1l EPIlsciences

arXiv:2211.09278v2 [math.NT] 21 Nov 2022

Communications in Mathematics 31 (2023), no. 1, 179-203 179
DOT: https://doi.org/10.46298 /cm.10327

(©)2023 Claudio Pita-Ruiz

This is an open access article licensed under the CC BY-SA 4.0

On bi-variate poly-Bernoulli polynomials

Claudio Pita-Ruiz

Abstract. We introduce poly-Bernoulli polynomials in two variables by using a gen-
eralization of Stirling numbers of the second kind that we studied in a previous work.
We prove the bi-variate poly-Bernoulli polynomial version of some known results on
standard Bernoulli polynomials, as the addition formula and the binomial formula.
We also prove a result that allows us to obtain poly-Bernoulli polynomial identities
from polynomial identities, and we use this result to obtain several identities involv-
ing products of poly-Bernoulli and/or standard Bernoulli polynomials. We prove two
generalized recurrences for bi-variate poly-Bernoulli polynomials, and obtain some
corollaries from them.

1 Introduction

Bernoulli numbers are one of the most important mathematical objects that have been
studied by mathemathicians since they appeared in the 18-th century (see [13]). A recent
important generalization of the Bernoulli numbers B,, and Bernoulli polynomials B, (z) is
about the so-called poly-Bernoulli numbers and poly-Bernoulli polynomials. Poly-Bernoulli
numbers B,(lk), where k is a given positive integer, were introduced by M. Kaneko [10] in
1997, by means of the generating function

le-(]_ - eit) > (k) tn
l—et Zo By n!’

where Lig(z) = Zj; 27 /4% is the polylogarithm function. The case k = 1 corresponds to

the standard Bernoulli numbers B,, (except the sign of Bf)). Poly-Bernoulli polynomials
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Bék)(:c) can be defined by the generating function

o

le<1 — e_t) . t
e ¢ = LB@
n=0

(see [5]). The case k = 1 corresponds to (—1)"B,(x), and the case x = 0 corresponds
to the poly-Bernoulli numbers B mentioned before. Some slightly different definitions
of poly-Bernoulli polynomials B (x), with z replaced by —z, and/or with an additional
factor (—1)", can be found in some related papers (see [1], [5], [6], [9]). In this work we

use the following explicit formula

B = Z p(0)a+ar, 1)

=0 j=

as our definition of poly-Bernoulli polynomials (see formula (1.8) in [1]). It is important to
mention that the notation B (x) is also used for a different kind of mathematical objects,
namely, Bernoulli polynomials of k-th order (see [3]).

A different generalization of Bernoulli polynomials, studied in the past few years, is
about considering Bernoulli polynomials in several variables By, ., (z1,...,x:), that is,
polynomials of degree p; in the variable x;, with

BO 7777 Diyees 0((1]1,...7.1'15) :Bpi (Il) fOl" eachi € {1,...7t},

seeking that reasonable generalizations of the known properties in the one-variable case,
remain valid. This kind of work is done in [16], with a flavor of multivariable analysis and
working with Jack polynomials. A different approach is presented in [17] (see also [2], [7]).

In this work we study poly-Bernoulli polynomials in two variables (bi-variate poly-
Bernoulli polynomials). We define the bi-variate poly-Bernoulli polynomials by using a
generalization of Stirling numbers of the second kind we studied in [14], and then we use
the results in [14] to obtain results for the bi-variate poly-Bernoulli polynomials considered
in this work.

We present now the definitions and results in [14] that we will use in the remaining
sections.

The generalized Stirling numbers of the second kind (GSN, for short), denoted as
52?217?2 P2) (p1,k), where a;,b; € C, a; # 0, j = 1,2, and p;, p» non-negative integers, are
defined by means of the expansion

p1+p2

(a0 o+ b = Y S22 ) () @)
k=0

(8920202 |y = 0 if k < 0 or k > py + p ). An explicit formula for these numbers is

a1,b1

k
1 .
Sara P pk) = 47 2 (=1 () 1(k = 7) + 01 (ag(k — j) + b2)P*. (3)
7=0
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If py = 0, we write the GSN szb’bQ’O(p, k) as S,u(p, k). We have

Suatp ) = gy S0 () etk ) 40 )

In the case @ = 1,b = 0, the corresponding GSN Sy o(p, k) = 4 Z?ZO(—l)j (];) (k—j)°
are the known Stirling numbers of the second kind. We will refer to them as “standard
Stirling numbers”, and in this case we use the known notation S(p, k).

