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Matrix continued fractions and Expansions of the Error
Function

S. Mennou, A. Chillali and A. Kacha

Abstract. In this paper we recall some results and some criteria on the convergence
of matrix continued fractions. The aim of this paper is to give some properties
and results of continued fractions with matrix arguments. Then we give continued
fraction expansions of the error function erf(A) where A is a matrix. At the end,
some numerical examples illustrating the theoretical results are discussed.

1 Introduction and motivation

The theory of continued fractions has been a topic of great interest over the last two
hundred years. The basic idea of this theory over real numbers is to give an approximation
of various real numbers by the rationals. A continued fraction is an expression obtained
through an iterative process of representing a number as the sum of its integer part and
the reciprocal of another number, then writing this other number as the sum of its integer
part and another reciprocal, and so on. One of the main reasons why continued fractions
are so useful in computations is that they often provide representations for transcendental
functions that are much more generally valid than the classical representation by, say,
the power series. Further, in the convergent case, continued fraction expansions have the
advantage that they converge more rapidly than other numerical algorithms.

Recently, the extension of continued fraction theory from real numbers to the matrix
case has seen several developments and interesting applications (see [1], [3], [6]). Since
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calculations involving matrix valued functions with matrix arguments are feasible with
large computers, it will be an interesting attempt to develop such a matrix theory. In this
direction, and generally in a Banach space, few convergence results on non-commutative
continued fraction are known.

Two theorems are stated in [10], where Wynn reviews many aspects of the theory of
continued fractions, whose elements do not commute under a multiplication law. In Banach
space, extensions of Worpitsky’s have been proven by Haydan [2] and Negoescu [8].

In [9], the authors give several convergence criteria on non-commutative continued
fractions whose arguments are m×m matrices of the form K(Bn/An).

The error function erf is a special function that is important since it appears in the
solutions of diffusion problems in heat, mass and momentum transfer, probability theory,
theory of errors and various branches of mathematical physics. The closely related Fresnel
integrals, which are fundamental in the theory of optics, can be derived directly from the
error function.

2 Preliminaries and notations

Throughout this paper, we denote byMm the set of m×m real (or complex) matrices
endowed with the subordinate matrix infinity norm defined by,

∀A = (ai,j), A ∈Mm, ‖A‖ = max
1≤i≤m

m∑
j=1

|ai,j|.

This norm satisfies the inequality

‖AB‖ ≤ ‖A‖‖B‖ .

Let A ∈ Mm, A is said to be positive semi-definite (resp. positive definite) if A is
symmetric and

∀x ∈ Rm, (Ax, x) ≥ 0 (resp. ∀x ∈ Rm, x 6= 0, (Ax, x) > 0)

where (·, ·) denotes the standard scalar product of Rm defined by

∀x = (x1, . . . , xm) ∈ Rm,∀y = (y1, . . . , ym) ∈ Rm : (x, y) =
m∑
i=1

xiyi .

For any A,B ∈Mm with B invertible, we write A/B := B−1A, in particular, if A = I,
where I is the mth order identity matrix, then we write I/B = B−1. It is clear that for
any invertible matrix C, we have

CA

CB
=
A

B
.
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Definition 2.1. Let (An)n≥0, (Bn)n≥1 be two nonzero sequences of Mm. The continued
fraction of (An) and (Bn), denoted by K(Bn/An), is the quantity

A0 +
B1

A1 + B2

A2+...

=
[
A0;

B1

A1

,
B2

A2

, . . .
]
.

Sometimes, we use the notation
[
A0;

Bk

Ak

]+∞
k=1

or K(Bn/An), where[
A0;

Bk

Ak

]n
k=1

=

[
A0;

B1

A1

,
B2

A2

, . . . ,
Bn

An

]
.

The fractions Bn

An
and Pn

Qn
:=
[
A0;

Bk

Ak

]n
k=1

are called, respectively, the nth partial quotient

and the nth convergent of the continued fraction K(Bn/An).
When Bn = I for all n ≥ 1, then K(I/An) is called an ordinary continued fraction.

The following proposition gives an adequate method to calculate K(Bn/An).

