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Various notions of (co)simplicial (pre)sheaves

Timothy Hosgood

Abstract. The phrase “(co)simplicial (pre)sheaf” can be reasonably interpreted in
multiple ways. In this survey we study how some of these interpretations relate to
one another. We end by giving some example applications of the most general of
these notions.

1 Introduction

The phrase “simplicial sheaf” turns up in many different places in the literature, and it
is not immediately clear that it always has the same meaning. As just one example1, both
[10] and [7] use the phrase “simplicial vector bundle”, but the former means something like
“a cosimplicial vector bundle over a simplicial space” whereas the latter means something
more along the lines of “a strongly cartesian simplicial object in (the Grothendieck con-
struction of) the category of vector bundles” (to use terminology which will be introduced
in this present paper).

This survey intends to define the various notions of “(co)simplicial (pre)sheaf” known
to the author, and describe how these notions relate to one another. Some of this content
was already present in the appendices of [5], but what we present here is a more complete
version. We finish by giving some example applications of “simplicial sheaves” in their
various guises, with the hope that the most general notion (that of a sheaf on a simplicial
space) can prove to be useful outside of the relatively few applications (known to the
author) for which it is currently used. In the interest of readability, there are many
things that will not be discussed (generalisations to Grothendieck topologies, hypercovers,
descent, and so on).

In Sections 2 and 3 we give some basic definitions, and compare the resulting objects;
in Section 4 we describe how these objects arise from a relatively involved construction
that might be more familiar to algebraic geometers and algebraic topologists; finally, in
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1Appealing to the equivalence between vector bundles and locally free sheaves.

ar
X

iv
:2

20
5.

15
18

5v
2 

 [
m

at
h.

C
T

] 
 2

5 
Ja

n 
20

23



74 Timothy Hosgood

Section 5, we describe one “completely formal” application of these objects in complex ge-
ometry, and one “rather hand-wavy” application to certain string diagrams in (symmetric)
monoidal categories.

We are very thankful to Damien Calaque for his patient ear and wise words, and to
Vincent Wang-Maścianica, without whom Section 5.2 would not exist. We would also like
to thank the reviewer for their constructive comments.

1.1 Conventions and notation

• Unless otherwise stated, sheaves and presheaves are Set-valued (but, in general, most
of the constructions and results here will hold for sheaves of abelian objects).

• We write Space to mean some fixed category of suitably nice spaces (e.g. finite CW-
complexes, compactly generated topological spaces, Noetherian locally ringed spaces,
etc.).

• Throughout, let X be a space, and U an open cover of X. We denote by XU
•

the corresponding Čech nerve. We write Xop to mean the opposite of the poset
category of open sets of X (so that a “topological” presheaf on X is exactly a functor
Xop → Set).

• We denote by ∆ the simplex category, with coface maps f ip : [p − 1] → [p] and
codegeneracy maps spi : [p+ 1]→ [p].

• Given a category C, we write sC to denote the category [∆op,C] of simplicial objects
in C, and cC to denote the category [∆,C] of cosimplicial objects in C.

• We denote sheafification by (−)a. Given a category [Cop,D] of D-valued presheaves,
we write [Cop,D]a to mean the corresponding (sub)category of sheaves.

2 Sheaves

2.1 Simplicial sheaves

Definition 2.1. Let X be a space. A simplicial sheaf on X is either of the two following
equivalent things:

(i) a simplicial object in the category of Set-valued sheaves on X, i.e.

F• ∈ [∆op, [Xop, Set]a]

(ii) a s Set-valued presheaf on X that is a sheaf in each simplicial degree, i.e.

F• ∈ [Xop, [∆op, Set]] such that Fp ∈ [Xop, Set]a,

where the equivalence is given by [C, [D,E]] ' [C ×D,E] ' [D, [C,E]].
We can similarly define a cosimplicial sheaf on X as a cosimplicial object in the category

of Set-valued sheaves on X, i.e. F• ∈ [∆, [Xop, Set]a].
We denote the resulting category of simplicial sheaves on X by s Sh(X), and the cate-

gory of cosimplicial sheaves on X by c Sh(X).
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2.2 Sheaves on a simplicial space

Throughout, let X• ∈ s Space be a simplicial space. We start by giving a “naive” defi-
nition, as found in [4, Definition 0.C.4], before giving the “succinct” categorical definition,
as suggested to us by D. I. Spivak.

Definition 2.2. A sheaf on X• is the data of a sheaf Fp on Xp for all p ∈ N, along with
functorial2 morphisms

F•α : (X•α)∗Fp −→ Fq

for all α : [p]→ [q] in ∆. A morphism ϕ• : F• → G• between two such objects is the data
of a sheaf morphism ϕp : Fp → Gp for all p ∈ N such that the diagram

(X•α)∗Fp (X•α)∗Gp

Fq Gq

(X•α)∗ϕp

F•α G•α

ϕq

commutes for all α : [p]→ [q] in ∆.
We denote the category of sheaves on the simplicial space X• by Sh(X•).

Remark 2.3. Note that, although these sheaves live on simplicial spaces, they themselves
look more like cosimplicial objects, since they are covariant with respect to the simplex
category. As we will soon justify, however, they really are simplicial objects: the apparent
covariance comes from the fact that the space itself is contravariant with respect to the
simplex category, and the sheaf on the space is contravariant with respect to the space,
and “two ops make an id”.