From (3) it is clear that ng’g’m (p1,k) = Sap (1 + pa, k). We can see directly from (4)

that
Sl,l(p7k) = S<p+17k+1)7 (5)
Si2(p, k) = Sp+2,k+2)—-Sp+1,k+2). (6)

In this work we will use GSN of the form S};;”f*p *(p1, k). Some important facts about the
GSN Sp#2P2(p, k) are the following:

1,21

e Some values of the GSN S}*#P2(p, k) are

1,%1
S 0) = ol "
S (p, 1) = (14 1P (xg + 1)P2— alaf?
511:;127[)2(])17])1 +p) = L

e The GSN Sll”if’m (p1, k) can be written in terms of the GSN 511:512,;;2 (p1, k) as follows

p1 P2
Sy2P2 (py, k) = Z Z (?11) (p2> (z1 — Y1) 7 (w2 — y2)P 2SI (Gi, k). (8)

3120 j2=0 J2

e The GSN 511:512,;3 *(p1, k) can be written in terms of standard Stirling numbers as
follows

pP1 P2
lell,’;?m (b1, k) = Z Z (?i) (Z;j) (z1 — m)P 7 @y — m)P2 2

J1=0 j2=0

x; (T)(k+i)!5(j1+jg,k+z’), 9)

where m is an arbitrary non-negative integer.
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e The GSN &S] 2P (p1, k) can be written in terms of standard Stirling numbers as
follows

p1 p2
szt = 33 (1) () s -

]1 0]2 0
xZ(—l)is(n,n—i)S(jl +j2 +n—ik+n), (10)

where n is an arbitrary positive integer, and s(-,-) are the unsigned Stirling numbers
of the first kind.

e The GSN S}*2%2(p,, k) satisfy the identity

1,21

SyzEtiP (o k) = Sy (pr, k) + (k + 1875272 (pr, k + 1). (11)

1,21 1z

e The GSN S,""272(p, k) satisfy the recurrence

1,21

Sy () k) = S7 P2 (py — 1,k — 1) + (k 4+ 21)S72P2 (py — 1, k). (12)

1,1 1,1 1,21

2 Definitions and preliminary results

The relation of Bernoulli (numbers and polynomials) with Stirling (numbers of the
second kind) is an old story, that dates back to Worpitsky [18] (see also [8, p. 560] and
[11, p. 5]). We have the following formula for Bernoulli numbers

ll

and in the case of Bernoulli polynomials we have

0 =23 (7 s T i

=0 j=0

An important observation of formula (1) is that poly-Bernoulli polynomial B;(;k)(a:) can
be written in terms of the GSN as

B ZS o (19
1,x p7 l—|— 1)

The generalization of (15) to the case of two variables comes through the GSN: we
define poly-Bernoulli polynomial in the variables x, x5, denoted by B,(,’f?m (r1,9), as

(& p1+p2 ) (_1)ll|
>T2 p2 :
Bp1p2 $1,$2 Z Slxl p17 (l+1)k

(16)
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If po = 0, formula (16) becomes (15). By using (9) we can write Bgf,)m(:cl, T9) in terms
of standard Stirling numbers as

pi+p2 p1 P2 ' '
B = 3 3230 (1)(17) o

()50t G ()

where m is an arbitrary non-negative integer. Similarly, by using (10) we have that

p1tp2 p1 - P2
CONCRAIEED 35 30 Bl ([ (4 IR e
=0 j1=0j2=0
XZ nn—z)S(j1+j2+n—i,l+n)L)l! (18)
+

where n is an arbitrary positive integer.
The simplest cases of (17) and (18) are

pi+p2 p1 P2 n (_1)1“
Bfglpz (21, 72) Z ZZ( )( > Db 8 (y +J2J)m, (19)

=0 j1=0j2=0

and
By, (w1, w) (20)
pi1+p2 p1 P2 l
L L ‘ . —1)4!
Z ZZ pl p2 T — 1)1:1 31(1,2_1)172 ]25(]1+]2+1>l+1)<—)k7
(I+1)
=0 371=0j2=0
respectively.

Two examples are the following

2 1
B@(%v@) = 3k ok (21 + 29 + 1) + 2929,
1 1
BEkQ) (1,22) = e (21 + 429+ 6) — o (xl (2x9 + 1) + (2o + 1)2) + 1122 — ol
Clearly we have
B (x1,22) = 1. (21)
Observe also that
k
BIglf?m (ZL‘, $) = BI(Herz ($) (22)

In particular, we have
Bk (0,0) = B

P1,p2 p1+p2?

(23)
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From (3) and (16) we have

pitp2 1

-1 l
B = > S0 () amsrara-semr S ey
=0 j=0 (I+1)
from where we see that
9 pw 0
a_ﬁprl’m(xl’:Q) - pprl 1p2<x17x2>7
0
8—55231(3]1“7)])2(2:1,952) - szz(n)pQ (71, 22).

We can use (8) to write BI()l)p2<ZL'1,ZE2) in terms of B (y1,92), 0 < j; <piyi=1,2, as

J1,J2
p1 b2 pl p2 ( )
B = 300 (M) (%) o= - B, ), (29
71=0 j2=0
that generalizes the known addition formula B,gk) (x) = f 0 ( ) (x —y)? =i BJ(-k) (y) for
one-variable poly-Bernoulli polynomials. In fact, we have
p1+p2 I
(k 1,z2,p2 (_1) !
Bp1p2 x17$2 Z Slxlp p17 (l+1)k
Shy ‘ DN Gl (1)
= Z Z < ) ( ‘ ) Ty — Y1 )P I (g — 1) P22 Z SUYI (41, 1) (1)
Jj1=0 j2=0 =0
p1 p2
1—J1 2—j2 Rk
=5 (M) = = B ),
J1=052=0

as claimed. In particular, if we set y; = y2 = y in (25) we obtain an expression for the
bi-variate poly-Bernoulli polynomial Bgf,)pg(xl, x9) in terms of one-variable poly-Bernoulli
polynomials B§k) (y), 0 < j < p1 + pa, namely

