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On generalized derivations of polynomial vector fields Lie
algebras

Princy Randriambololondrantomalala, Sania Asif

Abstract. In this paper, we study the generalized derivation of a Lie subalgebra of
the Lie algebra of polynomial vector fields on Rn, containing all constant vector fields
and the Euler vector field, under some conditions on this Lie subalgebra.

1 Introduction

In [2], we have studied the derivations of a Lie subalgebra P of the Lie algebra of vector
fields χ (Rn) on Rn for n ≥ 1. The subalgebra P contains all constant vector fields and
the Euler vector field. In [1], we explore that each m-derivation D of P with m ≥ 2 is an
endomorphism of P such that ∀X1, X2, . . . , Xm ∈ P, we have

D [X1, [X2, . . . , [Xm−1, Xm] . . . ]] (1)

= [D (X1) , [X2, . . . [Xm−1, Xm] . . . ]] + [X1, [D (X2) , . . . , [Xm−1, Xm] . . . ]] (2)

+ · · ·+ [X1, [X2, . . . , [D (Xm−1) , Xm] . . . ]] + [X1, [X2, . . . , [Xm−1, D (Xm)] . . . ]] . (3)

It’s clear that every derivation (i.e 2-derivation) of P is a m-derivation where m ≥ 2
but the converse is not true in general. We say that m-derivations for (m ≥ 2) are a
generalization of derivations. Now, we study another generalization of derivations of P,
that are called as generalized derivations in [3]. However, in [3], only study for the finite
dimensional Lie algebra has made, but study to the generalized derivations of finite and
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infinite dimensional Lie algebras can be made on Lie algebra P. We prove this fact in the
form of examples for finite and infinite dimensional P, in the later sections. Let us recall
that a monomial vector field is a vector field on Rn having one and only one monomial
component in one and only one element of the canonical basis of χ (Rn). A Lie algebra
of polynomial vector fields P is called separated if P is spanned by monomial vector
fields. Moreover, a diagonal linear vector fields is an element of the Cartan subalgebra〈
x1 ∂

∂x1
, . . . , xn ∂

∂xn

〉
R where (xi)i=1,...,n is the usual coordinate system of Rn. In this research

we show that if P is separated and contains all diagonal linear vector fields with some
additional condition, then there are some examples of further Lie algebras structures that
admit generalized derivations that were not shown in [3] even for the finite dimensional Lie
algebras. The results present in this paper are explicit and advance in the sense that we
completely describe the centroid, the quasicentroid and the quasiderivations that arise in
the study of generalized derivations of Lie algebras. We adapt our results in [1] and [2], to
study generalized derivations of infinite dimensional Lie algebras. We do not only present
abstract theorems but we also give examples to illustrate all theorems of this paper.

This paper consists of four sections after the present section for introduction. The
second section is a general result from [2] on P about its graded algebra structure and its
first space of cohomology of Chevalley-Eilenberg. The third section focuses on the study
of centroid and quasicentroid of P and proves that these two sets are equal. The next
section describes the quasiderivation of P using the fact that this quasiderivation is a sum
of homogeneous degree i ∈ Z quasiderivations of P. The final section uses the results
from the previous sections and presents the main theorem of this paper. According to
which, generalized derivations of P are sum of derivations, quasicentroid elements, and
two special endomorphisms of P. As stated earlier, it would be of great interest to explore
generalized derivations of more general subalgebra P.

Throughout this paper all Lie algebras are equipped as algebras by the usual bracket
notation [, ].

2 The Lie algebra P

Let us denote the Lie algebra of vector fields on Rn with the coordinates system (xi)i,
by χ (Rn). Throughout this section, we consider a Lie algebra P of polynomial vector
fields on Rn. This Lie algebra P contains the constant fields ∂

∂xi
for all i and the Euler

vector field E =
∑

ix
i ∂
∂xi
. Let N = {X ∈ χ (Rn) / [X,P] ⊂ P} denote the normalizer of P

in χ (Rn) and let Hi be the vector space of homogeneous polynomial vector fields of degree
i ∈ N ∪ {−1}. Thus X ∈ Hi if and only if

[E,X] = iX. (4)

Denote Hd
0 the Lie algebra generated by all diagonal linear fields. A diagonal linear field is

identified by the diagonal matrix with coefficients in R of order n. We adopt the Einstein
convention on the summation index unless expressly mentioned. Here are two examples of
P in χ (R2) with coordinate system (x, y):
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1. The Lie algebra spanned by ∂
∂x
, ∂
∂y
, x ∂

∂x
+ y ∂

∂y
, x2 ∂

∂x
is of finite dimension and

2. The Lie algebra spanned by ∂
∂x
, ∂
∂y
, x ∂

∂x
+ y ∂

∂y
, x2 ∂

∂x
, x3 ∂

∂x
is of infinite dimension.

The bracket of two vector fields X = X i ∂
∂xi

and Y = Y j ∂
∂xj

of χ (Rn) is the Lie algebra of
vector fields on Rn, given by:

[X, Y ] =

(
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
(5)

The following lemma is clear:

Lemma 2.1. A Lie algebra of polynomial vector fields P =
⊕

i≥−1Pi is graded with the
following [Pi,Pj] ⊂ Pi+j, where Pi = P ∩ Hi.

We recall two theorems of [2] on the centralizer and the cohomology space of P:

Proposition 2.2. Let C (P) be the centralizer of P, C (P) = {X ∈ χ (Rn) / [X,P] = {0}}.
Here C (P) is zero.

