
Communications in Mathematics 31 (2023), no. 1, 205–220
DOI: https://doi.org/10.46298/cm.10336
©2023 Astha Chauhan and Rajan Arora
This is an open access article licensed under the CC BY-SA 4.0

205

Application of homotopy analysis method (HAM) to the
non-linear KdV equations

Astha Chauhan and Rajan Arora

Abstract. In this work, approximate analytic solutions for different types of KdV
equations are obtained using the homotopy analysis method (HAM). The conver-
gence control parameter h helps us to adjust the convergence region of the approx-
imate analytic solutions. The solutions are obtained in the form of power series.
The obtained solutions and the exact solutions are shown graphically, highlighting
the effects of non-linearity. We have compared the approximate analytical results
which are determined by HAM, with the exact solutions and shown graphically with
their absolute errors. By choosing an appropriate value of the convergence control
parameter, we can obtain the solution in few iterations. All the computations have
been performed using the software package MATHEMATICA.

1 Introduction

Many nonlinear physical phenomena arise in various fields of engineering and science
such as fluid dynamics, nuclear reactor dynamics, plasma physics, biology, optical fibres
and solid state physics. To describe these complex physical phenomena, nonlinear differen-
tial equations play a significant role. Therefore, obtaining the solutions of these nonlinear
equations is a topic of great interest in the study of many fields of science. To better
understand the working of the physical problem, mathematical model came into picture
in the form of nonlinear PDEs. The solutions of partial differential equations give the de-
tailed summary about the nature of phenomena involved. Many numerical and analytical
methods have been derived to deal with these kind of scientific problems.
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We need to adopt an effective and powerful method to investigate such type of math-
ematical model which gives the solutions upholding to physical reality. In most of the
analytic techniques, linearization of the system is the main topic to focus on, and also, it
is assumed that the nonlinearities are relatively insignificant. Sometimes, these assump-
tions made a strong affect on the solutions in respect to the real physics of the phenomena
involved. Thus, finding the solutions of nonlinear ODEs and PDEs is still a significant
problem. For this, we need new techniques to develop approximate and exact solutions. In
the recent years, many powerful methods such as differential transform method [7], Ado-
mian decomposition method [1], [3], Homotopy perturbation method [6], [2], Variational
iteration method [10], Modified variational iteration method [8], F-expansion method [9],
Hirota bilinear method [28], G’/G-expansion method [11], tanh-coth method [13], Lie sym-
metry method [26],[30], [29], [32], B-spline collocation method [31] are used to determine
the approximate or exact analytical solutions of nonlinear PDEs.

One of the powerful and important methods for solving nonlinear problems is the ho-
motopy analysis method (HAM). To propose a general analytic method for nonlinear prob-
lems, Liao [14]) first proposed the idea of the homotopy in the field of topology, called as
Homotopy Analysis Method (HAM) [4], [16], [14], [15]. Whether small parameters exist or
not, the validity of the HAM is independent due to the homotopy. Therefore, the homotopy
analysis method can overcome the limitations and restrictions of perturbation techniques
(see [5], [17]). The HAM provides the valuable series solution with minimum number of
calculations and avoids the discretization of domain and unrealistic assumptions. These
series solution expressions always exist in terms of parameter h. The convergence region
and the convergence region for every solution can be obtained easily by the parameter h
which is called the convergence control parameter.

In this paper, our aim is to solve KdV equations of fifth-order by using HAM. The
general form of KdV equation can be written as follows (see [20], [19], [18]):

ut ± u5r = F (r, t, u, u2, ur, u2r, u3r). (1)

where u(r, t) is the function of r and t, which represent the space and time variables,
respectively. The KdV equation generally occurs in the theory of shallow water waves
[21] and magneto-acoustic waves [22] in a plasma. Researchers have studied the travelling
wave solutions of fifth-order KdV equations over the last decades which do not vanish on
infinity. The KdV equation has been the topic of extensive research in recent years [23],
[20]. We have considered the following three well-known forms of the KdV equation (see
[24]):

ut + ur + u2u2r + uru2r − 20u2u3r + u5r = 0, (2)

ut + uur − uu3r + u5r = 0, (3)

ut + uur + u3r − u5r = 0, (4)