Remark 2.4. We are being rather agnostic about the category in which our sheaves take
values, but one important thing to note is that Definition 2.2 involves pullbacks of sheaves.
If we are simply considering sheaves of sets, then this pullback is the sheaf-theoretic pull-
back, i.e. the inverse image f ∗ = f−1. If, however, we wish to consider “algebraic” sheaves
(such as the case where X• is a simplicial locally ringed space, and each Fp is a sheaf of
OXp-modules on Xp) then we need to use the “algebraic” pullback

f ∗(−) = f−1(−)⊗f−1OY
OX

in Definition 2.2.

Definition 2.5. We say that a sheaf F• on X• is strictly cartesian3 if the F•α are iso-
morphisms for all α : [p] → [q] in ∆, and denote the (sub)category of such objects by

2Meaning F•(id) = id, and F•(β ◦ α) = F•(β) ◦F•(α) for all α : [p]→ [q] and β : [q]→ [r] in ∆.
3[6] uses the terminology “strongly cartesian”.
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Shs. cart(X•); we say that it is (weakly) cartesian if the F•α are all weak equivalences (if we
are in a setting where this makes sense, such as when working with cochain complexes of
sheaves on X•, as in Section 4), and denote the (sub)category of such objects by Shcart(X•).

Remark 2.6. In Definition 2.2, we require functorial morphisms F•α for all morphisms
α : [p] → [q] in ∆, but in [4] these are only required to be given for all coface morphisms
α : [p]→ [q] in ∆+. This is entirely analogous to how a simplicial space X• has a geometric
realisation |X•|, given by a certain coend/quotient over all morphisms in ∆, but also a
fat geometric realisation ‖X•‖, where the coend/quotient only takes coface maps into
consideration (and is thus defined for mere semi-simplicial spaces). In good scenarios (i.e.
when X• is a good simplicial space), the natural morphism ‖X•‖ → |X•| is a homotopy
equivalence. One can imagine repeating all the statements in this current paper for semi-
simplicial sheaves, sheaves on semi-simplicial spaces, etc., and obtaining some similar sort
of equivalence result. We do not, however, concern ourselves with that here, although we
do work with such semi-simplicial objects (for mere convenience) in Section 5.2.

At a first glance, it seems like we cannot simply say that a sheaf on X• is a (co)simplicial
object in some category of sheaves, since each F p is a sheaf on a different space (namely
Xp). However, thanks to the Grothendieck construction we actually can write such objects
as simplicial objects in a single category. We follow [9] in calling the resulting category
the lens category.

Definition 2.7. Let F : Cop → Cat be a functor. We define the category Lens (F ) by the
following data:

• an object is a pair (c, x), where c ∈ C and x ∈ F (c);

• a morphism f : (c, x) → (c′, x′) is a pair f = (f0, f
]), where f0 : c → c′ in C and

f ] : (Ff0)(x′)→ x in F (c).

We denote by π : Lens (F )→ C the projection functor given by π(c, x) := c.

The prototypical lens category for us4 is given by the following example.

Example 2.8. The Grothendieck construction applied to the functor

Sh : Spaceop −→ Cat

X 7−→ Sh(X)

(f : X → Y ) 7−→ (f ∗ : Sh(Y )→ Sh(X))

gives us the category of “all (structure) sheaves on all spaces”: an object in Lens (Sh) is a
pair (X,F), where X ∈ Space and F ∈ Sh(X); a morphism f : (X,F) → (Y,G) is a pair
f = (f0, f

]), where f0 : X → Y is a continuous function and f ] : f ∗0G → F is a morphism
of sheaves on X.

4For others, it might be the category of polynomial functors, obtained by taking F to be the functor
Setop → Cat defined by X 7→ Set/X.
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We could further refine the above example, for instance, to the case of sheaves of
modules on locally ringed spaces, simply by considering the functor Shring that sends a
ringed space (X,OX) to the category of sheaves of OX-modules on X (cf. [9, Example 3.8]).

The reason that we are so interested in this specific construction is the following lemma,
which follows directly from writing out the definitions.

Lemma 2.9. The objects of the category s Lens (Sh) of simplicial objects in Lens (Sh) are
exactly sheaves on simplicial spaces. A sheaf F• ∈ Sh(X•) on a given simplicial space X•
is exactly a lift

Lens (Sh)

∆op Space

π

X•

F•

We can further recover the notion of cartesian (resp. strictly cartesian) sheaves by simply
applying the lens construction to the refined functor that sends X to category of sheaves on
X with morphisms given only by the weak equivalences (resp. only by the isomorphisms).

Remark 2.10. In terms of objects, we can think of s Lens (Sh) as the union of the categories
Sh(X•) for all simplicial spaces X•, but there is a difference in the morphisms : a morphism
F• → G• in Sh(X•) consists of morphisms ϕp : Fp → Gp of sheaves on Xp; a morphism
(X•,F

•)→ (Y•,G
•) in s Lens (Sh) consists of a morphism f• : X• → Y• of spaces along with

morphisms ϕp : f ∗Gp → Fp of sheaves on Xp. In particular, to recover HomSh(X•)(F
•,G•)

we need to take the opposite of Homs Lens (Sh)((X•,F
•), (X•,G

•)).
But this is nothing specific to (co)simplicial sheaves — this difference in direction of

morphisms is already present when looking at the category of sheaves on a fixed space,
where Hom(F,G) consists of maps ϕ : F → G, and the category of ringed spaces, where
Hom((X,OX), (Y,OY )) consists of maps f : X → Y along with maps ϕ : f ∗G→ F.