P1 P2
P1) (P2 1—j1 o—jo ok
B, (21,22 ZZ( )( ) vy s — B ). (26)
71=0 j2=0

and then we can write the bi-variate poly-Bernoulli polynomial Bz(,lf?pz (21, 22) in terms of
(k)7 0 S] S p1 +p27 as

poly-Bernoulli numbers B;
p1 P2 D D
1 2\ pi—j k)
Bt = 3050 (M) () et el o)

J1=072=0
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The cases k =0 and k = —1 of (27) are

B (o1, 32) = (21 = 1) (a2 — 17, (28)
and
By (w1, w2) = (o = 2 (w2 = 2), (29)

respectively. In fact, according to (16), formulas (28) and (29) are the particular cases
r =0 and r = 1 of the identity

p1+p2

Z SEEP (p, 1) (=D U+ ) =7l (g — 7 = DP (20 — 7 — 1), (30)

where r is a non-negative integer. We leave the proof of (30) to the reader.
Observe also that (25) implies that

pP1 p2
B (21 + 1,29+ 1) Z Z (Pl) (Pz) B](f)ﬂ (21, 22), (31)

Jj1=072=0

which generalizes the known binomial formula for standard Bernoulli polynomials

By(z+1) = i (z;) B;(z). (32)

j=0

If we set xl = x9 = x in (25), we obtain a formula for the standard poly-Bernoulli
polynomial B () in terms of the bi-variate poly-Bernoulli polynomials B (y1,Y2),

p1+p2 Ji,J2
0< 7 <p;,1=1,2 namely

p1 p2
b1 D2 1—J1 2—J2
B0 =303 (M) () - mr e B ). (39

Jj1=0 j2=0

Some additional simple observations are the following

k
BY(x1,22) = B®(x), (34)
k
B (w1,m0) = B® (1), (35)
and
P2 p ()
2 pP2—7J2
BZ(?Ify)ZD (07‘T2) = (]) ’ BP1+J2’ (36)
j2—0 2
p1
B® (21,0) = Z ! JlBﬁm (37)



186 Claudio Pita-Ruiz

3 Some identities

In this section we obtain some identities involving poly-Bernoulli polynomials, by using
the following result:

Theorem 3.1. The polynomial identity
D ana(z+a) = bu(x+B) (38)
r=0 r=0

implies the poly-Bernoulli polynomial identity

n

zn: an7rB£k)(x +a) = Z by TB (:E + ). (39)
r=0

r=0

Proof. Observe that the hypothesis of the polynomial identity (38), comes together with
the identity of its derivatives:

> (y) ooty =3 (]) b+ 8

r=0 r=0

where j is a non-negative integer.

We have

;an,rB,(,k)(m +a) = Zam Z Sy aial(r,]) (l_j)l)li
—1)4!
— ZaanZ()x-f-ar JS(j’l)((+))k

=0 j=0
- ZZ(Z( anr(z+ ) >S ( lll'
=0 j=0 \r=0 l+

(I+1)F
= S (S (o) st éi”'

=0 j=0 \r=0

_ ZbMZZ( ) z+ )8 j’l)(l+1)’f

lOyO

) —1y
- Tz; bn,r lz:; Sl,x-i—ﬁ(?a? l) (l + 1)k

- Z bnv"'B'I(‘k) (ZE + 6)7
r=0

as desired. ]
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Remark 3.2. The case k = 1 of Theorem 3.1 is an old result: based on [12], we obtained
Theorem 3.1 in the case k = 1 and we used it to generate several identities in [15].

For example, by using Theorem 3.1 in the trivial identity 2? = >°%_, (f)(x — y)YyP™I
we obtain the addition formula for poly-Bernoulli polynomials
- p i ok
5P =3 (") - 0B ) (10)
§=0

that we can write as

P (f) pijJ('k) _ P (f) (z — g Bj(k)(y). (41)

j=0 7=0

We can use again Theorem 3.1 to obtain from (41) that
- D\ (k) (k) - D\ (k) (k)
> (j) B (x)B" =>" ( ) B (x —y) B} (y). (42)
j=0 :
Set y = z in (42) to get the identity
- p k k - p k k
> (M)eemnd =3 (1) 580w, (@3
— \j
J
If we set k=1 in (43), and replace x by x + 1, we obtain

p (f) B")(z+1)B; = Zp: (p) B By(w + 1), )

=0 \J

J=0

By using that B;j(z+1) = B;(x)+ ja/~! together with (43), we obtain from (44), after
some elementary algebraic steps, the curious identity

> (f) (B @ +1) = BI(@)) B, = pB)(@). (45)

=0
From (17), (18) and (19) we have that
(=4

p1 p2 Jitj2 » s A A
)0 )ar S G4 e D e (46)
]Z::OJZ‘O ; (h) (Jz) b (I + 1)k
B P11 p2 Jitj2 " D - -
J1 J2

j1=04j2=0 =0
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[+ 1)k

S B S ()

J1=072=0 =0

X ZO (7;)5(9'1 +j2,l+i)w

(—1)!

n—1
X ;(—1)28(77/,77/ — Z)S(jl +]2 +n— Z,l"— n)m

where m, n are arbitrary integers, m > 0, n > 0. Now we use Theorem 3.1 in (46) and
then set z1 = 29 = m + n, to obtain the identities