Eqs. (2) and (3) are known as KdV equations and Eq. (4) is known as Kawahara equation.
The research paper is arranged as follows: Basic idea of HAM is presented in brief in

section 2. In section 3, the proposed method is applied to obtain the solutions of three
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different types of KdV equations of fifth-order with the initial conditions. In section 4, the
convergence of the obtained solutions are discussed. A comparison is made between the
exact solutions and obtained solutions. Absolute errors of the solutions are shown in the
Tables 1, 2 and 3. In the last section, a short summary of results is presented.

2 Basics Concepts of Homotopy Analysis Method

We consider the nonlinear differential equation given as follows:

M [u(r, t)] = 0, (5)

where M is a non-linear operator.
Let θ be a homotopy parameter and ξ be a function of θ, then we have

Dn(ξ) =
1

n!

∂nξ(r, t; θ)

∂θn

∣∣∣∣
θ=0

, where n ≥ 0, (6)

where Dn(ξ) denotes the nth-order homotopy derivative of ξ (see [14]). Now, the deforma-
tion equation of zero-order is constructed as:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ~H(r, t)M [ξ(r, t; θ)], (7)

where N is the auxiliary linear operator, ξ(r, t; θ) denotes an unknown function, ~ is a
non-zero auxiliary parameter, θ is an embedding parameter whose value lies in the interval
[0, 1], H is a non-zero auxiliary function and u0 is the initial guess of u.
Now, the function ξ(r, t; p) is expanded in the Taylor’s series about p = 0 in the following
manner:

ξ(r, t; θ) = u0(r, t) +
∞∑
n=1

un(r, t)θn, (8)

where
un(r, t) = Dn(ξ). (9)

If we properly select the value of auxiliary parameter ~, initial guess u0, non-zero auxiliary
function H and auxiliary linear operator N , then the series (8) converges for θ = 1. Now,
after some manipulation, we get the nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ~HRn(un−1, r, t), (10)

where

Rn(un−1, r, t) = Dn−1(M [ξ(r, t; θ)]) =
1

(n− 1)!

∂n−1ξ(r, t; θ)

∂θn−1

∣∣∣∣
θ=0

(11)

and

σn =

{
0, n ≤ 1;
1, n > 1.
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Figure 1: The h-curve for Eq. (12) obtained by the third order approximation.

Now, the components un(r, t) for n ≥ 1 can be calculated from Eq. (10) with the initial
conditions of the original problem.

It is worth noting that we have a liberty to choose the value of the parameters ~ and
M in the HAM, which provides a simple way to select and adjust the rate of convergence
of the approximate analytic solution.

3 Applications of HAM

Example 3.1. We take the following fifth-order KdV equation:

ut + ur + u2u2r + uru2r − 20u2u3r + u5r = 0, (12)

with initial condition

u(r, 0) =
1

r
, (13)

The exact solution of the Eq. (12) is as follows:

u(r, t) =
1

(r − t)
. (14)

Now, for applying HAM to the equation Eq. (12), we define the following linear operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (15)

having the property N [c] = 0,( c = constant). With the help of Eq. (12), we define
non-linear operator M such that

M [ξ(r, t; θ)] = ξt + ξr + ξ2ξ2r + ξr ξ2r − 20ξ2ξ3r + ξ5r. (16)

With the help of above equation, we construct the zero-order deformation equation as
follows:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ~H(r, t)M [ξ(r, t; θ)]. (17)
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Figure 2: Solution profiles of the equation (12): (a) approximate solution (b) exact solution
(c) absolute error |uexact − uapprorimate|.
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Figure 3: The h-curve for Eq. (21) obtained by the 5th order approximation.