2.3 The relation between the two

As mentioned in Definition 2.3, sheaves on simplicial spaces look somewhat like cosim-
plicial objects. Indeed, it turns out that the sequence “sheaf, cosimplicial sheaf, sheaf on a
simplicial space” consists of three constructions, each of which strictly generalises the one
before. Because of this, we will only really consider cosimplicial sheaves from now on; we
do not feel negligent in not discussing simplicial (pre)sheaves, since there is a plethora of
good references on these objects (and their homotopy theory) already (e.g. [8]).

Note, first of all, that we can write the category of cosimplicial sheaves using the
Grothendieck construction, as we did for sheaves on simplicial spaces. Indeed, consider
the functor

c Sh : Spaceop −→ Cat

X 7−→ c Sh(X)

(f : X → Y ) 7−→ (f ∗ : c Sh(Y )→ c Sh(X)).

Then, again as an immediate consequence of the definitions, we have the following lemma.
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Lemma 2.11. The objects of the category Lens (c Sh) are exactly the cosimplicial sheaves
on spaces. A cosimplicial sheaf F• ∈ c Sh(X) on a given space X is exactly a lift

Lens (c Sh)

{∗} Space.

π

X

F•

So we have two lens categories in particular:

1. the category Lens (c Sh) of cosimplicial sheaves on spaces, whose objects are exactly
the objects of c Sh(X) for all spaces X; and

2. the category s Lens (Sh) of sheaves on simplicial spaces, whose objects are exactly the
objects of Sh(X•) for all simplicial spaces X•.

We now describe how they are related to one another, starting with the fixed space case, i.e.
c Sh(X) and Sh(X•), before moving on to the Grothendieck constructions, i.e. Lens (c Sh)
and s Lens (Sh).

Lemma 2.12. A cosimplicial sheaf on a space is exactly a sheaf on the corresponding
constant simplicial space. That is, given a space X, we have an equivalence of categories

c Sh(X) ' Sh(X•)

where X• is the simplicial space with Xp = X for all p ∈ N and X•(α) = idX for all
α : [p]→ [q] in ∆.

Proof. Let F• ∈ Sh(X•). Then we have Fp ∈ Sh(Xp) for all p ∈ N, along with functorial
F•α : (X•α)∗Fp → Fq for all α : [p]→ [q] in ∆. But, by definition, Xp = X for all p ∈ N,
and X•α = idX for all α, so F•α is really a morphism Fp → Fq in Sh(X). That is, objects
of Sh(X•) are exactly objects of c Sh(X). By the same arguments, the morphisms in the
two categories also agree on the nose.

Lemma 2.13. The functor const : Space → s Space given by X 7→ X• induces a fully
faithful functor

const : Lens (c Sh) ↪−→ s Lens (Sh)

(X,F•) 7−→ (X•,F
•).

Further, this inclusion const has a left adjoint

colim: s Lens (Sh) −→ Lens (c Sh)

(X•,F
•) 7−→ (colimX•, {(Xp → colimX•)∗F

p}p∈N)

given by taking the colimit of the simplicial space and the pushforwards of the sheaves
along the inclusions into the colimit, thus witnessing Lens (c Sh) as a reflective subcategory
of s Lens (Sh).
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Proof. This is a reasonably immediate consequence of the fact that pullback is left adjoint
to pushforward, combined with the universal property of the colimit, but we spell out the
details here just to be clear. Consider a morphism

(f•, ϕ
•) ∈ Homs Lens (Sh)

(
(X•,F

•), (Y •,G
•)
)

so that f• : X• −→ Y • and ϕ• : f ∗•G
• −→ F•. By the universal property of the colimit,

this induces a unique morphism

|f•| : colimX• −→ Y

along with morphisms
ip : Xp −→ colimX•

such that fp = |f•| ◦ ip. But pullback is left adjoint to pushforward, and so the data of a
morphism

ϕp : f ∗pG
p −→ Fp

is equivalent to the data of a morphism

ψp : Gp −→ (fp)∗F
p = (|f•|)∗(ip)∗Fp

and thus to the data of a morphism

ϕ̃p : |f•|∗Gp −→ (ip)∗F
p

which, all together, gives

(|f•|, ϕ̃p) ∈ HomLens (c Sh)

(
(colimX•, (i•)∗F

•), (Y,G•)
)

which witnesses the necessary (natural) isomorphism for the adjunction.

Remark 2.14. There is a dual statement of Definition 2.13, where the limit (along with the
pushforwards along the maps from the limit) gives a right adjoint to the constant functor,
thus witnessing Lens (c Sh) as a coreflective subcategory of s Lens (Sh) as well. We do not,
however, care so much about this limit construction here, since the main case of interest
for us is where X• = XU

• is the Čech nerve of a space, and the geometric realisation is
given by the colimit, i.e. |XU

• | := colimXU
• ' X.

Analogously to how cosimplicial sheaves are specific examples of sheaves on a simplicial
space, we can actually recover sheaves as specific examples of cosimplicial sheaves, as
follows.

Lemma 2.15. A sheaf on a space is exactly a strictly cartesian sheaf on a constant sim-
plicial space. That is, given a space X, we have an equivalence of categories

Sh(X) ' Shs. cart(X•)

where X• is the constant simplicial space, as in Definition 2.12.
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Proof. We already know by Definition 2.12 that an object F• ∈ Sh(X•) is exactly an object
of c Sh(X). By definition, F• being strictly cartesian means that the F•α : Fp → Fq are
isomorphisms for all α : [p]→ [q] in ∆, and so the functor Shs. cart(X•)→ Sh(X) given by
F• 7→ F0 has an up-to-isomorphism inverse given by F0 7→ (F0)•, where (F0)p := F0 for
all p ∈ N, and (F0)•α := idF0 for all α : [p]→ [q] in ∆.

