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On the convergence of random Fourier-Jacobi series of con-
tinuous functions

Partiswari Maharana and Sabita Sahoo

Abstract. The interest in orthogonal polynomials and random Fourier series in nu-
merous branches of science and a few studies on random Fourier series in orthogonal
polynomials inspired us to focus on random Fourier series in Jacobi polynomials. In
the present note, an attempt has been made to investigate the stochastic convergence
of some random Jacobi series. We looked into the random series

∑∞
n=0 dnrn(ω)ϕn(y)

in orthogonal polynomials ϕn(y) with random variables rn(ω). The random coeffi-
cients rn(ω) are the Fourier-Jacobi coefficients of continuous stochastic processes such
as symmetric stable process and Wiener process. The ϕn(y) are chosen to be the Ja-
cobi polynomials and their variants depending on the random variables associated
with the kind of stochastic process. The convergence of random series is established
for different parameters γ, δ of the Jacobi polynomials with corresponding choice
of the scalars dn which are Fourier-Jacobi coefficients of a suitable class of contin-
uous functions. The sum functions of the random Fourier-Jacobi series associated
with continuous stochastic processes are observed to be the stochastic integrals. The
continuity properties of the sum functions are also discussed.

1 Introduction

In the early 1800s, the Fourier series was invented to solve the problem of heat diffusion
in a continuous medium. It has widespread application in different branches of science. The
beginning of the study of random series of functions in the 1930s by Paley and Zygmund
in their pioneering works gave a new direction to look into Fourier series with random
coefficients. Kahane, Marcus, and Pisier have synthesized the most prominent work on
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the random Fourier series, and many problems are still open today. The random Fourier
series plays a vital role in electrical engineering, signal processing, optics, etc., because
white noise, which is an inherent part of all these, is a random signal. It is also used in
image encryption and decryption [5], [6], and the generation of random noise [3].

The orthogonal polynomials, which originated in the 19th century, play an essential
role in mathematical physics. There has been extensive study of the Fourier series in
orthogonal polynomials. Marian and Marian [8] studied power series involving orthogonal
polynomials, which occur in the problems of quantum optics. However, the random Fourier
series in orthogonal polynomials have received very little attention. Some of the reasons
are the difficulty of dealing with it and the lack of literature on its application to physical
problems. In 2007, Liu and Liu [5], [6] defined the random Fourier transform in Hermite
polynomials and applied it in the field of image encryption and decryption. They also
expected its other kind of applications in optics and information technology, etc. This
motivated us to explore random Fourier series in orthogonal polynomials.

Liu and Liu obtained a method to define the random Fourier transform while investi-
gating the multiplicity and complexity of eigenvalues of the fractional Fourier transform.
They used the Fourier series expansion in Hermite polynomials of functions f that belong
to L2(R) in the form of

f(y) :=
∞∑
n=1

dnϕn(y),

where

dn :=

∫ ∞
−∞

f(y)ϕn(y)dy

are the Fourier-Hermite coefficients of f and ϕn(y) are the Hermite Gaussian functions.
Since Hermite Gaussian functions are eigenfunctions of the Fourier transform defined on
L2(R), with corresponding eigenvalues

λn := exp
[−iπ

2
mod (n, 4)

]
,

where mod (n, 4) is the set of integers modulo 4. It leads to finding the Fourier transform
F of f as

∞∑
n=1

dnλnϕn(y).

Further, the eigenfunctions of fractional Fourier transform of f of rational order β are the
same as the Hermite Gaussian functions, but correspond to the eigenvalues λβn. This helps
to express the fractional Fourier transform Fβ of f of rational order β in series form as

∞∑
n=0

dnλ
β
nϕn(y), (1)

where

λβn =: exp
{−inβπ

2

}
, n = 0, 1, 2, . . . . (2)
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However λβn can also be expressed as

λβn :=
[

exp
−inπ

2

]β
, n = 0, 1, . . . . (3)

which is same as the expression in (2). But (3) is different from (2) as it generates many
different values in comparison to the 4 fixed values obtained from (2). Suppose the rational
number β = P

Q
, where P and Q are integers, then the fractional eigenvalue is written as

λβn :=
[

exp
−iπn

2

]β
= exp

[
− iP

(πn
2

+ 2kπ
)
/Q
]
, (4)

where k = 0, 1, 2, . . . , Q− 1. Hence, there exist Q possible eigenvalues λβn for every n. For
the Nth partial sum of the series (1), the eigenvalues λβn have QN choices, which is a large
number. Thus their are QN different results for the Nth partial sum of the fractional
Fourier transform. Now, if the fractional order β is extended to an irrational order r, let
it be approximated by the fraction P