Definition 2.3. We denote Der (P) the Lie algebra of derivations of P, LX = [X, .] is the
Lie derivative with respect to X ∈ P, it is called inner derivation. adP is the Lie algebra
of inner derivations of P. The first Chevalley-Eilenberg cohomology space is denoted
H1 (P) = Der (P) /adP.

Theorem 2.4. H1 (P) ∼= N/P ∼= M with M a Lie subalgebra of H0. If all linear diagonal
fields are in P then H1 (P) is zero .

3 Centroid and quasicentroid of P

Definition 3.1. The centroid C (L) of a Lie algebra L is the Lie algebra of endomorphisms
f in L such that

f [X, Y ] = [fX, Y ] = [X, fY ] , (6)

Definition 3.2. The quasicentroid QC (L) of a Lie algebra L is the Lie algebra of endo-
morphism g in L such that

[g (X) , Y ] = [X, g (Y )] , (7)

for all X, Y ∈ L.

Note that in general C (L) ⊂ QC (L). In this section, we prove that C (L) = QC (L)
for L = P.

Proposition 3.3. Recall that E is the Euler vector field and let Y ∈ Pm with m ≥ −1. Each
element f of the centroid C (P) is homogeneous of degree 0. If we denote f (E) =

∑
i≥−1E

′
i

and f (Y ) =
∑

i≥−1 Yi, where the E ′i, Yi are in Pi, then Ym 6=0 =
[
1
m
E ′0, Y

]
. Moreover Y0

is completely determined by [−E ′0, [C, Y ]] = [C, Y0] for all C ∈ P−1 with [E ′0, Y ] = 0 for
m = 0.
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Proof. If f ∈ C (P), then we have (6) for X = E and Y an homogeneous element in Pm

with m ≥ −1:
f [E, Y ] = [fE, Y ] = [E, fY ] . (8)

Thus
mf (Y ) =

∑
i≥−1

[E ′i, Y ] =
∑
i≥−1

iYi. (9)

Then, we have mf (Y ) =
∑

i≥−1mYi =
∑

i≥−1 iYi. In term of homogeneous components
mYi = iYi and for m 6= i, it yields Yi = 0. Hence, f (Y ) = Ym and f is homogeneous of
degree 0. So, we get f (E) = E ′0 (E of degree 0, then by f is homogeneous of degree 0,
f (E) = E ′0). Moreover, in term of homogeneous components of (8), we have

for all m 6= 0, Ym =

[
1

m
E ′0, Y

]
(10)

In addition, we have for a constant field C ∈ P−1

f [C, Y ] = [fC, Y ] = [C, fY ] . (11)

If m = 0, by the previous result: Y homogeneous of degree 0, then f(Y ) = Y0 and [C, Y ]
of degree -1. By (10) f [C, Y ] = [−E ′0, [C, Y ]] and fC = [−E ′0, C]. Thus, from (11), we
obtain

[−E ′0, [C, Y ]] = [[−E ′0, C] , Y ] = [C, Y0] . (12)

So by the Jacobi identity and (12),we have

[C, [−E ′0, Y ]] = 0, ∀C ∈ P−1. (13)

It yields [E ′0, Y ] = 0 for m = 0. Moreover,

[−E ′0, [C, Y ]] = [C, Y0] for all C ∈ P−1 (14)

determines Y0, because Y0 is of the form βijx
j ∂
∂xi

with βij ∈ R and C = ∂
∂xk

with k = 1, . . . , n,

then [C, Y0] = βik
∂
∂xi

= [−E ′0, [C, Y ]] determines βik for all k and i.

Corollary 3.4. If H0 ⊂ P0 then C (P) = 〈Id〉R, where Id is the identity map. If Hd
0 = P0,

C (P) = 〈Id, Id1, . . . , Idn〉R where Idi with i fixed is such that

Idi

(
xi

∂

∂xi

)
= xi

∂

∂xi
, Idi

(
∂

∂xi

)
=

∂

∂xi

and null otherwise on P0 where Idi (Y ∈ Pm6=0) =
[
1
m
xi ∂

∂xi
, Y
]
.

Proof. We can refer on the previous Proposition with its notions saying that if f ∈ C (P),
then [E ′0, Y ] = 0 for m = 0. If we run Y on the set of linear diagonal vector fields (that is
to say Y takes all values of all elements in this set), we have E ′0 = 0 or E ′0 = cE + c′ixi ∂

∂xi

with c 6= 0 and c′i ∈ R. By (14), [C, Y0] = 0 or [C, Y0 − cY ] = 0 for all C ∈ P−1 of
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the form ∂
∂xk

with k = 1, . . . , n except for P where P0 =
〈
x1 ∂

∂x1
, . . . , xn ∂

∂xn

〉
R. Then it

yields Y0 = 0 or Y0 = cY and (10) Ym 6=0 = 0 or Ym = cY for all m ≥ −1 except for
P0 =

〈
x1 ∂

∂x1
, . . . , xn ∂

∂xn

〉
R , otherwise [E ′0, Y ] = 0 for all Y ∈ P0 is not satisfied. If we have

this last condition on P0, we can conclude following the decomposition of E ′0.

