathscr{R}$, then \mathscr{R} is commutative.

Proof. We have

$$([S([a,b]),[a,b]])^m = [S([a,b]),[a,b]] \text{ for every} a, b \in \mathscr{R}.$$

Firstly, we assume that S is \mathscr{Q} -inner, that is, $S(a) = \vartheta a - \mathscr{T}(a)\vartheta$ with $0 \neq \vartheta \in \mathscr{Q}$. Thus, $\forall a, b \in \mathscr{R}$, we have

$$[\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]])^m = [\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]].$$

If $\vartheta \in \mathscr{C}$, then \mathscr{R} satisfies the GPI $([\mathscr{T}([a,b])\vartheta, [a,b]])^m = [\mathscr{T}([a,b])\vartheta, [a,b]]$. We get the desired conclusion, by Proposition 3.1. Therefore $\vartheta \notin \mathscr{C}$, and so

$$[\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]])^m = [\vartheta[a,b] - \mathscr{T}([a,b])\vartheta, [a,b]]$$

is nontrivial GPI for \mathscr{R} . Thus, Lemma 2.1 yields the required result.

Finally, when S is \mathscr{Q} -outer, then the above identity can be rewritten as

$$[S(a)b + \mathscr{T}(a)S(b) - S(b)a\mathscr{T}(b)S(a), [a, b]]^m = [S(a)b + \mathscr{T}(a)S(b) - S(b)a - \mathscr{T}(b)S(a), [a, b]],$$

and hence \mathscr{R} satisfies

$$([\vartheta b + \mathscr{T}(a)s - sa - \mathscr{T}(b)r, [a, b]])^m = [rb + \mathscr{T}(a)s - sa - \mathscr{T}(b)r, [a, b]].$$

In particular \mathscr{R} satisfies $([\mathscr{T}(a)s - sa, [a, b]])^m = [\mathscr{T}(a)s - sa, [a, b]]$. We divide it into two cases. First, \mathscr{T} be an identity map of \mathscr{R} . Then $([[r, s], [a, b]])^m = [[r, s], [a, b]]$ for every $a, b, r, s \in \mathscr{R}$, that is, \mathscr{R} is a polynomial identity ring. Thus, \mathscr{R} and $M_n(\mathbb{K})$ satisfy the same polynomial identities [18, Lemma 1], i.e.,

$$([[r, s], [a, b]])^m = [[r, s], [a, b]]$$
 for each $a, b, r, s \in M_n(\mathbb{K})$,

Let $n \ge 2$ and e_{ij} be the usual unit matrix. Then $r = b = e_{12}$, $s = e_{21}$ and $a = e_{11}$, we get a contradiction $2e_{12} = 0$. Thus, n = 1 and we are done.

Now consider \mathscr{T} is not the identity map. Therefore,

$$([\mathscr{T}(a)s - sa, [a, b]])^m = [\mathscr{T}(a)s - sa, [a, b]]$$

is a non-trivial GPI for \mathscr{R} , by Main Theorem in [5]. Moreover, by Fact 2, \mathscr{R} and \mathscr{Q} satisfy the same GPIs with automorphisms and hence $([\mathscr{T}(a)s - sa, [a, b]])^m = [\mathscr{T}(a)s - sa, [a, b]]$ is also an identity for \mathscr{Q} . Since \mathscr{R} is a GPI-ring, by [21] " \mathscr{Q} is a primitive ring, which is isomorphic to a dense subring of the ring of linear transformations of a vector space V over a division ring D". If \mathscr{Q} is a domain, then by Fact 3, we have that \mathscr{Q} satisfies the equation $([ts - sa, [a, b]])^m = [ts - sa, [a, b]]$. In particular, $([[a, z], [a, b]])^m = [[a, z], [a, b]]$ for all $a, b, z \in \mathscr{Q}$, which yields that \mathscr{Q} is commutative (by using the same above argument) and hence \mathscr{R} . Henceforth, \mathscr{Q} is not a domain. We have $\mathscr{T}(a) = hah^{-1} \, \forall a \in \mathscr{Q}$, as mentioned above. Thus, $([hah^{-1}z - za, [a, b]])^m = [hah^{-1}z - za, [a, b]]$ Hence, we may consider that $\dim D_V \ge 2$. By [17, p. 79], there exists a semi-linear automorphism $h \in End(V)$ such that $\mathscr{T}(a) = hah^{-1} \, \forall a \in \mathscr{Q}$. Hence, \mathscr{Q} satisfies $([hah^{-1}z - za, [a, b]])^m = [hah^{-1}z - za, [a, b]]$.