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and
ξ(r, t; 1) = u(r, t), respectively.

Differentiating the deformation Eq. (17) n-times with respect to θ, we obtain the nth-
order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ~H Rn(un−1), (18)

with the initial condition un(r, 0) = 1
r
, where

Rn(un−1) =
∂un−1
∂t

+
∂un−1
∂r

+
n−1∑
k=0

n−1−k∑
j=0

ukuj
∂2un−1−k−j

∂r2

+
n−1∑
k=0

∂uk
∂r

∂2un−1−k
∂r2

− 20
n−1∑
k=0

n−1−k∑
j=0

ukuj
∂3un−1−k−j

∂r3
+
∂5un−1
∂r5

. (19)

For convenience, we select the value of the auxiliary function H = 1 and parameter ~ = h.
Therefore, the solution of the deformation equation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).

The third order approximate series solution of equation (12) is as follows:

u(r, t) =
3∑

k=0

uk(r, t)

=
1

r
− h3t

r2
− 3h2t

r2
− 3ht

r2
+

2h3t2

r3
+

3h2t2

r3
− h3t3

r4
. (20)

Example 3.2. We take the following fifth-order KdV equation:

ut + uur − uu3r + u5r = 0, (21)
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with initial condition
u(r, 0) = er, (22)

The exact solution of the Eq. (21) is given by

u(r, t) = er−t. (23)

Now, for applying HAM to the differential equation Eq. (21), we define the following linear
operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (24)

with the property N [c] = 0,( c = constant). With the help of Eq. (21), we define non-linear
operator M such that

M [ξ(r, t; θ)] = ξt + ξξr − ξξ3r + ξ5r. (25)

With the help of above equation, we construct the zero-order deformation equation as
follows:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ~H(r, t)M [ξ(r, t; θ)]. (26)

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and
ξ(r, t; 1) = u(r, t), respectively.

Differentiating the zero-order deformation Eq. (26) n-times with respect to θ, we obtain
the nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ~H Rn(un−1), (27)

with the initial condition un(r, 0) = er, where

Rn(un−1) =
∂un−1
∂t

+
n−1∑
k=0

uk
∂un−1−k
∂r

−
n−1∑
k=0

uk
∂3un−1−k
∂r3

+
∂5un−1
∂r5

. (28)

For convenience, we select the value of the auxiliary function H = 1 and parameter ~ = h.
Therefore, the solution of the deformation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).

Hence, the 5th order approximate series solution of equation (21) is obtained as

u(r, t) =
5∑

k=0

uk(r, t)

= er + 5erht+ 10erh2t+ 10erh3t+ 5erh4t+ erh5t+ 5erh2t2 + 10erh3t2

+
15erh4t2

2
+ 2erh5t2 +

erh3t3

3
+

5erh4t3

2
+ erh5t3 +

5erh4t4

24
+
erh5t4

6
+
erh5t5

120
.

(29)
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Figure 4: Solution profiles of the equation (21): (a) approximate solution (b) exact solution
(c) absolute error |uexact − uapprorimate|.
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Figure 5: The h-curve for Eq. (30) obtained by the 3rd order approximation.
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Example 3.3. We consider the following fifth-order KdV equation

ut + uur + u3r − u5r = 0, (30)

with initial condition

u(r, 0) =
105

169
Sech4

[
1

2
√

13
(r − a)

]
, (31)

The exact solution of the Eq. (30) is given as follows:

u(r, t) =
105

169
Sech4

[
1

2
√

13
(r − 36t

169
− a)

]
. (32)

Now, for applying HAM to the equation Eq. (30), we define the following linear operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (33)

with the property N [c] = 0, (c = constant). With the help of Eq. (30), we define non-linear
operator M such that

M [ξ(r, t; θ)] = ξt + ξξr + ξ3r − ξ5r. (34)

With the help of above equation, we construct the following zero-order deformation equa-
tion:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ~H(r, t)M [ξ(r, t; θ)]. (35)

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and
ξ(r, t; 1) = u(r, t), respectively.