SRS P1\ (P2 5k) (k2) (=D
Z Z Z (]1) <j2) Bpl—jl (m + n)BP2—j2 (m + n)S<]1 T J2 l)m (47>

Jj1=0j2=0 [=0

Pri1—i p2—72

)B(kl)' (n)B(kQ)- (n)

X;(i)s(jl‘f‘jz,l—l—z)%

pL o p2 Jiti2 D » 1) *2)
1 2 k k
S (1)) B

n— i o , (—1)1!
X (—1)s(n,n—z)s(]l+J2+n_27l+n)(l+1)ko'

From (26) we see that

rr p2 P p

1 2 1—J1 2—j2 Rk
Z Z ( . > ( » )(xl B y)p ! (%2 - y)p ! Bj(li)jz(y) (48>
j1=0jp=0 1/ \J2
p1 D2 p p
1 2 g —7
= Z Z (]1) (]2> (331 _ Z)Pl Jl(x2 _ Z)pz JQB](fi)jQ (Z)

Jj1=0j2=0

We can use Theorem 3.1 to get from (48), the identity
S b1\ (P2 k k k
5250 (0 () Bt = 2 2 = 0 B ) ()

Jj1=052=0
bt p p (k1) (k2) (ko)
1 2 k k k
=505 (M) () B o B = B, )

710 j2=0 J2
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Set x1 = x9 = y = x to obtain from (49) that
p1 P2
Bt pk2)  plko)
S () () m o £
J1=0752=0
pi P2
b1\ (P2 k2 k
- Z Z ( ) < ) p1 )Jl(x o Z)BJT(>2—)J'2($ o Z)BJ('l?i-)jQ<2>'

Jj1=0 j2=0

With 2 =0, 2=1— (¢ — 1)z, and z = gz — 1, where ¢ is an arbitrary parameter, we
obtain from (50) the identities

P1 p2
b1 b2 k1 ko k
S0 (M) () B, B, B, 0 &

71=0 72=0
N (P (72 ( (ko)
1 2 k1) ka) &

=22 ( )( )Bpllh( 2)BI. (x)BM).
71=0 72=0
p1 D2 4 D2 (k1) (ks o)

— Z Z ( ) ( )Bpll ]1(q 1)Bp2 )h( — 1)B§18rj2(1 —(g—1)z)
71=072=0
p1 D2 4! P2 k1) (ko) o

— Z Z < ) ( ) p1 ]1(1 - (q - 1)33)Bp22,]2(1 — (q —_ 1)x)B‘71+]2(q$ _ 1)
71=0 j2=0

In the case ¢ = 2, if some (or all) of the parameters ko, k1, ko are equal to 1, we can
use the known property B, (1 —x) = (—1)"B,(z) to simplify the corresponding expression
n (51). For example, if kg = k; = ks = 1 and ¢ = 2, we have the following identities
involving standard Bernoulli numbers and polynomials

ii(m) <p2) 11 Bra s Biy 2 () (52)
= i i <p1> (])-2> p1—i1 () Bpy—j () By 1

Jj1=072=0
p1 b2 p p
1 2 i i
= Z Z < ) ( ) 1)j1+jQBp1—j1(2x - 1>Bp2—j2(2x - 1)Bj1+j2(x)
Jj1=072=0
p1 p2 1 Do ' '
= 303 (M) () 1 By () B 0By - 1)
J1=0j2=0

In particular, by setting x = 1 in (52), we see that if p; + po is odd, then

p1 P2
p D
Z Z ( 1) ( 2) 1)J1+JQBP1 —j1 Bpa—js Bji 442 = 0. (53)

J1=072=0
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From (30) together with (9) (with m = 0) and (10) (with n = 1), we have

p1 P2 Jitj2
2.0 (];1) <§Q) o IS G+ g (1) () (54)
1 2

71=03j2=0 =0

_ i i]f: (?i) (?2> (21 — 1P (g — 12281 + jo + 1,1+ 1)(=1) (1 + 1))

71=0j2=0 1=0 I
=rl(zy —r— 1) (xg —r — 1)P2,

and then, applying Theorem 3.1 in (54) we get

)IHY (2 ) (2 )i (o) B2, (a2 e D=1 ) (55)

3120 js=0 1=0 J2
p1 P2 Jitj2 D D N
2 . .
=SS (M) (%) B = DB (2~ DSG a1 D1
j1=0j2=0 [=0

= T!Bz(jfl)(l'l —r— 1)31512“2)(202 —r—1),

where 7 is an arbitrary non-negative integer.
Now let us consider the difference

Bko) (x1+r,xe+71) — B ko) (21, z2), (56)

Pp1,p2 p1,p2

where 7 is an arbitrary positive integer. In the case ky = 1, we know that (56) is equal to
(see [16])

r—1 r—1
prY (@t (@ + 87 e Y (1) (1) (57)
t=0 t=0

We can use (26) to write (56) as

p1 p2

S5 (M) (%) (w0 sy B, — B, 69
71=072=0
p1 p2 p D k
1 2 —j —J
=22 @) (y) (o147 =y (e +r =y 2B, (1)
§1=0 j2=0
— (21 — 2P @y — )P B (Z)> ’