Proposition 2.2. The elements (Pn)n≥−1 and (Qn)n≥−1 of the n
th convergent of K(Bn/An)

are given by the relationships{
P−1 = I, P0 = A0

Q−1 = 0, Q0 = I
and

{
Pn = AnPn−1 +BnPn−2

Qn = AnQn−1 +BnQn−2
, n ≥ 1 .

Proof. This can be done by induction.

The proof of the next Proposition is elementary and we leave it to the reader.

Proposition 2.3. For any two matrices C and D with C invertible, we have

C

[
A0;

Bk

Ak

]n
k=1

D =

[
CA0D;

B1D

A1C−1
,
B2C

−1

A2

,
Bk

Ak

]n
k=3

. (1)

The continued fraction K(Bn/An) converges in Mm if the sequence

(Fn) =
( Pn
Qn

)
= (Q−1n Pn)

converges in Mm in the sense that there exists a matrix F ∈Mm such that

lim
n→+∞

||Fn − F || = 0.

In the opposite case, we say that K(Bn/An) is divergent. It is clear that

Pn
Qn

= A0 +
n∑
i=1

(Pi
Qi

− Pi−1
Qi−1

)
, (2)

and from (2), we see that the continued fraction K(Bn/An) converges in Mm if and only

if the series
+∞∑
n=1

( Pn

Qn
− Pn−1

Qn−1
) converges in Mm.
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Definition 2.4. Let (An), (Bn), (Cn) and (Dn) be four sequences of matrices. We say that
the continued fractions K(Bn/An) and K(Dn/Cn) are equivalent if we have Fn = Gn for all
n ≥ 1, where Fn and Gn are the nth convergent of K(Bn/An) and K(Dn/Cn) respectively.

The following lemma characterizes equivalence of continued fractions.

Lemma 2.5 ([4]). Let (rn) be a non-zero sequence of real numbers. The continued fractions[
a0;

r1b1
r1a1

,
r2r1b2
r2a2

, . . . ,
rnrn−1bn
rnan

, . . .

]
and

[
a0;

b1
a1
,
b2
a2
, . . . ,

bn
an
, . . .

]
are equivalent.

We also recall the following Lemma. From the expansion of a function given by its
Taylor series, we give the expansion in continued fractions of the series that was established
by Euler.

Lemma 2.6 ([5]). Let f be a function with Taylor series expansion f(x) =
+∞∑
n=0

cnx
n in

D ⊂ R. Then, the expansion in continued fraction of f(x) is

f(x) =

[
c0;

c1x

1
,
−c2x
c1 + c2x

,
−c1c3x
c2 + c3x

, . . .
−cn−2cnx
cn−1 + cnx

, . . .

]
=

[
c0
1
,
−c1x
c0 + c1x

,
−c0c2x
c1 + c2x

,
−c1c3x
c2 + c3x

, . . . ,
−cn−2cnx
cn−1 + cnx

, . . .

]
.

Remark 2.7. Let (An) and (Bn) be two sequences of Mm. Then we notice that we can
write the first convergents of the continued fraction K(Bn/An) by:

F1 = A0 + A−11 B1 = A0 + (B−11 A1)
−1.

F2 = A0 + (A1 + A−12 B2)
−1B1 = A0 + (B−11 A1 + (B−12 A2B1)

−1)−1.

If we put, A∗1 = B−11 A1 and A∗2 = B−12 A2B1, we have

F1 = A0 +
I

A∗1
, F2 = A0 +

I

A∗1 + I
A∗

2

.

Generally, we prove by a recurrence that if we put for all k ≥ 1,

A∗2k = (B2k . . . B2)
−1A2kB2k−1 . . . B1

and
A∗2k+1 = (B2k+1 . . . B1)

−1A2k+1B2k . . . B2,

then the continued fractions A0 +K(Bn/An) and A0 +K(I/A∗n) are equivalent.

So, the convergence of one of these continued fractions implies the convergence of the
other continued fraction.
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Theorem 2.8 ([12]). Let all the elements of An(n = 1, 2, . . .) be positive, namely, An are
positive matrices for all n, then the matrix continued fraction K(I/An) converges if and

only if
+∞∑
n=0

||An|| =∞.

We will use the following Theorem to prove our main result.