Lens category Objects Single fixed space

Lens (Sh) sheaves on spaces Sh(X) ' Shs. cart(X•)
Lens (c Sh) cosimplicial sheaves on spaces c Sh(X) ' Sh(X•)
s Lens (Sh) sheaves on simplicial spaces Sh(X•)

Table 1: A summary of the three notions studied so far, with the equivalences in the last
column following from Definitions 2.12 and 2.15.

F ∈ Sh(X)

F

X

F• ∈ c Sh(X)

F0 F1 . . .

X

F• ∈ Sh(X•)

F0 F1 . . .

X0 X1
. . .

Figure 1: A pictorial representation of how sheaves, cosimplicial sheaves, and sheaves on
simplicial spaces relate to one another, and are of strictly increasing generality. Note that
the “squares” in the diagram on the far right (for F• ∈ Sh(X•)) do not commute unless
the sheaf is strongly cartesian. This is the first hint at the fact that these sheaves arise as
lax limit objects, as we will formalise in Definition 4.4.

Remark 2.16. In both Table 1 and Figure 1, we are omitting a fourth family of objects,
namely strictly cartesian sheaves on not-necessarily constant simplicial spaces: Shs. cart(X•).
If we were to draw these as in Figure 1, they would look as follows:

F• ∈ Shs. cart(X•)

F

X0 X1
. . .
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Although these objects are somewhat too strict to be of immediate interest, the weakly
cartesian version proves to be incredibly useful, as explained in the context of complex
geometry in Section 5.1.

Remark 2.17. In the case where X• = XU
• is the Čech nerve of a cover, all four notions

fit into the diagram

Sh(X)

c Sh(X) Shs. cart(XU
• )

Sh(XU
• )

where the top-right arrow is an equivalence (since the functor Sh : Spaceop → Cat is a
stack), and the bottom-right arrow is the natural map from the lax (homotopy) limit into
the (homotopy) limit (cf. Definition 4.4). Note that the parallel arrows are “the same”,
i.e. the two arrows that go down and to the right are given by “replace X with XU

• ”, and
the two arrows that go down and to the left are given by “take cosimplicial objects in the
sheaf part”.

3 Sections of sheaves

Although simplicial sheaves (in all meanings of the phrase) have been discussed else-
where in the literature, we are not familiar with any study of what a section of such a sheaf
should be. Here we propose a definition. Note, however, that simplicial sheaves (in all
meanings of the phrase) should form a topos, and from this we could recover a definition
of section using the general theory of topoi.

3.1 Sections of cosimplicial sheaves

We start by giving a definition, and then justify why it is indeed “the good one”.

Definition 3.1. Let F• ∈ c Sh(X) be a cosimplicial sheaf on a space X. Then we define
the global sections of F• to be

F•(X) = Γ(X,F•) := eq
(
F0(X)⇒ F1(X).

)
i.e. a global section of F is an element of the equaliser of the 1-truncation of F•.

Forgetting the above for a moment, the definition that might appear to be the most
natural would be that which follows from the identification of c PSh(X) with [Xop, c Set],
i.e.
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A global section of F• ∈ c Sh(X) is a collection of sections (σp ∈ Γ(X,Fp))p∈N
such that F•α(σp) = σq for all α : [p]→ [q] in ∆.

But since this is a strict condition (i.e. we are asking for equality), each σp is determined by
{σ0, . . . , σp−1}, so we need only ensure the initial data of σ0 is such that we can construct
σ1, i.e. a section should be exactly some σ0 ∈ eq(F0(X) ⇒ F1(X)), and this recovers
Definition 3.1.

Definition 3.2. Let F• ∈ c Sh(X) be a cosimplicial sheaf on a space X, and i : U ↪→ X
the inclusion of an open subset. Then we define the local sections of F• (over U) to be the
global sections of i∗F• ∈ c Sh(U).

3.2 Sections of sheaves on a simplicial space

The definition for arbitrary sheaves on a simplicial space is morally the same as the one
for cosimplicial sheaves given in Definition 3.1 (following the fact that cosimplicial sheaves
are “just” sheaves on a constant simplicial space, by Definition 2.12), but since X• is no
longer a priori constant, F0 and F1 live on different spaces, so we have to take pullbacks
along the two coface maps.

Definition 3.3. Let F• ∈ Sh(X•) be a sheaf on a simplicial space X•. Then we define the
global sections of F• to be

F•(X•) = Γ(X•,F
•) := lim


(
(X•f

0
1 )
∗
F0
)

(X1)

F1(X1)(
(X•f

1
1 )
∗
F0
)

(X1)

(F•f01 )(X1)

(F•f11 )(X1)


where f i1 : [0]→ [1] is the ith coface map in ∆.

Definition 3.4. Let F• ∈ Sh(X•) be a sheaf on a simplicial space X•, and i• : U• ↪→ X•
the inclusion of a simplicial space such that each ip : Up ↪→ Xp is the inclusion of an open
subset. Then we define the local sections of F• (over U•) to be the global sections of
i∗•F

• ∈ Sh(U•).