Ji+j2

where y and z are arbitrary parameters. If kg = 1, we have from (57) and (58) that

p1 P2
> (?1> (p?) (w1 49 (g + )P — a0 ™) By, (59)
1

71=0 j2=0 J2
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p1 p2
=S (M) (= e 0 B
Jj1=072=0
_(xl - z)pl_h <x2 - Z)pZ_jZBJd-I—Jé(Z))
r—1 r—1
=p1 Y (w2 + 02 (m + P e Y (P (1)
t=0 t=0

By using Theorem 3.1 in (59) we get

S S (M) (%) (Bl o+ B ) B B ) B (@0

71=0 j2=0
P12
P1\ [ P2 ko
_ZZ< )( )( z(n )]1(x +7r— y)BZ(22 )m(xg—i—r y)Bj1+j2<y)

71=0 j2=0
k k
_Bzgll—)jl (21 — Z)Bz()22—)j2 (22 — Z)Bj1+j2(2))

—m X:B;1 V) (w1 + ) B (2 + 1) +pQZB<’“1>x +t)BY) (25 + 1),

p2—1

Set (y,z) = (r,r),(r,0),(0,—r),(2r,r) in (60), to obtain the following identities in-
volving poly-Bernoulli polynomials, standard Bernoulli polynomials and Bernoulli numbers

p1 p2
P1\ [ P2 k1 ) by .
Z Z ( ) ( ) <B;13j1 (I + T)BLL(’Q )j2 (‘T? + r) - Bl(Jljjl (Il)BI(DQ*)jz (ZL’2)> le-i—jz (61)

Jj1=072=0
She p p (k1) (k2) (k1) (k2)
1 2 k1 ko k1 ko
- Z Z (j1> (]2) (Bm—ﬁ(wl)sz—Jé ($2) - Bm—j1<x1 - T>Bp2 —J2 (1'2 - 7“)) Bj1+j2 (7“)
J1=0j2=0
p1 P2 p D
1 2 k k
=300 (M) () B e B ) (B~ By
Jj1=0 j2=0
- o P1\ (D2 k1) k2)
- Z Z (]1> (]2)31(711 J1 (.171 + T)BI(?;—JQ (1;2 + T) (Bj1+j2 - Bj1+j2(_r))
Jj1=072=0
- o P1\ (P2 k k
- Z Z ] ; BI(>11)J1 (:Bl - T)BI(&Q*)J& (‘r? - T) (Bj1+j2 (2T) - Bj1+j2 (T))
Jji= 0j2—0 J J2
—pz 50 (2, 4 ) BO) x2+t+p22 (21 + ) BY), (25 + 1),

4 Generalized recurrences

In this section we show two generalized recurrences for bi-variate poly-Bernoulli poly-
nomials, and obtain some consequences of them.
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Proposition 4.1. We have

q q
4q q
S () emr B = 3 () B ©)
=0 =0

p1+p2

S SEE ) C 1Ry

Y

—1, and for p > 0 the functions R, x(y) are defined recursively by

where R_1x(y) =

Rouk(y) =y(y+ 1 +2) Rucan(y) — (v + DM Rymanly + 1)
Proof. We prove that

q p1+p2

,T2,P2 (_1)ZZ'R - ,k(l)
Z( ) )4~ lBZElelI&(xl’xQ) S Z Sl 2 (py, k) q—1
=

T e i)

by induction on g. The case ¢ = 0 of (63) is the definition (16). Let us suppose formula
(63) is true for a given ¢ € N. Then

(63)

qg+1
+1
Z(ql >( 2p)at 1 gk) (21, 72)

p1+L,p2
1=0
q q q .
= —1 Z <l>( )4 lB,glle o (T1,T2) + Z (l)( )7 legllepg(ﬂ?hxz)
1=0 1=0
P1 l p1+1 !
22,92 —1)"NR g1 k(1 .pa —DUIR 1 x(1

=2 Z Sllxl P (ph l)( )+1 q l,k(k) . Z Slljaclm (P1 + 1, l)( ) q 1,k( )

=0 (Hg=1 (I + Z)) 1=0

(I + )"

Now we use the recurrence (12) to write

q+1
+1
Z(ql )( w) B, (2, )

p1+1,p2
=0
p1 l
. —D)UR, (1
— Y sy, o R
1=0 (ITZ (+4))
pi+1

T T ZZ'R :
NG S (pr, 1= 1) + (1 21) 51227 (g, 1)) D Rt
(T + i)

Some further simplifications give us

q+1
+1
Z(ql )< w) B, (w1, 1)

p1+1,p2
=0
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p1+1 l

r X2,P2 - Z'R _ l
:_Z(Slly’xf’m(pl’l_1)+l511x1p (p 171)) ( 11 q 1(})€
- (T + 1)

L ( D'+ D)IRy-1( l+ D ot 5 ( DR -1(1)
= Sl xf p2 1 S]_ , L1 P 1 \\ k
Z (I (0 +i+ 1)) Z (Hq+1 (1 +1))
(-1
(TIZ2(1 + 1)

- —ZS%;”;“” pul) (1 +q+ 2 Rya (D) = 1+ 1Ry (14 1)) :