If for any $v \in V \exists \Theta_v \in D$ such that $h^{-1}v = v\Theta_v$, then, it follows that there exists a unique $\Theta \in D$ such that $h^{-1}v = v\Theta$, $\forall v \in V$ (see for example Lemma 1 in [7]). In this case $\mathscr{T}(a)v = (hah^{-1})v = hav\Theta$ and

$$(\mathscr{T}(a) - a)v = h(av\Theta) - av = h(h^{-1}av) - av = 0,$$

since V is faithful, which is a contradiction that \mathscr{T} is the identity map. Thus, $\exists v \in V$ such that $\{v, h^{-1}v\}$ is linearly D-independent. In this case, first we assume that $\dim V_D \geq 3$. Thus, $\exists u \in V$ such that $\{u, v, h^{-1}v\}$ is linearly D-independent. Hence, the density theorem for $\mathscr{Q}, \exists a, b, z \in \mathscr{Q}$ such that

$$zv = 0 \qquad zh^{-1}v = h^{-1}v$$
$$bv = 0 \qquad bh^{-1}v = 0$$
$$av = h^{-1}v \qquad bu = -2v$$
$$ah^{-1}v = u.$$

The above relation gives that

 $0 = (([hah^{-1}z - za, [a, b]])^m - [hah^{-1}z - za, [a, b]])v = (2^m - 2)v \neq 0$

again a contradiction.

Now, the case when $\dim V_D = 2$ that is, $\mathscr{Q} = M_2(\mathbb{K})$. Thus

$$([\mathscr{T}(a)z - za, [a, b]])^2 = [\mathscr{T}(a)z - za, [a, b]] \quad \text{for all } a, b, z \in \mathscr{Q}.$$

Since $\mathscr{T}(a)$ -word of degree 2 and $\operatorname{Char}(\mathscr{R}) > 3$ by [6, Theorem 3],

$$([tz - za, [a, b]])^2 - [tz - za, [a, b]] = 0 \quad \text{for every } t, z, a, b \in \mathscr{Q}.$$

Using the same technique as above its shows that \mathscr{Q} is commutative and hence \mathscr{R} is commutative.

The following corollary is an immediate consequence of our result.

Corollary 3.3. [13, Theorem 2.3] Let \mathscr{R} be a prime ring of characteristic not two and d be a nonzero derivation of \mathscr{R} such that $([d([a,b]),[a,b]])^m = [d([a,b]),[a,b]]$ for all $a, b \in \mathscr{R}$. Then \mathscr{R} is commutative.

Theorem 3.4. Let \mathscr{R} be a prime ring of $Char(\mathscr{R}) \neq 2$, $m \neq 1$ be a positive integer and \mathscr{L} a Lie ideal of \mathscr{R} . If S is a nonzero skew derivation with an associated automorphism \mathscr{T} of \mathscr{R} such that $([S(v), v])^m = [S(v), v]$ for all $v \in \mathscr{L}$, then L contained in the center of \mathscr{R} .

Proof. Suppose that $\mathscr{L} \not\subseteq Z(\mathscr{R})$ is a Lie ideal of \mathscr{R} . Then by [16], there exists an ideal I of \mathscr{R} such that $0 \neq [I, \mathscr{R}] \subseteq \mathscr{L}$ and $[\mathscr{L}, \mathscr{L}] \neq (0)$. Also, $\mathscr{R} \not\subseteq Z(\mathscr{R})$ as \mathscr{L} is a noncentral Lie ideal of \mathscr{R} . Therefore by the given hypothesis, I as well as \mathscr{R} (Fact 2) satisfy $[S([a, b]), [a, b]])^m = [S([a, b]), [a, b]]$. By Theorem 3.2, we get the required result. \Box

Acknowledgment:

The authors are greatly indebted to the referee for his/her valuable suggestions, which have immensely improved the paper. For the first author, this research is supported by the Council of Scientific and Industrial Research (CSIR-HRDG), India, Grant No. 25(0306)/20/EMR-II.