3.3 Weak sections

Recall that, given a sheaf F (of sets) on a space X, its global sections F(X) are in
bijection with morphisms in the Hom-set from the constant sheaf on a singleton set, i.e.

F(X) = Γ(X,F) ∼= HomSh(X)({∗},F)

(which is also equivalent to the direct image along the morphism X → {∗}). It turns out
that Definitions 3.1 and 3.3 can also be written in this form: as functors from C to Set,
where C is either c Sh(X) or Sh(X•), we have an isomorphism

Γ(X,−) ∼= HomC({∗},−).
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But, as we mentioned, with this definition a section σ• ends up being determined entirely
by its degree-0 part, since we have conditions of strict equality. If we wish to recover a
weaker notion of section (in the case of c Sh(X), say), and we were working with sheaves
of objects that have some notion of weak equivalence, then we could take the (homotopy)
limit of the entire co(semi-)simplicial diagram

F0(X) F1(X) . . .

instead of just the 1-truncation, which would correspond to replacing the constant sheaf
on a singleton set {∗} with the tower of constant sheaves on the geometric simplices

{∗} ∼= ∆0 ↪→ ∆1 ↪→ · · · . That is, we would have some section σ0 ∈ Γ(X,F0) as before, but
then two (weakly equivalent) sections σ1

0 ' σ1
1 ∈ Γ(X,F1), and such that σ0 is mapped

to σ1
i by the ith coface map f i1 : [0] → [1], and then three (weakly equivalent) sections

σ2
0 ' σ2

1 ' σ2
2 ∈ Γ(X,F2) such that . . . , and so on. In fact, we could even consider a lax

version of this, where we do not ask for the morphism σ1
0 → σ1

1 to be a weak equivalence,
but instead simply to be an arbitrary morphism (and, indeed, we consider such a notion
in Section 5.2).

This approach (via the Hom out of a point, or out of the “fat point” ∆0 ↪→ ∆1 ↪→ . . .)
also explains why sections “look like” elements of the totalisation of a cosimplicial simplicial
set: this is a way of computing the homotopy limit of the cosimplicial simplicial model of
the mapping space.

4 Cosimplicial diagrams of categories

In this section we will consider the specific case of locally ringed spaces and sheaves
of modules. If (X,OX) is a locally ringed space, then we simply write Sh(X) to mean
the category of cochain complexes of sheaves of OX-modules on X. This is the setting of
interest to most algebraic geometers, and we consider it here because it allows us to endow
Sh(X) with the structure of a model category. Another simplification we make is to only
consider the case where X• = XU

• is the Čech nerve of a locally finite cover U of a locally
ringed space (X,OX), giving us the simplicial locally ringed space (XU

• ,OXU
•

), where
OXU

p
:= (πp : XU

p → X)−1OX . For clarity, we now spell out the details of Definition 2.2
in this specific setting.

A cochain complex of sheaves on the simplicial locally ringed space (XU
• ,OXU

•
) is the

data of sheaves (Fp,i)i∈Z of OXU
p

-modules on XU
p for each p ∈ N along with functorial

morphisms
F•,iα : (XU

• α)∗Fp,i −→ Fq,i

of OXU
q

-modules for all α : [p]→ [q] in ∆, as well as morphisms

di =
(
dp,i : Fp,i −→ Fp,i+1

)
p∈N
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of sheaves on XU
• for all i ∈ Z such that

(XU
• α)∗Fp,i (XU

• α)∗Fp,i+1

Fq,i Fq,i+1

(XU
• α)∗dp,i

F•,iα F•,i+1α

dq,i

commutes for all α : [p]→ [q] in ∆, and such that di+1 ◦ di = 0 for all i ∈ Z. We say that
such an object F•,? is (weakly) cartesian if the morphisms

F•,?α : (XU
• α)∗Fp,? → Fq,?

of cochain complexes are quasi-isomorphisms5 for all α : [p]→ [q] in ∆.

4.1 (Lax) homotopy limits of diagrams of model categories

Definition 4.1. Let D be a small category Then a D-shaped diagram of model categories
is a functor M : D → ModL, where ModL is the (large) category whose objects are model
categories and whose morphisms are left Quillen functors. That is, M is the data of
a model category Md for all d ∈ D along with a functorial6 assignment of left Quillen
functors F θ

d,e : Md →Me for all θ : d→ e in D.

Definition 4.2 ([1, Definition 3.1]). Let D be a small category, and M a D-shaped diagram
of model categories such that each Md is cofibrantly generated. Then a lax homotopy limit
of M is the data of the following:

• an object md ∈Md for each d ∈ D;

• a morphism uθd,e : F θ
d,e(md)→ me in Me for each θ : d→ e in D

such that
uηθd,f = uηe,f ◦ F

η
e,f (u

θ
d,e).

This defines a category, which we denote by laxholimd∈DM .
Given a lax homotopy limit of M , we define the homotopy limit as the full subcategory

holimd∈DM of laxholimd∈DM consisting of the objects such that every uθd,e is a weak
equivalence (in Me).

Remark 4.3. As noted in [1], we can endow the category laxholimd∈DM with the structure
of a model category (with weak equivalences and cofibrations given levelwise, appealing
to the hypothesis that each Md is cofibrantly generated), but we cannot a priori endow
holimd∈DM with the structure of a model category, since the requirement that the uθd,e be
weak equivalences is not preserved by arbitrary limits and colimits.