L ( )I'R (l)
- = Sl x12 P2 2 )

as desired. The proof of

q p1+p2
q) ( )q ZB( ) I 1,29 p2 ( ) Z'Rq 1 k(l)
Z 1,p2+I\ "L x2 Z Sl \T1 k)
P (l prp (Hq+1( >)

is similar. O

For example, we have
Rox(y) = (y + D —y(y +2)%,

Rin(y) = Qy+ Dy + 1 (y+3)F =y +2) (y+3) — (y+ D" (y+2)"", (64)
and then, formula (62) with ¢ =1 is

_xlBI(?]f?pz <:U1’ x2)+BJ£]1€2&-17p2 (‘Tl’ :UZ) = _xQBlgl)Pz (1'1, x2) + B(1)p2+1(x17 1’2) (65>
B p1+p2 Sl . p2 1 ll' [+1 [
__Z L yi (l+2)’“_(l+1)k ’
and with ¢ = 2 is
sz;r(Jlf)pz (331’ x2) - Qxle(olle-l,pz (xlv x2) + B(12i-2p2 (3:‘1, ‘T2> (66)
o x2BZ(31)p2 (1;1’ xQ) o 2$QBI(717)192+1($17 $2) + Bz(n?p2+2(xla 932)
__g%suwg oy (@D B+ 1)(+2)
N o N (+2)F (+0F 3k )

We can write (62) by using (26) as

i( ) )" IPIZHPZQ (p1+l>( )( vy — )" T 2y — ) B () (67)

=0 J1=0 j2=0
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q q p1 p2tl D 2+l ' k
%) xwzz@lx Ry
1=0

Jj1=0j2=0

. pi? Sl , L2 p2 ( ) “Rq—Lk(Z)
1,z1 i k
(H"ﬂ1 (1 +1))

By setting y, z = x1, 25 in (67), we get the identities

> () ‘”Z(“) R B )

() (pl ) 1= B, o)
-3 (1) <p2 . l) 2 =) R B )
-3 () ‘”]ZO( Yo 2B

- _iij§2 <p1)( ) 1 jlxm ]QSU& + J2, 1) (( DUR, 1k(l)

J1=0 j2=0 1=0 Hq+1(l+@))

If we set 25 = 0 in (68), we get

q
q [ p2 2—72 ()
S (D)t 3 (B o
=0 J2=0
q p1+l
q _ PLHD\ i (k)
=3 (§) ey (M s,

=0 71=0
T (pa+q )
2
- Z ( j )< x )p2+q ]2Bp1+12(x1)
j2=0 2
z P i (k)
- ( )le71 JlBj1+p2+q
Jj1=0 J1
p1+p2 Z'R I
_ 51704)2 (pl l) ( ) q— 1k( )
- 1,21 )
1=0 ( T+ ))

The case ¢ = 0,21 = 1,k =1 of (69) reduces to

p2 P
D2 D1
(_1)p1+p2 Z (j2>Bp1+j2 - Z ( : )Bj1+p2

j2=0 im0 M1

(69)

(70)
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P

- 25 (o B

Formula (70) is the famous Carlitz identity [4]. In terms of bi-variate Bernoulli poly-
nomials, Carlitz identity is written as

Bpl,m(l? 0) = (_1)pl+prp1,P2 (07 1)' (71)

For example, we can use (71) to write the following version of (62) in the case k = 1,
when 1 =0,z = 1

Xq: <?) (=)' By 115,(1,0) = (—1)p1+p2+qzq: (?) By +1,(0,1)

=0 =0
Bpl,pz—&-q(la O) = ( 1)p1+p2+qu1 p2+q(07 1)

_ _p§2810p2 ( 1)ll!’Rq—l,l (l>
ST

or, explicitly

5 (e

=0 Jj1=0

q D2
q p
_ (_1)p1+p2+q E (l) E (]2) By 414

=0 J2=0
. p p2+q p _|_ q
, 2
= ( . )Bj1+p2+q = (=) Z ( ‘ )Bp1+j2
) N J2=0 /2
o " (—1)'N"Ry-1,(1)
_—ZZ S(j1+ p2.1) ALy
1=0 j1=0 = (1)

It is easy to check that in the case k = 0, the functions R, (y) of Proposition 4.1 are
R,o0(y) = (—1)*. Thus, the case k = 0 of (62) is the case r = 0 of (30). Also, in the case
k = —1, we have that R, _1(y) = %, and then the case k = —1 of (62) is the case
r =1 of (30).

Proposition 4.2. For non-negative integers py, pa, q we have

q . 1 d! q—1
Z(_l)le(nll,m (21, x9) lldad H x1 + 1) (72)
=0 i=
q 1 91
1 d
=N (=1)'BY (a1, w0) =~ [ [ (22 + )
prp2tl ! dat
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+
' 1 :L“2+qp2 ( ) (l + q)