References

- Ali, S. and Khan, M. S., and Khan A. N. and Muthana, N. M.: On rings and algebras with derivations. J. Algebra Appl. 15 (6) (2016) 650107 (10 pages).
- [2] Beidar, K. I. and Bresar, M.: Extended Jacobson density theorem for rings with automorphisms and derivations. Israel J. Math. 122 (2001) 317–346.
- [3] Beidar, K. I. and Martindale III, W. S. and Mikhalev, A. V.: Rings with generalized identities. Pure and Applied Mathematics, Marcel Dekker 196, New York (1996).

- [4] Carini, L. and De Fillippis, V.: Commutators with power central values on Lie ideals. Pacific J. Math. 193 (2000) 269–278.
- [5] Chuang, C. L.: Differential identities with automorphisms and anti-automorphisms-I. J. Algebra 149 (1993) 371–404.
- [6] Chuang, C. L.: Differential identities with automorphisms and anti-automorphisms-II. J. Algebra 160 (1993) 291–335.
- [7] Chuang, C. L. and Chou, M. C., and Liu, C. K.: Skew derivations with annihilating Engel conditions. Publ. Math. Debrecen 68 (2006) 161–170.
- [8] Chou, M. C., and Liu, C. K.: Annihilators of skew derivations with Engel conditions on Lie ideals. Comm. Algebra 44 (2016) 898–911.
- [9] De Filippis, V. and Rehman, N.: On certain identities with automorphisms on Lie ideals in prime and semiprime rings. Algebra Colloq. 29 (1) (2019) 93–104.
- [10] De Filippis, V. : Annihilators and power values of generalized skew derivations on Lie ideals. Canad. Math. Bull. 59 (2) (2016) 258–270.
- [11] De Filippis, V. and Di Vincenzo, O. M.: Generalized skew derivations on semiprime rings. Linear and Multilinear Algebra 63 (5) (2015) 927–939.
- [12] De Filippis, V. and Huang, S.: Power-commuting skew derivations on Lie ideals. Monatsh Math. 177 (2015) 363–372.
- [13] De Filippis, V. Raza, M. A. and Rehman, N.: Commutators with idempotent values on multilinear polynomials in prime rings. Proc. Indian Acad. Sci. (Math. Sci.) 127 (1) (2017) 91–98.
- [14] Divinsky, N.: On commuting automorphisms of rings. Trans. Roy. Soc. Canad Sect. III 49 (1959) 19–22.
- [15] Scudo, G. and Ansari, A. Z.: Generalized derivations on Lie ideals and power values on prime rings. Mathematica Slovaca 65 (5) (2015) 975–980.
- [16] Herstein, I. N.: Topics in ring theory. The University of Chicago Press, Chicago, London (1965).
- [17] Jacobson, N.: Structure of rings. Amer. Math. Soc. Colloq. Pb. 37 Rhode Island (1964).
- [18] Lanski, C.: An Engel condition with derivations. Proc. Amer. Math. Soc. 118 (1993) 731–734.
- [19] Lanski, C.: Skew derivations and Engel conditions. Comm. Algebra 42 (2014) 139–152.
- [20] Liu, C. K.: An Engel condition with skew derivations for one-sided ideals. Monatsh. Math. 180 (2016) 833–852.
- [21] Martindale III, W. S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969) 576–584.
- [22] Pinter-Lucke, J.: Commutativity conditions for rings 1950-2005. Expo Math. 25 (2007) 165–174.
- [23] Raza, M. A. and Rehman, N.: An identity on automorphisms of Lie ideals in prime rings. Ann Univ. Ferrara. 62 (1) (2016) 143–150.
- [24] Rehman, N. and Raza, M. A.: On m-commuting mappings with skew derivations in prime rings. St. Petersburg Math. J. 27 (4) (2016) 641–650.

[25] Wang, Y.: Power-centralizing automorphisms of Lie ideals in prime rings. Comm. Algebra 34 (2016) 609–615.

Received: June 17, 2021 Accepted for publication: August 12, 2021 Communicated by: Ivan Kaygorodov