Example 3.5. In R2 with the usual coordinates system (x, y), P =
〈
∂
∂x
, ∂
∂y
, x ∂

∂x
, y ∂

∂y

〉
R
,

f = Id+ Id2 in C (P) is such that

f

(
∂

∂x

)
=

∂

∂x
, f

(
∂

∂y

)
= 2

∂

∂y
, f

(
x
∂

∂x

)
= x

∂

∂x
, f

(
y
∂

∂y

)
= 2y

∂

∂y
.

Corollary 3.6. If P0 = 〈E〉R, then C (P) = 〈Id〉R .

Proof. If we denote f (E) =
∑

i≥−1E
′
i with f ∈ C (P), then E ′0 = cE where c ∈ R. By

equations from Proposition 3.3, f (Y ) = cY for all Y ∈ Pm≥−1.

Corollary 3.7. If E ′0 = cE for c ∈ R, then f ∈ C (P) is always of the form cId.

Proof. This follows directly from the previous corollary.

Remark 3.8. In general, C (P) is neither 〈Id〉R nor 〈Id, Id1, . . . , Idn〉R, for which we can

take an example of P =
〈
∂
∂x
, ∂
∂y
, E, x ∂

∂y

〉
R

in the usual coordinates (x, y) on R2 and

f ∈ C (P) such that f
(
∂
∂x

)
= ∂

∂x
+ ∂

∂y
, f
(
∂
∂y

)
= ∂

∂y
, f (E) = E + x ∂

∂y
, f
(
x ∂
∂y

)
= x ∂

∂y
.

Proposition 3.9. The element f of the quasicentroid QC (P) is such that f (E) = E ′0 and
f (Y ) =

[
1
m
E ′0, Y

]
, where the (E ′0, Y ) is in H0 × Hm≥−1,m6=0. Moreover, [E ′0, Y ] = 0 for

m = 0, then Y0 is completely defined by [−E ′0, [C, Y ]] = [C, Y0] for all C ∈ P−1.

Proof. Following the above notations and using the second part of the Eq. (8), We obtain

[f (E) , E] = [E, f (E)] , sof (E) is homogeneous of degree 0

and ∑
i≥−1

[E ′i, Y ] =
∑
i≥−1

iYi.

In term of homogeneous components: if i ≤ m− 2, Yi = 0 and for i ≥ −1,

[E ′i, Y ] = (m+ i)Ym+i. (15)

Because only E ′0 is the only term of f (E), so Ym is the only term of f (Y ) and for m 6= 0,
Ym =

[
1
m
E ′0, Y

]
. For m + i = 0 in (15) for m = 0, we have [E ′0, Y ] = 0. Using Jacobi

identity and the last equality, we get (12) for f in the quasicentroid and it yields the last
assertion of our theorem.

Now, we can conclude for the centroid and the quasicentroid of P:

Corollary 3.10. For all P, C (P) = QC (P).
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4 Quasiderivation of P

Definition 4.1. The set of quasiderivation QDer (L) of a Lie algebra L is the Lie algebra
of endomorphism f in L such that there exists another endomorphism g of L such that

[f (X) , Y ] + [X, f (Y )] = g [X, Y ] ∀X, Y ∈ L. (16)

It is more convenient to denote f ∈ QDer (L) by (f, f, g) and f ∈ QC (L) by (f,−f, 0).
A quasiderivation of P is a generalization of a derivation of P. We compute QDer (P), it
is clear that:

QDer (P) = QDer0 (P) +
∑
i∈Z∗

QDeri (P)

where QDeri (P) is the set of quasiderivation of degree i.
Lemma 4.1 of [3] can be adapted to our P taking account that it doesn’t need to specify

the dimension of P and P contains a torus 〈E〉R. So

Proposition 4.2. We have the following description of QDer (P):

QDer (P) = QDer0 (P) +
∑
i∈Z

QDer′i (P) + adP

where
QDer′i (P) = {f ∈ QDeri (P) /f(E) = 0} .

In the rest of this paper, we assume n ≥ 2.

Lemma 4.3. Each element (f, f, g) ∈ QDer0 (P) such that f(E) = 0, f|P−1 ≡ 0 and
g|[P1,P−1] ≡ 0, verifies f ≡ 0 and g|(P0	[P,P]) is arbitrary with g|Pi 6=0+[P0,P0] ≡ 0.

Proof. Let us reason by induction knowing that f is homogeneous of degree 0. If X ∈ P−1
then f(X) = 0 by hypothesis, by (16) where Y = E, we have:

[f (X) , E] + [X, f (E)] = g [X,E] .

Then −f (X) = −g (X), because f(E) = 0 and f (X) of degree -1. It yields g(X) = 0
from f(X) = 0.

For all X ∈ P0 by (16) where Y ∈ P−1:

[f (X) , Y ] + [X, f (Y )] = g [X, Y ] .

From the previous results on g and f , the second term of the equality is null and then
[f (X) , Y ] = 0 for all Y ∈ P−1. Thus f(X) ∈ P−1 ∩ P0 = {0} for all X ∈ P0. For
X ∈ P0 ∩ [P,P], we have two cases.

1. The first is X = [Y, Z] with (Y, Z) ∈ P0×P0 where we deduce by definition 4.1 and
the previous result that 0 = [f (Y ) , Z] + [Y, f (Z)] = g [Y, Z] = g(X).
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2. The second case is made by the hypothesis g (X) = 0 where X ∈ [P−1,P1].