Z Stzrtq )m

Proof. We prove that

q q—1 p1+p2
1 d (=D (1 +q)!
-1 ZB(k) - Sl $2+qp2 l
;( ) m,,pz(xl,:cg)“dxll g(x1+ Z Pz (p, ) ISR (73)

by induction on ¢. The case ¢ = 0 of (73) is the definition (16). If we suppose that (73) is
true for a given ¢ € N, then

q+1 ®) 1 dl q
IZ(_1>pr1+l,p2(xla xQ)ﬁd_xll H(l"l + 1)
=0 i=0
q+1 1 d q—1
k .
= Z( 1) B;(n)ﬂ (@1, 22) 7= | (@1 + @) | [ (21 +9)
— M dxy Pl
- *) 1 v d'
= Z<_1)ZBP1+17P2 (331, .TQ)ﬁ <(331 + (])w (.2131 + Z) + ZT H(ﬂfl + Z))
1=0 ) 1i=o0 T1 2o
q . 1 d q—1
= (21 +q) Z( 1) Bf,llz o (T1, $2)ﬁd—x,1 (z1+1)
1=0 i=0
q+1 * 1 dl_l q—1
+) (1) BmHm(:cl,xQ)—(l T [ +9)
I=1 LS B
q . 1 91
= (21 +q) Z( 1) Bf,lll o (T1, wQ)ﬁd_xll H(fﬁl +1)
1=0 i=0
1 d ,
_Z p1+1+lp2($1,$2)ﬁd—xll (l'l"‘l)
’ i=0
p1+p2 l
“1)' (I +q)!
x + Slf2+qp2 l (
1+4) Z Lai+q )(l+q+1)k
1+ 2+1
P& 1x2+qp2 (_1)l (Z+Q)'
Z Sl ,T1+q l) k
(I+q+1)

Now we use the recurrence (12) and formula (11) to write

q+1 1 dl q

Z(_l)pr1+lp2 X1, To)— e 1;! x1 +1)
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p1+p2
T24¢,p2 (— ) (I+q)!
= (21 +¢) Z Siarta™(p )m

P1+p2+1 l
2 2 s L2 2 _]. l+ ‘
— > (SEEEP (p, L— 1) + (L4 31+ @) ST (pa, 1) D+

— (l4+q+1)*
p1+p2+1
—1'(l+q)!
=~ S (py, 1 = 1) + 1SHE1% (o1, 1) &
ZZ(; ( L,x1+q 1 1, x1+q 1 ) (l+q+1)k
pl—§+l Sl ,x2+q+1 p2 pl 1) (_1)l(l + Q)'
1,z1+q+1 ) (l + q + 1)k
:P§2 Sl x2+q+1p2(p l) (_ ) (l+Q+ 1)'
=R
as desired. The proof of
q - p1+p2
1 d (—=1)'( + q)!
_1)p® ) + glzata, P2 ( :
;( ) p1,p2+l (21, 72) Nd éll g +1) Z Lzi+g 1,0) (I+q+1)F
is similar. n
Formula (72) with z; = 0,25 = 1 looks as
q q
Do (U's(@.0B,,000) = Y (-U's(g+ LI+ DB, 0.1 (T4)
1=0 =0

1+p2
- pzp Sparie ’)M

(I+q+1)"

or, explicitly

i(—l)ls(q,l) pz (p?) BY,.. = i(—l)ls(q + 1,0+ 1)% (p2 + l) BY . (75)

1=0 om0 \J2 1=0 o \ J2
pit+p2 p1 P2

S S () () vrst TR

=0 j1=03j2=0

If we set k =1 in formula (74), we can use Carlitz identity (71) to write the following
enriched version of (74)

q q

Z(_l)ls(%l)Bpﬁrl,pQ(O?1) = (_1)p1+p2ZS(QJ)Bpﬁrl,pQ(LO) (76)

=0 1=0
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q

= D (=1)'s(g+ 1,1+ 1)By, 4,41(0,1)
=0

q
= (=Lt Z s(qg+ 1,1+ 1)By, p,11(1,0)
=0

- p§2 shationy, l)(_1)l(1+q)!
ha o l4q+1

)
=0

or, explicitly

S se. )Y (f) Byt (77)

=0 72=0

q p1
= (=17 Cs(g L1+ 1) ) (?1) B, pysi
1

=0 71=0
p1 p2 Jitj2

=33 (M) () ok v+ s S

71=072=0 [=0

To end this section, let us consider the case ¢ = 1 of the first two lines of (72). That is
k
Bigl p2+1($1’ l’z) - B}(hzrl,pz ($1, 172) = ($2 - xl)Bgf,)pg (xlﬂ 1’2). (78>

Formula (78) is the first step of two results contained in the following proposition.

Proposition 4.3. We have the following identities:
a)
- )
3 (1) 1Bt ) = o B ). ()
j=

b)
S (0 0
(j) (22 — 1)’ Bp1+q —j.p2 (21, 72) = Bpl,p2+q($17$2)- (80)

J=0

Proof. Let us prove (79) by induction on ¢q. The case ¢ = 0 is a trivial identity. Let us
suppose that (79) is true for a given ¢ € N. Then

g+1 g1
(k)
Z( ; )( 1)]BP1+]102+Q+1 ]($1’w2>

=0~/
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SO+ (1) Bt

_ q (k) 1 (k)
= <]-)(_1) Byt jpatari—i (1,2 +Z( ) U/ By 1 pora—i (1, 72)
j=0
= (22— 21)"BY) 1 (01,05) — (w2 — 21)1BY, (21, 22)
k k
= (22 = 2)" (BYpper(w1,3) = BiY, 1, (01,22) )
= (ZL‘Q )q+1B]()1)p2 (:L‘l, x2)7

as desired. In the last step we used (78).
Now let us prove (80). Again we proceed by induction on ¢q. The case ¢ = 0 is a trivial
identity. Let us suppose that (80) is true for a given ¢ € N. Then

q+1
q+1 "