Theorem 2.9 ([9]). Let (An), (Bn) be two sequences ofMm. If

||(B2k−2 . . . B2)
−1A−12k−1B2k−1 . . . B1|| ≤ α

and
||(B2k−1 . . . B1)

−1A−12k B2k . . . B2)|| ≤ β

for all k ≥ 1, where 0 < α < 1, 0 < β < 1 and αβ ≤ 1/4, then the continued fraction
K(Bn/An) converges inMm.

We need to present the following Proposition:

Proposition 2.10 ([7]). Let C ∈Mm such that ||C|| < 1, then the matrix I−C is invertible
and we have

||(I − C)−1|| ≤ 1

1− ||C||
. (3)

To end this section, we give the following Theorem.

Theorem 2.11 ([11]). If the function f(x) can be expanded in a power series in the circle
|x− x0| < r, namely

f(x) =
+∞∑
p=0

αp(x− x0)p, (4)

then this expansion remains valid when the scalar argument x is replaced by a matrix A
whose characteristic values lie within the circle of convergence.

3 Main results

3.1 The real case

In mathematics, the error function, also called the Gauss error function, is a special
function of sigmoid shape that occurs in probability, statistics and partial differential
equations describing diffusion. It is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, |x| <∞

where the coefficient in front of the integral normalizes erf(+∞) = 1. A plot of erf(x) over
the range −3 ≤ x ≤ 3 is shown as follows.
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Figure 1: plot of function error.

The power series expansion for the error function is given by

erf(x) =
2√
π

+∞∑
n=0

(−1)n

(2n+ 1)n!
x2n+1. (5)

Accordingly, we have

erf(x) =
2√
π

+∞∑
n=0

(−1)nxn+1

(2n+ 1)n!
xn. (6)

Lemma 3.1. Let x be a real number. Then the continued fraction expansion of the error
function is

erf(x) =

[
0;

(2/
√
π)x

1
,

x2

3− x2
,

−(n− 1)(2n− 1)2x2

(−1)n−1(n(2n+ 1)− (2n− 1)x2)

]+∞
n=2

. (7)

Proof. We use Lemma 2.6 for the function

g(x) =
+∞∑
n=0

(−1)nxn+1

(2n+ 1)n!
xn, cn =

(−1)nxn+1

(2n+ 1)n!
.

So, we have

c0
1

=
x

1
,

−c1x
c0 + c1x

=
x3

3
3x−x3

3

,
−c0c2x
c1 + c2x

=
−x5
10

−10x2+3x4

30

.

For n ≥ 3, we get

cn−2cnx =
(−1)n−2xn−2+1

(2(n− 2) + 1)(n− 2)!
· (−1)nxn+1

(2n+ 1)n!
x

=
x2n+1

n(n− 1)(2n+ 1)(2n− 3)((n− 2)!)2
.
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Furthermore, we have

cn−1 + cnx =
(−1)n−1xn−1+1

(2(n− 1) + 1)(n− 1)!
+

(−1)nxn+1

(2n+ 1)n!
x

=
(−1)n−1xn

(n− 1)!
(

1

2n− 1
+

−x2

n(2n+ 1)
)

=
(−1)n−1(n(2n+ 1)− (2n− 1)x2)

(2n+ 1)(2n− 1)n!
xn .

Then, we obtain

−cn−2.cnx
cn−1 + cnx

=

−x2n+1

n(n−1)(2n+1)(2n−3)((n−2)!)2

(−1)n−1(n(2n+1)−(2n−1)x2)
(2n+1)(2n−1)n! xn

.

Therefore, the continued fraction expansion of erf(x) = 2√
π
g(x) is

erf(x) =

[
0;
bn
an

]+∞
n=1

=

[
0;

(2/
√
π)x

1
,

x3

3
3x−x3

3

,
−x5
10

−10x2+3x4

30

,

−x2n+1

n(n−1)(2n+1)(2n−3)((n−2)!)2

(−1)n−1(n(2n+1)−(2n−1)x2)
(2n+1)(2n−1)n! xn

]+∞
n=3

.

Let us define the sequence (rn)n≥1 by{
r1 = 1

rn = (2n−1)(2n−3)((n−1)!)
xn−1 , for n ≥ 2.