It yields g (X ∈ P0 	 [P,P]) is arbitrary.
For all X ∈ P1 by (16) where Y runs in P−1:

[f (X) , Y ] + [X, f (Y )] = g [X, Y ] .

From g ([P−1,P1]) = 0, the second term of the above equality is null. Because of f(Y ) = 0,
we get [f (X) , Y ] = 0 for all Y ∈ P−1. Thus f(X) ∈ P−1 ∩P1 = {0} for all X ∈ P1. But
(16) where Y = E says f(X) = g(X), then g(X) = 0 also.

We set k ≥ 2, we suppose that f|Pt ≡ g|Pt ≡ 0 for all t ≥ k−1. For X ∈ Pk≥2, we write
(16) with Y ∈ P−1. Then we obtain f(X) ∈ P−1 ∩Pk≥2 = {0} for all X ∈ Pk knowing
that f|P−1 ≡ g|Pk−1

≡ 0. Again by (16) with Y = E, we have 0 = −kf(X) = −kg(X) = 0
which yields g(X) = 0 by f(X) = 0.

Proposition 4.4. Suppose that all elements of [P1,P−1] are also elements of [P0,P0]. The
(f, f, g) ∈ QDer0 (P) vanishing on E is of the following form: (LX , LX , LX + k), where
X ∈ H0 and k ∈ End (P,P) such that k is arbitrary on P0 	 [P,P] and null elsewhere.

Proof. Let (f, f, g) ∈ QDer0 (P), such that f(E) = 0. In the system of coordinates on Rn

(x1, . . . , xn), we write f (X0) = X1 ∈ P−1 for X0 ∈ P−1, with f(E) = 0. Like in the proof
of Proposition 2.8 of [2], there exists an unique X ∈ H0 such that f =

〈E〉R+P−1

LX . Then

we write the following (f, f, g)− (LX , LX , LX) ∈ QDer0 (P) with f(E) = LX (E) = 0. If
we denote f ′ = f − LX and g′ = g − LX , we have f ′(E) = 0, f ′ =

P−1

0 and g′|[P1,P−1]
≡ 0

by the first hypothesis in the statement of the present proposition. That is to say, if
X2 ∈ [P1,P−1], then there are (Y, Z) ∈ P0 such that X2 = [Y, Z]. Then

g′ (X2) = [f ′ (Y ) , Z] + [Y, f ′ (Z)] .

By the proof of Lemma 4.3, f ′ (Y ) = f ′ (Z) = 0, thus g′ (X2) = 0. By the same lemma,
(f ′, f ′, g′) ≡ 0 except in P0 	 [P,P] where g′ is arbitrary.

Proposition 4.5. Let (f, f, g) ∈ QDer′i≥1 (P) and adopt all hypothesis of Lemma 4.3. Then
f ≡ g|Pj 6=0+[P0,P0] ≡ 0 and g|(P0	[P,P]) is arbitrary. If (f, f, g) ∈ QDer′−1 (P), we suppose
all hypothesis of Lemma 4.3 except for f|P−1 ≡ 0, we have the same result as the previous
one.

Proof. We prove this Proposition by induction. Let (f, f, g) ∈ QDer′i≥1 (P). By (16)
where X = E and Y runs in P−1, we can say that g|P−1 ≡ 0 knowing f|P−1 ≡ 0 and
f(E) = 0. If X ∈ P0, (16) with Y = E where f(E) = 0 gives [fX,E] = 0. It yields
f(X) = 0 because f(X) ∈ Pi 6=0. Then, in the turn of g, if X ∈ [P0,P0], then Eq. (16)
yields g(X) = 0. In addition, we have g|[P1,P−1] ≡ 0 by hypothesis. Thus if X ∈ [P1,P−1],
g(X) = 0. Next, X ∈ P1, if Y runs in P−1, in (16) we obtain [f (X) ,P−1] = {0}. But the
degree of f is not -2, then f (X) = 0. It follows that the equation (16) with Y = E and this
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X permit us to say that g(X) = 0. Now, we suppose that f = g = 0 on Pt≤l with l ≥ 1
and t ≥ 1. Consider X ∈ Pl+1, if we run Y ∈ P−1 on (16), we have [f (X) ,P−1] = {0}.
It yields f(X) = 0 because f(X) is of degree i+ l + 1 different to −1. If we write Y = E
with this X on (16), we have −(l + 1)g(X) = [f(X), E] = −(i + l + 1)f(X) which is
equal to 0 by the above result on f . Then, we get g(X) = 0 because l + 1 6= 0. For
(f, f, g) ∈ QDer′−1 (P), it is obvious that f|P−1 = g|P−1 ≡ 0. The rest of the proof is the
same as for (f, f, g) ∈ QDer′i≥1 (P).

Proposition 4.6. Consider all hypothesis of Proposition 4.4. Every (f, f, g) in the set
QDeri≥−1, 6=0,1 (P) is of the form(

L−1
i
f(E)i

, L−1
i
f(E)i

, L−1
i
f(E)i

+ k
)
,

where f(E)i the homogeneous term f(E) of degree i and k is an endomorphism of P,
arbitrary on P0 	 [P,P] and null elsewhere.

Proof. Let (f, f, g) ∈ QDeri≥−1, 6=0,1 (P) be such quasiderivation, we have(
f ′ = f − L−1

i
f(E)i

, f ′ = f − L−1
i
f(E)i

, g′ = g − L−1
i
f(E)i

)
∈ QDer′i≥−1, 6=0,1 (P) .