Differentiating the zero-order deformation Eq. (35) n-times with respect to θ, we obtain
the nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ~H Rn(un−1), (36)

with the initial condition un(r, 0) = 105
169

Sech4

[
1

2
√
13

(r − a)

]
, where

Rn(un−1) =
∂un−1
∂t

+
n−1∑
k=0

uk
∂un−1−k
∂r

+
∂3un−1
∂r3

− ∂5un−1
∂r5

. (37)

For convenience, we select the value of the auxiliary function H = 1 and parameter
~ = h. Therefore, the solution of the deformation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).
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Figure 6: Solution profiles of the equation (30): (a) approximate solution (b) exact solution
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Hence, the third order approximate series solution of equation (30) is obtained as

u(r, t) =
3∑

k=0

uk(r, t)

=
315

676
Sech6

[
r − 2

2
√

13

]
− 408240

62748517
h2t2Sech6

[
r − 2

2
√

13

]
− 272160

62748517
h3t2Sech6

[
r − 2

2
√

13

]
+

105

676
Cosh

[
3(r − 2)

2
√

13

]
Sech7

[
r − 2

2
√

13

]
+

204120

6748517
h2t2Cosh

[
3(r − 2)

2
√

13

]
Sech7

[
r − 2

2
√

13

]
+

136080

6748517
h3t2Cosh

[
3(r − 2)

2
√

13

]
Sech7

[
r − 2

2
√

13

]
− 11340

28561
√

13
htTanh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
− 11340

28561
√

13
h2tTanh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
− 3780

28561
√

13
h3tTanh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
+

8981280

10604499373
√

13
h3t3Tanh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
− 11340

28561
√

13
htCosh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
Tanh

[
(r − 2)

2
√

13

]
− 11340

28561
√

13
h2tCosh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
Tanh

[
(r − 2)

2
√

13

]
− 3780

28561
√

13
h3tCosh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
Tanh

[
(r − 2)

2
√

13

]
− 3265920

10604499373
√

13
h3t3Cosh

[
(r − 2)

2
√

13

]
Sech6

[
r − 2

2
√

13

]
Tanh

[
(r − 2)

2
√

13

]
. (38)

4 Convergence Analysis and Numerical Solution

Here, we calculate the numerical results and absolute errors from third to fifth order
approximations. The Absolute error is defined as:

En = |uexact −
n∑
k=0

uk|. (39)

The approximate series solutions of the Eqs. (12), (21) and (30) are given by Eqs. (20),
(29) and (38), respectively. The convergence of these obtained series solutions by the HAM
strongly depend upon the value of the parameter h, called h-curve. The h-curves obtained
by the HAM for selecting the range of values of h, which is admissible to our problem, are
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t x E3 E4 E5

2 3.289474E-6 1.644737E-7 8.223684E-9
0.1 4 1.001603E-6 2.504006E-9 6.260020E-11

6 1.307805E-8 2.179675E-10 3.632789E-12
2 2.977941E-4 4.466912E-5 6.700368E-6

0.3 4 8.551520E-6 6.413640E-7 4.810230E-8
6 1.096491E-6 5.482456E-8 2.7412281E-9
2 2.604167E-3 6.510417E-4 1.627604E-4

0.5 4 6.975446E-5 8.719308E-6 1.089913E-6
6 8.768238E-6 7.306865E-7 6.0890541E-8

Table 1: Comparison of absolute errors between the exact solutions and approximate
solutions of 3rd, 4th and 5th order of equation (12) obtained by HAM for h = −1 and
different values of t and r.

t x E3 E4 E5

-2 5.528044E-7 1.109263E-8 2.652004E-12
0.1 -4 7.481430E-8 1.500865E-9 3.588969E-13

-6 1.012502E-8 2.031120E-10 4.857226E-14
-2 4.306649E-4 2.609172E-6 5.659489E-9

0.3 -4 5.829181E-6 3.523471E-7 7.659286E-10
-6 7.888936E-7 4.768494E-8 1.036572E-10
-2 3.199317E-4 3.250396E-5 1.973652E-7