Then, we have

r1b1
r1a1

=
(2/
√
π)x

1
,

r1r2b2
r2a2

=
x2

3− x2
,

rnrn+1bn+1

rn+1an+1

=
−(n− 1)(2n− 1)2x2

(1−)n−1(n(2n+ 1)− (2n− 1)x2)
for n ≥ 2.

By applying the result of Lemma 2.5 to the sequence (rn)n≥1, we obtain

erf(x) =

[
0;

(2/
√
π)x

1
,

x2

3− x2
,
−9x2

−10 + 3x2
,

−(n− 1)(2n− 1)2x2

(−1)n−1(n(2n+ 1)− (2n− 1)x2)

]+∞
n=3

=

[
0;

(2/
√
π)x

1
,

x2

3− x2
,

−(n− 1)(2n− 1)2x2

(−1)n−1(n(2n+ 1)− (2n− 1)x2)

]+∞
n=2

and the proof is complete.
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3.2 The matrix case

According to Theorem 2.11, we have

Definition 3.2. Let A be a matrix in Mm. Then we define the error function by the
expression

erf(A) =
2√
π

+∞∑
n=0

(−1)n

(2n+ 1)n!
A2n+1. (8)

Now, we treat the matrix case,

Theorem 3.3. Let A be a matrix in Mm, such that ||A|| = α, where 0 < α < 1
2
. The

continued fraction[
0;

(2/
√
π)A

I
,

A2

3I − A2
,

−(n− 1)(2n− 1)2A2

(−1)n−1(n(2n+ 1)I − (2n− 1)A2)

]+∞
n=2

converges inMm. Furthermore, this continued fraction represents erf(A). So

erf(A) =

[
0;

(2/
√
π)A

I
,

A2

3I − A2
,

−(n− 1)(2n− 1)2A2

(−1)n−1(n(2n+ 1)I − (2n− 1)A2)

]+∞
n=2

.

Proof. We study the convergence of the continued fraction K(Bk/Ak) with{
A1 = I, A2 = 3I − A2,

B1 = (2/
√
π)A,B2 = A2,

and for k ≥ 3, we have:{
Ak = (−1)k−2((k − 1)(2k − 1)I − (2k − 3)A2),

Bk = −(k − 2)(2k − 3)2A2,

we check that the conditions of Theorem 2.9 are satisfied:

B2k−2 . . . B2 = ±((2k − 2)− 2)(2(2k − 2)− 3)2 . . . (4− 2)(2 · 4− 3)2A2(k−1)

= ±(2k − 4)(4k − 7)2 . . . 50A2(k−1),

A−12k−1 = −((2k − 2)(4k − 3)I − (4k − 5)A2)−1

and

B2k−1B2k−3 . . . B1

= ±(2k − 1− 2)(2(2k − 1)− 3)2 . . . (3− 2)(2 · 3− 3)2 · (2/
√
π)A2k−1

= ±(2/
√
π)(2k − 3)(4k − 5)2 · . . . · 9A2k−1.
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Then, we have:

‖(B2k−2 . . . B2)
−1A−12k−1B2k−1B2k−3 . . . B1‖

=

∥∥∥∥ 1

(2k − 4)(4k − 7)2 . . . 50
A−2(k−1)((2k − 2)(4k − 3)I − (4k − 5)A2)−1(2/

√
π)(2k − 3)(4k − 5)2 . . . 9A2(k−1)+1

∥∥∥∥
≤ (2/

√
π)(2k − 3)(4k − 5)2 . . . 9

(2k − 4)(4k − 7)2 . . . 50
‖A−2(k−1)((2k − 2)(4k − 3)I − (4k − 5)A2)−1A2(k−1)+1‖.