5Note that the condition that the di be morphisms of sheaves on XU
• already ensures that the F•,?α

will be chain maps, i.e. that they commute with the differentials.
6Meaning F ηθd,f = F ηe,f ◦ F θd,e for all θ : d→ e and η : e→ f in D.
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Lemma 4.4. Consider the ∆-shaped diagram of model categories

Sh(XU
0 ) Sh(XU

1 ) . . . .

Then we have equivalences

laxholim
[p]∈∆

Sh(XU
p ) ' Sh(XU

• ) and holim
[p]∈∆

Sh(XU
p ) ' Shcart(XU

• ).

Proof. This follows from taking D = ∆, F θ
α,β = (XU

• θ)
∗, and uθα,β = F•θ in Definition 4.2.

Note that the homotopy limit in Definition 4.4 is also equivalent to Sh(X), since the
functor Sh : Spaceop → Cat is a stack, whence there is an equivalence Sh(X) ' Shcart(XU

• ).
Indeed, the only one of the four categories in Definition 2.16 which is absent here is
c Sh(X) ' Sh(X•). Note, however, that XU

• ' X• does not imply that Sh(XU
• ) ' Sh(X•),

since Sh : Spaceop → Cat is not homotopy invariant, but whether or not these two categories
actually are equivalent for some other reason is a question that we will not try to answer
here.

One might wonder what, after all, the use of Shcart(XU
• ) is, if it happens to simply

be equivalent to the (much simpler) Sh(X). The answer is very similar to why XU
• is

useful, even though its geometric realisation is equivalent to the much-simpler object X,
in that decomposing an object into “simplicial levels” allows us to prescribe much finer
homotopical data to different parts, instead of having to treat the object as one single lump
thing. For a less hand-wavy justification, see Section 5.1, which gives an example of how
this simplicial decomposition lets us describe homotopical versions of coherent sheaves.

4.2 Locally free sheaves and perfect complexes

Before concluding this section, we give a brief aside on two variations of Definition 4.4.
Since we are working in the setting of sheaves of modules, we could also consider specific
families of sheaves, such as locally free sheaves, or perfect complexes. Rather than working
with model categories, we can consider the dg-categories LocFree(X) of complexes of locally
free sheaves on X, and Perf(X) of perfect complexes on X. It turns out that the analogous
homotopy limits for these two categories recover the notion of (perfect) twisting cochains :

holim
[p]∈∆

LocFree (XU
p ) ' Tw (X) holim

[p]∈∆
Perf (XU

p ) ' Twperf (X)

(by [2, Corollary 3 and Proposition 11], respectively).
For an overview of twisting cochains and twisted complexes in algebraic geometry and

topology, see e.g. [5, Appendix G].
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5 Applications

5.1 Complex geometry

Given a (locally) ringed space (X,OX), geometers are often interested in a specific class
of sheaves of OX-modules, namely coherent sheaves. These are sheaves that satisfy a nice
finiteness property: around any point, they are surjected onto by a (finite) free module,
and, on any open subset, the kernel of any surjection from a (finite) free module is also
locally surjected onto by a (finite) free module. In the setting of algebraic geometry, given
a commutative ring R, there is a nice correspondence between R-modules and sheaves on
the Noetherian affine scheme Spec(R), summarised in the following dictionary:

arbitrary R-modules←→ quasi-coherent sheaves on Spec(R)

finitely generated R-modules←→ coherent sheaves on Spec(R)

finitely generated projective R-modules←→ locally free sheaves on Spec(R).

There are two results concerning coherent sheaves in algebraic geometry that interest
us here specifically:

1. On any (quasi-projective Noetherian) scheme X, a coherent sheaf can be resolved by
locally free sheaves, i.e. is quasi-isomorphic to a complex of locally free sheaves.

2. The category Coh(X) of complexes of coherent sheaves (on some fixed X as above)
is equivalent to the category CCoh(X) of complexes of sheaves whose internal co-
homology is degree-wise coherent, i.e. complexes (F•, d•) such that the sheaves
Ker di/ Im di−1 are coherent for all i ∈ Z.

The first of these statements is not true in the analytic case, i.e. there exist coherent
sheaves (over the sheaf of holomorphic functions) on complex-analytic manifolds which
cannot be resolved by locally free sheaves [11, Corollary A.5]. However, a beautiful con-
struction in [4] shows that coherent analytic sheaves can always be locally resolved by
locally free sheaves; in the language of this current survey, this construction was used in
[6] to show that (complexes of) coherent analytic sheaves are equivalent (in some suit-
able (∞, 1)-categorical sense) to a certain full subcategory of Shcart(XU

• ). That is, a nice
subclass of complexes of cartesian sheaves on the Čech nerve gives a homotopical presen-
tation of (complexes of) coherent analytic sheaves, modulo a caveat explained in the next
paragraph.

The second of these statements is an open problem in the analytic case. It is known
that Coh(X) and CCoh(X) are equivalent in the specific case where X is a smooth complex-
analytic surface (cf. [3, Corollary 5.2.2]), but a general result for arbitrary (or even some
fixed higher) dimensions is not known. The specific category used in [6] lies a priori
between Coh(X) and CCoh(X), and it is this category which is shown to be equivalent to a
nice subclass of Shcart(XU

• ) as mentioned in the paragraph above. This category, denoted
by CohU (X), consists of complexes of sheaves of modules such that their restriction to
any open subset U in some (fixed) cover U is quasi-isomorphic to a complex of coherent
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sheaves, i.e. complexes F• such that F•|U ∈ Coh(U) for any U ∈ U . This category
is natural in the choice of cover, i.e. given any refinement V ⊃ U we obtain a functor
CohU (X)→ CohV (X), and so we can consider the homotopy colimit over all covers. Using
the language of homotopical categories, we can localise CohU (X) to obtain an (∞, 1)-
category, and similarly for CCoh(X), and [6, Lemmas 4.6.5, 4.6.6] shows that the natural
embedding CohU (X) ↪→ CCoh(X) induces a fully faithful and essentially surjective functor
between the homotopy colimit of the localisations of the CohU (X) and the localisation of
CCoh(X). This does not suffice to say anything about whether or not Coh(X) and CCoh(X)
are actually equivalent in the analytic case, but it shows that the language of sheaves on
the Čech nerve might prove useful in the future.