Moreover, by using X = E and Y ∈ P0 in Eq. (16), we have

g′ [E, Y ] = [E, f ′(Y )] .

This yields 0 = [E, f ′(Y )] and f ′(Y ) = 0 because the degree of f ′(Y ) is nonzero. Then
g′|[P0,P0]

= {0} from (16). Knowing that all elements of [P1,P−1] are elements of [P0,P0],
we have g′[P1,P−1]

≡ 0. Next, we will check whether f ′P−1
≡ 0. If i = −1, it is obvious that

f ′P−1
= g′P−1

≡ 0. If i ≥ 2, we take X = ∂
∂xt
∈ P−1 where 1 ≤ t ≤ n is fixed. We write

f ′ (X) = P k

k 6=t
∂
∂xk

+ P t ∂
∂xt

where all P s is a polynomial of degree i, in which all P s doesn’t

depend on xs because of the hypothesis that each linear diagonal field doesn’t belong to
[P,P]. When Y = xt ∂

∂xt
in Eq. (16), 0 = g′

[
∂
∂xt
, xl ∂

∂xl

]
=
[
f ′(X), xl ∂

∂xl

]
with a fixed l 6= t.

Then

P l ∂

∂xl
+ βk P k

k 6=t,l

∂

∂xk
+ αtP t ∂

∂xt
= 0,

where αt, βk ∈ R. It yields P l = 0 for all l 6= t. Thus,

g′
(
∂

∂xt

)
= g′

[
∂

∂xt
, xt

∂

∂xt

]
=

[
f ′
(
∂

∂xt

)
, xt

∂

∂xt

]
= f ′

(
∂

∂xt

)
.

When in Eq.(16), X ∈ Pl≥−1 and Y = E, we get

−l
i
g(X) = L−1

i
f(E)i

(X)− i+ l

i
f(X).

Then
(
f − L−1

i
f(E)i

)
(X) = f(X)−g(X)

i
where X ∈ P−1. If i ≥ 2, f ′ (X) − g′ (X) = 0 for

X ∈ P−1 by the above result, then f (X)− g (X) = 0. Then by Proposition 4.5, we have
f ′ ≡ g′|Pj 6=0+(P0∩[P,P]) ≡ 0 and g′|(P0	[P,P]) is arbitrary.
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Proposition 4.7. We suppose all hypothesis of Proposition 4.4. Every (f, f, g) in the set
QDer1 (P) is of the form(

−Lf(E)1
,−Lf(E)1

,−Lf(E)1
+ k
)

+ (f ′′, f ′′, 0)

where f(E)1 is the homogeneous term of f(E) of degree 1, k is arbitrary on P0 	 [P,P]
and null elsewhere, f ′′|Pl6=−1

is null and f ′′ (P−1) is a subset of
〈
x1 ∂

∂x1
, . . . , xn ∂

∂xn

〉
R.

Proof. Let (f, f, g) ∈ QDer1 (P) be such quasiderivation, we write for i = 1:(
f ′ = f − L−1

i
f(E)i

, f ′ = f − L−1
i
f(E)i

, g′ = g − L−1
i
f(E)i

)
∈ QDer′i 6=0 (P) .

We can assume all results of the first part of the previous proof ending on g′|[P1,P−1]
≡ 0

with i = 1. In this result, we have f ′|P0
≡ 0.

Let us take X ∈ P−1. When Y = E in (16), g′(X) = [f ′(X), E] = 0 because f ′(X) of
degree 0 and f ′(E) = 0. Let us precise X = ∂

∂xj
,
[
∂
∂xj
, xj ∂

∂xj

]
= X and by Eq. (16) with

Y = xj ∂
∂xj

, g′ (X) =
[
f ′(X), xj ∂

∂xj

]
= 0 knowing that f ′(xj ∂

∂xj
) = 0. For all k 6= j fixed,[

∂
∂xj
, xk ∂

∂xk

]
= 0, then (16) where Y = xk ∂

∂xk
yields

[
f
(
∂
∂xj

)
, xk ∂

∂xk

]
= 0 for all k 6= j. We

can conclude that f ′
(
∂
∂xj

)
= αtxt ∂

∂xt
. If we do g′

[
∂
∂xj
, ∂
∂xl

]
=
[
αtxt ∂

∂xt
, ∂
∂xl

]
+
[
∂
∂xj
, βsxs ∂

∂xt

]
,

we obtain αl = βj = 0 for all j 6= l. Then f ′
(
∂
∂xj

)
= αjxj ∂

∂xj
. Thus, let f ′′ ∈ End (P)

be such that f ′′ is null except on P−1 where the value is on
〈
x1 ∂

∂x1
, . . . , xn ∂

∂xn

〉
R such that

f ′
(
∂
∂xj

)
= f ′′

(
∂
∂xj

)
. It is easy to verify that (f ′′, f ′′, 0) is in QDer′1 (P).

We get
(f ′′′ = f ′ − f ′′, f ′′′ = f ′ − f ′′, g′) ∈ QDer′1 (P)

verifying f ′′′(E) = 0, f ′′′|P−1
≡ 0 and g′|[P1,P−1]

≡ 0. Then we can use Proposition 4.5 and
have the following results: f ′′′ = 0, g′|Pt6=0+(P0∩[P,P]) ≡ 0 and g′|(P0	[P,P]) is arbitrary. It
follows the final results.