Now, the matrices ((2k − 2)(4k − 3)I − (4k − 5)A2)−1 and A−2(k−1) commute, so the
above inequality becomes∥∥(B2k−2 . . . B2)

−1A−12k−1B2k−1B2k−3 . . . B1

∥∥
≤ (2/

√
π)(2k − 3)(4k − 5)2 . . . 9

(2k − 4)(4k − 7)2 . . . 50

∥∥∥∥(I − (4k − 5)

(2k − 2)(4k − 3)
A2)−1A

∥∥∥∥ .
By Proposition 2.10 and the fact that ||A|| < 1/2, we obtain∥∥∥∥(I − (4k − 3)

(2k − 1)(4k − 1)
A2)−1

∥∥∥∥ ≤ 1

1−
∥∥∥ (4k−5)
(2k−2)(4k−3)A

2

∥∥∥ < 1

It implies that for all sufficiently large k, we get

||B2k−2 . . . B2)
−1A−12k−1B2k−1B2k−3 . . . B1|| ≤ ||A|| = α < 1/2.

To prove the second inequality of Theorem 2.9, we have

(B2k−1B2k−3 . . . B1)
−1A−12k B2k . . . B2

=
(2k − 2)(4k − 3)2 . . . 50

(2/
√
π)(2k − 3)(4k − 5)2 . . . 9

A2(k−1)+2

A2(k−1)+1

(
I − 4k − 3

(2k − 1)(4k − 1)
A2

)−1
Again using the fact that the matrices

(
I − 4k−3

(2k−1)(4k−1)A
2
)−1

and A2k−1 commute, the

Proposition 2.10 and passing to the norm, we get

||(B2k−1B2k−3 . . . B1)
−1A−12k B2k . . . B2|| ≤ ||A|| = α < 1/2

which completes the proof.

4 Numerical applications

This section will provide some numerical data to illustrate the preceding results. The
focus will be on two cases:
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Figure 2: Iteration 1.

4.1 Real case:

• The following table clarifies the differences between erf(x) and its first convergents
when applying Lemma 3.1.

x (erf −F1)(x) (erf −F2)(x) (erf −F3)(x) (erf −F4)(x) (erf −F5)(x)/ erf(x)
0.005 -0.47015e-7 0.1e-11 0.1e-11 0.1e-11 0.1e-11
0.05 -0.00004698055 0.3525e-7 -0.2e-10 0.1e-10 0
0.075 -0.15841090e-3 0.26742e-6 -0.35e-9 -0.1e-10 -0.1e-10
0.1 -0.3750007e-3 0.11257e-5 -0.27e-8 0 0
0.15 -0.12609036e-2 0.85229e-5 -0.457e-7 0.3e-9 0
0.2 -0.29732442e-2 0.357669e-4 -0.3412e-6 0.27e-8 0
0.25 -0.57684016e-2 0.1085733e-3 -0.16201e-5 0.196e-7 -0.4e-9
0.3 -0.98869906e-2 0.2684219e-3 -0.57742e-5 0.1014e-6 -0.12e-8
0.35 -0.155506548e-1 0.5757641e-3 -0.168817e-4 0.4037e-6 -0.81e-8
0.4 -0.229593118e-1 0.11127771e-2 -0.426832e-4 0.13344e-5 -0.351e-7
0.45 -0.322889054e-1 0.19856118e-2 -0.965652e-4 0.38255e-5 -0.1275e-6

We can clearly see that F5 is approximately the exact value of erf(x).

• The following graphics illustrate the approximations of erf(x) in terms of continued
fractions.

After the first iteration, the convergence of (Fn(x)) to erf(x) is very rapid. It is hard
to distinguish between the curve of the convergents and that of erf(x), for 0 ≤ x ≤ 0.5.
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Figure 3: Iteration 2.

Figure 4: Iteration 3.
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4.2 Matrix case:

Example 4.1. Let A be a matrix such that

A =

 1
3

1
17

−2
23

1
11


The value of erf(A) is given by

erf(A) =

 0.3640064111 0.06327099117

−0.09353103045 0.1032532354

 .

Using the expansion of Theorem 3.3, we can obtain the following convergents of erf(A) :

F1 =

 0.3636532973 0.06317676555

−0.09339174038 0.1032884453

 .

F2 =

 0.3640145285 0.06327316896

−0.09353424976 0.1032523777

 .

F3 =

 0.3640062588 0.06327095029

−0.09353097002 0.1032532515

 .

F4 =

 0.3640064133 0.06327099181

−0.09353103134 0.1032532351

 .

F5 =

 0.3640064109 0.06327099114

−0.09353103039 0.1032532353

 .