0.5 -4 4.332475E-5 4.372223E-6 2.671048E-8
-6 5.863368E-6 5.917160E-7 3.614871E-10

Table 2: Comparison of absolute errors between the exact solutions and approximate
solutions of 3rd, 4th and 5th order of equation (21) obtained by HAM for h = −1 and
different values of t and r.

t x E3 E4 E5

2 1.103910E-10 5.551115E-16 4.440892E-16
0.1 4 2.344447E-11 2.745581E-13 3.330669E-16

6 5.741696E-11 3.574918E-14 2.220446E-16
2 8.941089E-9 6.286083E-13 6.286083E-13

0.3 4 1.943460E-9 6.669609E-11 6.805667E-14
6 4.644709E-9 8.9594445E-12 3.149486E-13
2 6.898125E-8 1.347233E-11 1.347233E-11

0.5 4 1.553945E-8 8.582410E-10 1.398881E-12
6 3.578978E-8 1.181518E-10 7.344014E-12

Table 3: Comparison of absolute errors between the exact solutions and approximate
solutions of 3rd, 4th and 5th order of equation (30) obtained by HAM for h = −1 and
different values of t and r.
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Figure 7: The results obtained by HAM for different values of h for Eps. (12), (21) and
(30) as figure (a), (b) and (c), respectively; black line for h = −0.1, red line for h = −0.01,
purple line for h = −1 and blue line for exact solution.
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shown in Figures 1, 2 and 3. In Figures 1, 2 and 3, we have taken the convergence region for
which the h-curve is parallel or almost parallel to the h-axis. So, we have taken h = −1.0
for our analysis as this is the most suitable value for our problems. We should note that if
we choose an appropriate initial guess and linear operator, then by only few terms, we can
get accurate approximations. However, if the the auxiliary linear operator and the initial
guess are not good enough but reasonable, still we can get convergent solutions by properly
selecting the value of parameter h. Figures 7(a)-7(c) show the results obtained by HAM
for different values of parameter h. Here, blue line shows the exact solution while black,
red and purple lines show the approximate solutions for h = −0.1,−0.01,−1, respectively.
We can see that h = −1 is the best value of h as for this value, our solutions converge to
the exact solutions.

For the analysis of our results, we have taken the value of constant a = 2 in Eq. (31).
We have compared our obtained approximate results with the known exact results given
by Eqs. (14), (23) and (32). The approximate solutions, exact solutions and absolute errors
for our problems are shown graphically in Figures 4, 5 and 6. On the basis of comparison
between obtained results and known results, absolute errors are shown by Tables 1, 2, and
3. From error analysis, we can conclude that our results are in good agreements with the
known results and have a very high accuracy. Also, it may be noted that as we increase
the order of approximation, accuracy of the solutions increases.

5 Conclusion

In this work, the HAM is applied to obtain the approximate analytical solutions of
three different types of KdV equations of fifth-order arising in many areas of science like
mathematical physics, fluid dynamics etc. Approximate series solutions are obtained by the
HAM. In Figures 4, 5 and 6, the approximate and exact solutions are shown together with
absolute errors. By the error analysis (see Table 1, 2, 3) which is made between known exact
results and obtained approximate results, it can be concluded that the obtained results
have a very high accuracy. On the basis of this study, we have found that the HAM is very
powerful and effective method in the numerical methods for solving non-linear PDEs as it
gives the liberty of controlling the rate of approximate series and the convergence region.
This method does not depend upon linearization or any kind of physically unrealistic
assumptions. The method is capable of reducing the volume of the computational work
and maintaining the high accuracy of the numerical results. Thus, it can be used to
solve other higher order nonlinear integer and fractional order equations. HAM has many
applications in the field of engineering, mathematical science and physics for solving a
large class of non-linear partial differential equations.
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