Z( J >(x2 1)’ Bzg1+q+1 ]p2($1,$2)
7=0

q+1 q .

i p(k
2 ((y) " <j - 1)) (2 = 21V By g1y (01, 72)
=0

q q
q i ok q k
- (]) (22 — xl)sz(nquJrlfj,pz (21, 2) + Z (j)< L2 = )]—HBISIZFQ —j.p2 (21, 22)
0

J=0

k k
= B3t prg(@1,m2) + (w2 — 31) Bl 1 (11,72)

k
]()1)p2+q+1(l‘17 ZEQ)

Il
Sy

as desired. We used (78) (with p, replaced by ps + ¢) in the last step. O
The case p; = 0 of (80) is

q
k
Z < ) Ty — X1) ]Bé )]m(;z:l,xg) = Bz(mzrq(@). (81)
j=
The case py = 0 of (81) is the addition formula for standard poly-Bernoulli polynomials,
namely
q
Z( ) 25— 2) BY (21) = B ().
j=
The case p; = py = 0 of (79) is

zq: (q) (=1)'BE (21, 25) = (5 — 21)". (82)

=0
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As a final comment, we mention that by considering the GSN S&’f’m)"“’(l’m”’p") (p1, k)

involved in the expansion

p1t-+pn
(1,z2,p2) 5+, (1,Zn,pn m
(Mt () =Y NG an) ) ) (z> (83)
1=0
where pq, po, ..., p, are non-negative integers %1ven one can define poly-Bernoulli polyno-
mials in n variables x4, ..., z,, denoted as Bp1 (X1, X)), as
p1+-+pn 17
k (L,22,p2),+,(1,Tn,pn) (=1
B (1, .. Z Strere) (p1,7) 5

or explicitly as

B®) (xy,... 1)

P1,---sPn
pi++pPn P1 Pn (

. —1n
h Pn pP1—J1 pn—jnS . . ( 1) !
i e + o4 m[ - 7
]1) (]n)$1 T (]1 J ) (l+ 1)k

p1 Pn P ()
1 n n—Jn k
B 3 (3 B (A PR
=0 i —0 J1 In

In=

In this more general setting we have natural generalizations of results (62), (72), (79)
and (80). We show the corresponding results in the case of poly-Bernoulli polynomials in
3 variables:

p1 p2 p3
k P1\ (P2 (D3
Btz =30 5257 (0 (5) (ot o B

J1=0 j2=0 j5=0 ]3

(a) (See (62)) We have the generalized recurrences

q
q
Z <l)( )q lBPl—sz p3<x1’x2’x3)
k)
N Z ( ) ) lBIS1 pz-i—lps(xl’x%x?’)
B

q 1k
B (l)(_m?’)q lBlgl?pz,pa—H(xlaxzaxs)

=0

pit+p2+ps p1 p2  P3
2 R () ) (e
J3

(— wwakm)
(It +4)" )

xS(j1 + j2 + Js, 1)

where R,_1 x() is defined in Proposition 4.1.
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(b) (See (72)) We have the generalized recurrences

q s )
1
k
Z(_l)lBl(’lzrl P2 p3($1,x2,mg)l‘ dr l H 1+ 1)
=0
1
) 1 d T .
o Z B;I p2+lp3(mlax27x3>ﬁ@ H(ZEQ +Z)
1 d

(k)
_Z Bp1p2p3+l($17$2,9€3 N de z H T3+ 1)

J3

=SS (M) () (%) v g

Jj1=0 j2=0 53=0

xS(j1 + g2 + 73, 1)

(c) (See (79)) We have the identities

(d) (See (80)) We have the identities

q
q k)
Z (]) (21 — o)’ Bz(n P2+q—3.p3 (1, T2, 73)

j=0
~ (7 i k)
= Z <]> (21 — z3)’ By s pata—j (L1, T, T3) =

J=0

q
q k
(]) <x2 B 1131) Bl(hzrq J>D2,P3 (xl’a:?’ 1'3)

q
q
- Z < > (x2 B )] BZ(’l)m p3+q—j <x17x27x3)

q
q i ok
() (—1Y B imsray (T1.72,73) = (25— 20)"
k q i ok
Z ( ) (=1) BI(’lerpz DP3+q—j (1,22, 23) = (23— 21)"

q
q i ok
> <> (=17 BY, sy iaims (11, 72,73) = (22— 21)

(I +q+1)F

(k)
Bpl 1P2,P3 (w1, 22, 23)

k
Bl(h?pz,pg (3717 T, 1'3) )

7 (k)
Bpl ,P2,P3 (x17x27x3)'

<—1>l<z+q>!) |
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(k)
Bpl+q7p27p3 (xla T, ZL’3) .

B0

p1,p2+4,p3 (xh T2, 5173) .
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[}
N
(S

q ik
) (1'3 — fL‘l)j B;lquj’p%ps (xla X2, 1'3)

J=0

q
q i ok k
- Z <]> (s = $2)] Bil(il,)p2+q—j,p3 (w1, 2, 33) = BZEI?P%PS‘H] (w1, 2, 73) -
j=0
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