Definition 4.8. For a fixed i0, j1 < j2 · · · < jp with 1 ≤ p ≤ n,
(
αj1 , . . . , αjp

)
∈ Np and

jl ∈ {1, . . . , n}, the vector field (xj1)
αj1 . . . (xjp)

αjp ∂
∂xi0

is called monomial. We recall that
P is separated, if all homogeneous elements of degree k ≥ −1 are spanned by monomial
vector field in P.

Remark 4.9. In the proof of the previous theorem, the following fact is true, xj ∂
∂xj

/∈ [P,P]
if we adopt the hypothesis on P: [P1,P−1] ⊂ [P0,P0]. In the same proof, we take
X = ∂

∂xj
. It is supposed that P is separated. We can reason as the following, if there

exists Y = xk ∂
∂xj
∈ P0 or Y = xj ∂

∂xk
∈ P0 for j 6= k, 0 = g′ [X, Y ] = [f ′ (X) , Y ] from (16)

knowing f ′(Y ) = 0 and g′|P−1
≡ 0. It yields αj = 0.

Example 4.10. We are in R2 with the habitual coordinates (x, y), P =
〈
∂
∂x
, ∂
∂y
, x ∂

∂x
, y ∂

∂y

〉
R
.

Define an endomorphism f ′′ on P, such that f ′′
(
∂
∂x

)
= x ∂

∂x
, f ′′

(
∂
∂y

)
= y ∂

∂y
and null

otherwise. Then (f ′′, f ′′, 0) is an example of quasiderivation of type Proposition 4.7, which
is neither a derivation nor an element of QC (P).
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Proposition 4.11. Let (f, f, g) ∈ QDer′i≤−2 (P), then f|Pt 6=−(i+1)
≡ g|Pt 6=−(i+1)

≡ 0 with
f(X) = (i+ 1)g(X) for all X ∈ P−(i+1) and g|(P0	[P,P]) is arbitrary.

Proof. Let (f, f, g) ∈ QDer′i≤−2 (P) a such quasiderivation. By the fact that Pt≤−2 = {0},
f = g ≡ 0 on Pt≤0. We reason by induction, we suppose that f = g = 0 on Pt≤0. Consider
X ∈ Pt+1 with t ≥ 0, if we write Y = E on (16), we have

−(t+ 1)g(X) = [f(X), E] = −(i+ t+ 1)f(X).

We take (16) and run Y on P−1, we obtain [f (X) , Y ] = {0}. Hence, if i + t 6= −2, then
f (X) = 0 and g(X) = 0 by the previous equation. Otherwise, f(X) = −(t + 1)g(X) for
all X ∈ Pt+1, that is to say in the case where t+ 1 = −1− i.

Proposition 4.12. If each element of [P1,P−1] is an element of [P0,P0] and P is separated
with all linear diagonal fields in P, then (f, f, g) ∈ QDer′i≤−2 (P) is null except g|(P0	[P,P])

which is arbitrary.

Proof. To fix our idea, we cannot take X = x1P (xt6=1) ∂
∂x1
∈ Pl≥1 because in this case

x1 ∂
∂x1
∈ P0 ∩ [P1,P−1] \ [P0,P0]. So we are forced to take X = P (xt6=1) ∂

∂x1
∈ Pl≥1. By

using f(X) = (i + 1)g(X) for X ∈ Pl=−(i+1) where −(i + 1) ≥ 1 from Proposition 4.11
and when Y = x1 ∂

∂x1
in the Eq. (16) with g(X) = αj ∂

∂xj
where αj ∈ R: we obtain

αj
∂

∂xj
= (i+ 1)α1 ∂

∂x1
.

It yields αj = 0 for all j 6= 1 and α1 = 0 because i + 1 ≤ −1. Thus g(X) and f(X) are
zero.

Next, by using result on odd-derivations in [1], we can prove that (f, f, g) ∈ QDer′−2 (P)
is an odd-derivations of P in the case P0 = 〈E〉R ( [P1,P−1].

Proposition 4.13. Let (f, f, g) ∈ QDer′−2 (P). Then g|P0∩[P,P] ≡ 0 and g|(P0	[P,P]) is
arbitrary. In addition, g|Pi6=0,1

≡ 0 with g (X) = −f (X) for X ∈ P1, f [Y,X ′] = [fX ′, Y ]
for all (X ′, Y ) ∈ P2 ×P−1 and f|Pi6=1,2

≡ 0.

Proof. If f have degree −2, then f|Pi≤0
≡ 0. Thus, applying (16) with (X, Y ) ∈ P1×P−1

and (X, Y ) ∈ P0 ×P0 resp., knowing that f is of degree −2, we obtain that g [X, Y ] = 0
but g|(P0	[P,P]) is arbitrary. Now, let’s take X ∈ P1 and Y = E in (16), we deduce that
g (X) = −f (X) for f of degree −2. Next, we consider X ∈ P2 and Y = E in Eq. (16),
we find g(X) = 0 with f(X) is determined by the same relation, if X ∈ P2 and Y ∈ P−1,
we find that f [Y,X] = [f(X), Y ] taking account the value of f and g on P1. If X ∈ Pk≥3
and Y runs in P−1, by induction we have f (X) = 0 and g (X) = 0 by Eq. (16) when
Y = E.