In fact, we can try to further enrich (a nice full subcategory of) Sh(XU
• ) by endowing its

objects with a simplicial version of Koszul connections, giving us access to the language of
Chern–Weil theory and the ability to talk about characteristic classes (i.e. Chern classes).
This was achieved in, again, [4], and translated into the language of Sh(XU

• ) and (∞, 1)-
categories in, again, [6], but we refer the interested reader to these sources instead of
overly repeating ourselves here. The full story makes heavy use of the twisting cochains
mentioned at the end of the previous section.

5.2 String diagrams of composite endomorphisms

The aim of this section is to show how (pre)sheaves on simplicial spaces might be
used to describe things that consist of “stuff, relations between subsets of the stuff, and
linear orders on those relations”. Hopefully experts in the relevant fields of application
can extract the core ideas and refine the technical details to fit (and this is our excuse for
a lower level of rigour in what follows).

A slightly more precise (but still intentionally vague and slightly incorrect) description
of the main idea is the following:

Diagrams as in Figure 2 — consisting of some fixed objects (represented
by wires) and some endomorphisms of tensor products (represented by boxes),
which describe “endomorphisms generated by endomorphisms” — are in bijec-
tion with lax sections of a certain presheaf on a simplicial space that depends
only on the objects and the “unordered shape” of the diagram, cf. Figure 3.
Furthermore, both the presheaf and the simplicial space are 1-truncated, i.e.
have only degree 0 and degree 1 parts.

Before constructing the presheaf in question and formalising this main idea, we start
by breaking down the diagram in Figure 2 into more disparate components, explaining
how we arrive at Figure 3.

Our very first step is to separate out the shape of the diagram from the contents of the
diagram, as shown in Figure 4. With this new representation, we can now ask ourselves
what role order is playing. That is, in the diagram on the left in Figure 4,

(a) the order of the wires (i.e. objects) is important; and
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A B C D

f

g

Figure 2: This diagram describes four objects, A, B, C, and D, along with two endomor-
phisms f ∈ End(A⊗B) and g ∈ End(B ⊗C ⊗D), with f being applied before g, i.e. the
entire diagram describes the composite endomorphism (idA ⊗ g) ◦ (f ⊗ idC ⊗ idD).

A

B

C

D
A

B

C

D

Čech 0: f : End(A⊗B) g : End(B ⊗ C ⊗D)

Čech 1: f < g

Figure 3: The data of a diagram as in Figure 2 is described by picking an endomorphism
on each 0-intersection in the type skeleton, and an order of these endomorphism on each
1-intersection in the type skeleton.

(b) the order of the boxes (i.e. endomorphisms) is important.

But note that the first one is somehow more of a simple bookkeeping tool, whereas the
second actually encodes meaning — (horizontally) reordering the wires doesn’t change the
diagram, as long as we reorder the boxes along with them; (vertically) reordering the boxes
does change the resulting composite endomorphism, in a way that can’t be compensated
for by relabelling the objects.7 Because of this, it seems like separating out these two uses
of order might also be advantageous. In doing so, we can actually also do away with the
string diagram notation altogether: we end up with two groups of data, namely the type
skeleton, and the processes, as shown in Figure 5.

7Of course, one can argue that it can be compensated for by simply relabelling the morphisms, and
ask why we are treating objects as somehow more important than morphisms? This is a very reasonable
critique, and emphasises the “problem” that we are really trying to solve here: “given a tensor product of
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A B C D

End(A⊗B)

End(B ⊗ C ⊗D)

+

{
f : End(A⊗B)

g : End(B ⊗ C ⊗D)

Figure 4: The diagram from Figure 2, but where we start to separate out the contents of
the diagram (i.e. the specific endomorphisms) from the shape (i.e. objects A, B, C, and
D, and endomorphisms on two specific tensor products of these).

{
A < B < C < D

A⊗B, B ⊗ C ⊗D︸ ︷︷ ︸
type skeleton

+

{
f : End(A⊗B)

g : End(B ⊗ C ⊗D)
+ f < g︸ ︷︷ ︸

processes

Figure 5: The diagram from Figures 2 and 4, but where we separate out the data into two
groups: the type skeleton tells us that we have four objects, tells us how to refer to them (i.e.
gives them a linear order), and tells us which ones are “related” via a box/endomorphism;
the processes are the endomorphisms which are applied to our objects, along with the
information of the order in which these applications happen.