Example 4.2. Let A be a matrix such that

A =


1
15

1
9

0

0 1
20

0

1
7

0 1
5

 .

The value of erf(A) is given by

erf(A) =


0.07511398139 −0.1249466906 0

0 0.05637197780 0

0.1581306512 0.0018630324 0.2227025892

 .
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We calculate erf(A) by using the expansion given in Theorem 3.3. The first convergents
are

F1 =


0.07511383296 −0.1249459359 0

0 0.05637194255 0

0.1580924886 0.001890582379 0.2226668223

 .

F2 =


0.07511398151 −0.1249466915 0

0 0.05637197782 0

0.1581310167 0.001862762625 0.2227029304

 .

F3 =


0.07511398140 −0.1249466906 0

0 0.05637197779 0

0.1581306484 0.001863034561 0.2227025865

 .

F4 =


0.07511398140 −0.1249466906 0

0 0.05637197779 0

0.1581306513 0.001863032439 0.2227025892

 .

F5 =


0.07511398140 −0.1249466906 0

0 0.05637197779 0

0.1581306512 0.001863032453 0.2227025892

 .

Example 4.3. Let A be a matrix such that

A =



0.1 −0.02 0 0 0

0 0.008 0 0 0

0.015 −0.075 0.025 −0.09 0

0.001 0 0 0.05 0

0.002 0 0 0.05 0.002


.
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The value of erf(A) is given by

erf(A) =



0.1124632135 −0.02248610288 0 0.000007479569022 0.00001649965871

−0.000002023944323 0.009027140204 0 −0.00002255022425 0.02256695121

0.01685888359 −0.08458907646 0.02820360331 −0.1013779889 0.00002199040709

0.001121818739 0.000001184002249 0 0.05637197730 1.495913804 10−7

0.002246257465 0.000002023944322 0 0.05637002255 0.002257054843


.

Now, let us apply the expansion of Theorem 3.3 to obtain the following approximations
of erf(A)

F1 =



0.1128379167 −0.02256758334 0 0 0

0 0.009027033336 0 0 0.02256758334

0.01692568750 −0.08462843752 0.02820947918 −0.1015541250 0

0.001128379167 0 0 0.05641895835 0

0.002256758334 0 0 0.05641895835 0.002256758334


,

F2 =



0.1124620912 −0.02248585859 0 0.000007522527778 0.00001654956112

−0.000002031082501 0.009027141660 0 −0.00002256758334 0.02256695145

0.01685868999 −0.08458902888 0.02820360220 −0.1013778158 0.00002200339376

0.001121796955 0.000001188559389 0 0.05637194255 1.504505556 10−7

0.002246223786 0.000002031082501 0 0.05636998669 0.002257056226


,

F3 =



0.1124632161 −0.02248610346 0 0.000007479459802 0.00001649953872

−0.000002023926862 0.009027140199 0 −0.00002255019727 0.02256695120

0.01685888405 −0.08458907661 0.02820360330 −0.1013779889, 0.00002199031849]

0.001121818792 0.000001183991006 0 0.05637197734 1.495891960 10−7

0.002246257546 0.000002023926862 0 0.05637002258 0.002257054839


,

F4 =



0.1124632135 −0.02248610288 0 0.000007479574705 0.00001649965756

−0.000002023944490 0.009027140205 0 −0.00002255020712 0.02256695120

0.01685888359 −0.08458907650 0.02820360330 −0.1013779888 0.00002199033965

0.001121818739 0.000001184002463 0 0.05637197732 1.495914941 10−7

0.002246257465 0.000002023944490 0 0.05637002257 0.002257054844


,
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F5 =



0.1124632135 −0.02248610288 0 0.000007479574479 0.00001649965732]

−0.000002023944456 0.009027140205 0 −0.00002255020711 0.02256695120

0.01685888360 −0.08458907650 0.02820360330 −0.1013779888 0.00002199033962

0.001121818739 0.000001184002441 0 0.05637197732 1.495914896 10−7

0.002246257465 0.000002023944456 0 0.05637002257 0.002257054844


.

In the examples above, we can clearly see that F5 is approximately the exact value of
erf(A). This shows the importance of the continued fractions approach.
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