Let us recall the Theorem 3.10 of [1]:
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Theorem 4.14. We suppose that m ≥ 3 is odd. A linear map D of degree −2 on P, null
on P	P1 is an m-derivation, if and only if:

[D (P1) ,P−P0] = {0}; (17)

D [X, Y ] = [D (Y ) , X] ∀ (X, Y ) ∈ P0 ×P1; (18)

[D (P1) , [P,P] ∩P0] = {0}; (19)

if [X1, [X2, . . . , [Xi, . . . , [Xm−1, Xm] . . . ]]] ∈ P1 where i is the first index with Xi ∈ P1 with
the existence of 1 ≤ j < i such that Xj ∈ P−1 ∪Pt≥2, then

D [X1, [X2, . . . , [Xi, . . . , [Xm−1, Xm] . . . ]]] = 0 (20)

Proposition 4.15. If (f, f, g) ∈ QDer′−2 (P) and if for all X ∈ P2 there exists X ′ ∈ P−1
such that [X,X ′] = 0. Moreover, suppose that P is separated and P0 = 〈E〉R ( [P1,P−1].
Then the endomorphism f is an odd-derivation of P, the endomorphism g = −f on P1

and vanishes otherwise except on 〈E〉R where g is arbitrary.

Proof. The f is an R-linear map of degree −2 on P with (f, f, g) ∈ QDer′−2 (P). For all
X ′ ∈ P2, [X ′, E] = −2X ′, then [f (X ′) , E]+[X ′, f(E)] = g [X ′, E] = −2g (X ′) = 0 by (16)
and Proposition 4.13 saying f(E) = 0 and g(X ′) = 0. It yields that there exists c ∈ R such
that f (X ′) = cE. In addition, for all (X ′, Y ) ∈ P2 × P−1, we have f [Y,X ′] = [fX ′, Y ]
using Proposition 4.13. By hypothesis, there is a Y ∈ P−1 such that [Y,X ′] = 0. We can
choose Y = ∂

∂xj
∈ P−1 for a fixed j. It conducts to 0 = [fX ′, Y ] = −c ∂

∂xj
and c = 0.

We can conclude that f|P2 ≡ 0. Now, if we look at Theorem 4.14, we must check the 4
relations in that theorem for f . Let us take X ∈ P1, Y ∈ Pi 6=0, Z ∈ P0:

1. [f (X) , Y ] = g [X, Y ] − [X, f(Y )] by definition of quasiderivation. Since we have
[X, Y ] /∈ P1, then [f (X) , Y ] = − [X, f(Y )] by Proposition 4.13 saying g|P0∩[P,P] ≡ 0
and g|Pi 6=0,1

≡ 0. Then if Y /∈ P1, [f (X) , Y ] = − [X, f(Y )] = 0 by Proposition 4.13
and the above result on f|P2 ≡ 0. But if Y ∈ P1, because of [f (X) , Y ] and [X, f(Y )]
are in P0 = 〈E〉R ( [P1,P−1], we have [f (X) , Y ] = [X, f(Y )] = 0. So we can resume
[f (X) , Y ] = 0 for all Y ∈ Pi 6=0.

2. We have g [Z,X] = [Z, f (X)], taking into account that f = −g on P1, we obtain
f [Z,X] = [f (X) , Z].

3. • (i) First, consider X ′, X ′′ ∈ P0, [f (X) , [X ′, X ′′]] = g [X, [X ′, X ′′]] . Then it is
equal to g [[X,X ′] , X ′′] + g [X ′, [X,X ′′]] by Jacobi identity. The property of f
conducts this value to [f [X,X ′] , X ′′] + [X ′, f [X,X ′′]] and by f = −g in P1, it
is of the following form

[−g [X,X ′] , X ′′] + [X ′,−g [X,X ′′]] .

Then this expression becomes − [[fX,X ′] , X ′′]− [X ′, [fX,X ′′]]. By the identity
of Jacobi, it is
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− [[fX,X ′′] , X ′]− [[X ′, fX] , X ′′]− 2 [fX, [X ′, X ′′]]

and then

− [g [X,X ′′] , X ′]− [g [X ′, X] , X ′′]− 2g [X, [X ′, X ′′]] .

By f = −g, we have

g [[X,X ′′] , X ′] + g [[X ′, X] , X ′′]− 2g [X, [X ′, X ′′]]

and by the Jacobi identity, we have

−g [X, [X ′, X ′′]]− 2g [X, [X ′, X ′′]] .

By the first relation, it is equal to g [X, [X ′, X ′′]], thus g [X, [X ′, X ′′]] = 0 and
[f (X) , [X ′, X ′′]] = 0.

• (ii) Second, consider (X ′, X ′′) ∈ P1 ×P−1,

[f (X) , [X ′, X ′′]] = g [X, [X ′, X ′′]] .

And it becomes

g [[X,X ′] , X ′′] + g [X ′, [X,X ′′]] = [f [X,X ′] , X ′′] + [fX ′, [X,X ′′]]

= [[fX ′, X] , X ′′] + [X, [fX ′, X ′′]] .

This right term of the above equality becomes [[fX ′, X] , X ′′] because the degree
of f is −2. Thus [[fX ′, X] , X ′′] = 0 by (1). So we conclude that

[f (P1) , [P,P] ∩P0] = {0}.

4. Consider 2k + 1 elements X1, . . . , Xj, . . . , Xi, . . . , X2k+1 on P as in Theorem 4.14,
and knowing that f = −g on P1, we have

f [X1, [X2, . . . , [Xi, . . . , [Xm−1, Xm] . . . ]]]

= [X1, [X2, . . . ,−f [Xj, . . . , [Xi, . . . , [Xm−1, Xm] . . . ]]]] .