Our next step is to turn the type skeleton into something that looks more like a topo-
logical space, but still describes the same data. The linear order A < B < C < D gives us
a poset, and the data of the types of endomorphisms gives us what we can think of as a
basis for a topology on the totally ordered set, as shown in Figure 6. Indeed, this actually
defines a (1-truncated) semi-simplicial8 space analogous to the Čech nerve: we obtain S•
given by

• S0 = U t V := {A,B} t {B,C,D};

• S1 = U ∩ V = {B};

• Sp = ∅ for p > 2;

objects, how can we describe endomorphisms generated by other endomorphisms?”
8For simplicity, we finally use semi -simplicial instead of simplicial constructions here: the degenerate

intersections Uαα in the Čech nerve offer no extra information in this setting.
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• S•f
i
1 : S1 → S0 (for i = 0, 1) is just the inclusion U ∩ V into either U or V .

A

B

C

D
A

B

C

D

U

V

Figure 6: The type skeleton from Figure 5 as a totally ordered set with a basis for a
topology (or, indeed, as a semi-simplicial space S•). The two “open” sets contain the
information of the types of endomorphisms: the fact that U contains A and B relays the
information that we have one endomorphism on A⊗B, and similarly for V and B⊗C⊗D.

Now we can start to build a presheaf L • ∈ Sh(S•) on this type skeleton. We define

L 0(x1 < . . . < xm) := End(x1 < . . . < xm)

which, in our specific setting, is just

L 0(U) = End(A⊗B)

L 0(V ) = End(B ⊗ C ⊗D)

and L 0(S0) = L 0(U) tL 0(V ). Next we define

L 1(x1 < . . . < xm) := F
({
f ∈ End(y1 < . . . < yn) | {x1 < . . . < xm} ↪→ {y1 < . . . < yn}

})
,

where F takes a set X and returns the 1-truncated simplicial space with the elements of
X as 0-simplices, and a unique 1-simplex connecting every (ordered) pair of 0-simplices;
in our setting, this gives

L 1(U ∩ V ) =

{
f ∈

⊔4
k=1

{
End(xi1 ⊗ . . .⊗ xik) | xij = B for some 1 6 j 6 k

}
as 0-simplices,

f → g for all f, g as 1-simplices,

where the face maps from the 1-simplices to the 0-simplices are given by the domain and
codomain maps, i.e. (f → g) 7→ f and (f → g) 7→ g.

Finally then, we can ask what exactly a lax (global) section of L • is. By Section 3.3,
using the definition of a section as a map from the (constant sheaf of the) (1-truncated)
tower of simplices ∆0 ↪→ ∆1, this should be
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• a 0-simplex s0 ∈ L 0(S0); and

• a 1-simplex s1 ∈ L 1(S1)

such that

• f 0
1 : s1 7→ s0|U ; and

• f 1
1 : s1 7→ s0|V .

But, by construction, this is exactly the following:

• s0
U ∈ End(A⊗B) and s0

V ∈ End(B ⊗ C ⊗D); and

• s1 ∈ {s0
U → s0

V } t {s0
V → s0

U}

i.e. an endomorphism f ∈ End(A ⊗ B), an endomorphism g ∈ End(B ⊗ C ⊗ D), and a
choice of order f < g or g < f . That is, exactly the data of a relation (in the sense of
Figure 5).

Remark 5.1. Although we have constructed here a presheaf L • with values in simplicial
sets (or topological spaces, graphs, categories, posets, . . . , depending on how you want
to view the “thing” that has endomorphisms as “points” and a unique directed “path”
between each ordered pair of points), and then considered lax sections, we could have
instead opted to define L 1 as simply being the set of all formal symbols f < g for all
ordered pairs (f, g), and then considered a section in the non-lax sense, i.e. as a map from
{∗} instead of from ∆0 ↪→ ∆1.

We do not want the underlying (relatively simple) ideas to be lost in the notation and
technical construction: all we have really done is constructed an object that encodes the
information of “a choice of element on each open subset, and a choice of order of these
elements on each intersection”, as shown in Figure 3.

Remark 5.2. The question as to whether or not the presheaf thus constructed is actually
a sheaf can be understood as a question concerning the endomorphisms available to us,
i.e. the objects comprising its (degree-wise) sections. That is, the sheaf condition, when
unravelled, is equivalent to the following:

Any endomorphism f ∈ End(x1 ⊗ . . . ⊗ xn) is determined uniquely and
entirely by the data of all of its “partial evaluations”, given by tracing over a
subset {xi1 , . . . , xik} of its arguments.

That is, we can ensure that the sheaf condition is automatically satisfied for any presheaf
by imposing some condition on all the endomorphisms themselves, i.e. on the underlying
(symmetric) monoidal category. Whether or not this is a reasonable thing to do is not a
question that we intend to answer here.

As a side note, since we are not endowing our type skeleton with the Alexandrov (or
upper-set) topology, we cannot appeal to the fact that any presheaf on a poset with the
Alexandrov topology is automatically a sheaf.
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Remark 5.3. In the classical world of sheaves, an important construction is the espace
étalé, which realises a sheaf F ∈ Sh(X) as a bundle living over X. We can try to construct
something analogous here: consider the simplicial space L• whose 0-simplices are all the
possible endomorphisms (of all possible types, i.e. of Ti for all i, and of Ti ⊗ Tj for all i, j,
and . . . ), and which has a 1-simplex between each (ordered) pair of objects; then a section
of L• is the same as a morphism of simplicial spaces σ : S• → L• over |S•|, i.e. in our
example, such that σ(U) consists of endomorphisms f ∈ End(A⊗B) and σ(V ) consists of
endomorphisms of g ∈ End(B ⊗ C ⊗D).

We leave the details of this construction vague and incomplete, but we mention it
anyway in the hope that some interested reader might try to formalise this definition.
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