With the property of g, it is

[X1, [X2, . . . , [Xj, f [Xj+1, . . . , [Xi, . . . , [Xm−1, Xm] . . . ]]]]] .

By the (1), this expression vanishes.

We conclude that f is a (2k + 1)-derivation on P like in Theorem 4.14. We have f = −g
except on 〈E〉R where g is arbitrary.
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Remark 4.16. In general, the (2k + 1)-derivation of the Proposition 4.15 is not null. We
can see it with one example from [1]: In R3, the Lie algebra P spanned by ∂

∂x
, ∂
∂y

, ∂
∂z

,E, x ∂
∂z

and (x)2 ∂
∂z

admits a 3-derivation of P, D0 defined by D0

(
(x)2 ∂

∂z

)
= ∂

∂z
and null otherwise.

It is easy to check that D0 is in QDer′−2 (P). That is to say (D0, D0,−D0) ∈ QDer′−2 (P).

Proposition 4.17. If we have the hypothesis of Proposition 4.4 and if all linear diagonal
fields are in P, then every elements of (f, f, g) ∈ QDer0 (P) is a sum of an element of
〈Id, Id1, . . . , Idn〉R and a quasiderivation of the type Proposition 4.4.

Proof. If we take such f , we can apply Eq.(16) with X = E and Y a linear diagonal fields
and find that [f (E) , Y ] = 0 for all Y . It conducts to the following facts, there exists Y ′ a
non-null linear diagonal field such that f(E) = Y ′. We take h ∈ 〈Id, Id1, . . . , Idn〉R with
〈Id, Id1, . . . , Idn〉R ⊃ QC (P) by corollary 3.4 such that h (E) = Y ′. This implies that
(f − h, f + h, g) ∈ QDer′0 (P) and by Proposition 4.4, we have the result.

5 The main result on generalized Lie derivations of P and examples

Definition 5.1. The set of all generalized derivations of a Lie algebra L is denoted by
GenDer (L). It is the Lie algebra of endomorphisms f in L such that for every f there
exists another two endomorphisms g, h in L such that

[f (X) , Y ] + [X, h (Y )] = g [X, Y ] (21)

for all X, Y ∈ L.

Definition 5.2. The center of a Lie algebra L is the set Z(L) = {X ∈ L | [X,L] = {0}}.
By [3], It is clear that QDer (L) and GenDer (L) are two sets of Lie algebras and satisfy

QDer (L) ⊂ GenDer (L). Moreover by assuming that a quasiderivation is a generalization
of derivation and a generalized derivation is a generalization of quasiderivation, we have
following result for a centerless Lie algebra L:

adL ⊆ Der (L) ⊆ QDer (L) ⊆ GenDer (L) ⊆ gl (L) .

As we know that the center of P is null by Proposition 2.2, it is interesting to find whether
above inclusions verifies for P or not?.

For our convenience, we denote f ∈ GenDer (L) by (f, h, g), f ∈ QDer (L) by (f, f, g)
and f ∈ QC (L) by (f,−f, 0). Study in [3], holds only for finite dimensional Lie algebras.
But the following equation

(f, h, g) =

(
f + h

2
,
f + h

2
, g

)
+

(
f − h

2
,
h− f

2
, 0

)
is always holds for our L = P. It further yields the following results.

Proposition 5.3. GenDer (P) = QDer (P) +QC (P).
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Theorem 5.4. If P verifies all hypotheses in the Proposition 4.12, then all generalized
derivations of P are of the form

h+ (LX+Y , LX+Y , LX+Y + k) + (f ′′, f ′′, 0)

with h ∈ QC (P) ⊂ 〈Id, Id1, . . . , Idn〉R if〈
x1

∂

∂x1
, . . . , xn

∂

∂xn

〉
R
⊂ P0

and h ∈ 〈Id〉R if
H0 = P0.

Where X, Y ∈ P, k ∈ End (P) is null except on P0 	 [P,P] where k is arbitrary, f ′′ is
a homogeneous map of degree 1, given in Proposition 4.7. f ′′ is null if P0 contains a non
diagonal linear vector field.

Proof. By corollary 3.4, Propositions 5.3, 4.2, 4.4, 4.6, 4.7, 4.12 and 4.17, we have the final
result taking into account that X ∈ H0 must be in the normalizer N of P, because LX is
stable in P. By Theorem 2.4, N = P because all linear diagonal vector fields are in P
which is also separated.

Example 5.5. If we take the example of Example 4.10, we have

GenDer (P) = 〈Id, Id1, Id2〉R + adP +G+K.

Where G is the space of f ′′ in Proposition 4.7 and K is the space of quasiderivations of

the form (0, 0, g), where g is arbitrary and g vanishes except on
〈
x ∂
∂x
, y ∂

∂y

〉
R
.

Example 5.6. In R2, we consider the habitual coordinate system (x, y). The Lie algebra
P is the infinite dimensional vector space〈

∂

∂x
,
∂

∂y
, x

∂

∂x
, y

∂

∂y
, y

∂

∂x
, y2

∂

∂x
, y3

∂

∂x
, . . .

〉
R
,

then
GenDer (P) = 〈Id〉R + adP +K.

Where K is same as in the previous example.
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