Q
. When the distance between r and P

Q
approaches

to zero, then the denominator Q will approach to infinity and the number of eigenvalues
in (4) will spread all over the entire unit circle. Thus the eigenvalues corresponding to
every eigenfunction can have infinite choices. The infinite number of eigenvalues make the
choice of eigenvalues in (4) in an absolutely random way from the unit circle in C. Let
these infinite number of eigenvalues be denoted as R(λn), and the series (1) become

R[f(y)] :=
∞∑
n=0

dnR(λn)ϕn(y), (5)

where R(λn) := exp[iπ Random(n)] are randomly chosen values on the unit circle in C.
They called (5) as the random Fourier transform instead of Fourier transform of irrational
order. However, this random Fourier transform is found to be a random Fourier series
in orthogonal Hermite polynomials. It raises the question of what would happen if the
random coefficients R(λn) selected from the unit circle in C were replaced by other random
variables in the random series (5).

Our purpose in this article is to look at the random series

∞∑
n=0

dnrn(ω)ϕn(y) (6)

in orthogonal polynomials ϕn(y) with random coefficients rn(ω) and the scalars dn. In this
work, the orthogonal polynomials ϕn(y) are considered to be the Jacobi polynomials. The
Jacobi polynomials have great importance in a hierarchy of the orthogonal polynomial
classes and found widespread use in all areas of science and engineering. Recently, Arenas,
Ciaurri, and Labarga [1] studied the convergence of the Fourier-Jacobi series in a discrete



52 Partiswari Maharana and Sabita Sahoo

version. For parameters γ, δ > −1, denote p
(γ,δ)
n (y), n ∈ N to be the orthonormal Jacobi

polynomials with respect to the Jacobi weight ρ(γ,δ)(y) := (1− y)γ(1 + y)δ, y ∈ [−1, 1].
The literature on random Fourier series (6) gives a way to deal with random Fourier

series in Jacobi polynomials. Nayak, Pattanayak, Mishra [9] discussed the convergence,
summability of random Fourier series associated with symmetric stable process of index
α ∈ [1, 2] and shown that the random Fourier series converges in probability to a stochastic
integral. We know that, if X(t, ω), t ∈ R is a continuous stochastic process with indepen-
dent increments and f is a continuous function in [a, b], then the stochastic integral

b∫
a

f(t)dX(t, ω) (7)

is defined in the sense of probability and is a random variable (Lukacs [7]). Further, if
X(t, ω) is a symmetric stable process of index α ∈ [1, 2], then the stochastic integral (7)
is defined in the sense of probability, for f ∈ Lp[a,b], p ≥ α ≥ 1 [9]. In particular, if

f(t) = ϕn(t) is the orthonormal Jacobi polynomial p
(γ,δ)
n (t), γ, δ > −1, then p

(γ,δ)
n (t)ρ(η,τ)(t)

is continuous in [−1, 1], for η, τ ≥ 0 and hence the integrals

An(ω) :=

∫ 1

−1
p(γ,δ)n (t)ρ(η,τ)(t)dX(t, ω) (8)

exist and are random variables, for either of the choice of the stochastic process X(t, ω).
The random variables An(ω) are called the Fourier-Jacobi coefficients of the corresponding
stochastic process X(t, ω). These An(ω) can be seen to be independent if X(t, ω) is the
Wiener process but are no more independent if X(t, ω) is the symmetric stable process. In
this article the random coefficients rn(ω) in the random series (6) are chosen to be these
An(ω). Let us define an as

an :=

∫ 1

−1
f(t)p(γ,δ)n (t)ρ(γ,δ)(t)dt, γ, δ > −1, (9)

for a suitable function f such that it exists. The an are called the Fourier-Jacobi coefficients
of the function f. Consider the scalars dn in the random series (6) to be these an. The
series (6) is now called the random Fourier-Jacobi series. It is observed that the different
mode of convergence of these random Fourier–Jacobi series depends on the parameters
γ, δ, η and τ associated with the Jacobi polynomials, the choice of the scalars an and the
random variables An(ω). This will create a new area of research in mathematical statistics,
opening a scope to look into random Fourier–Jacobi series of functions from different
function spaces, their summability, etc.

This article is organized as follows. The convergence of the random series (6) associated
with symmetric stable process, for γ, δ > −1 is presented in section 3. In this section, the
convergence of the series (6) for the particular value γ = 1/2, δ = −1/2 is also established.
For this case ϕn(t) are considered to be the weighted orthonormal Jacobi polynomials
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u
(1/2,−1/2)
n (t), t ∈ [−1, 1] (see equation (11)). Further, the random Fourier-Jacobi series (6)

associated with Wiener process is studied in section 4, where the orthogonal polynomials
ϕn(t) are considered to be the modified Jacobi polynomials q

(γ,δ)
n (t) (see equation (20)). All

the random Jacobi series dealt with are found to be convergent to the stochastic integral.
The continuity property of these sum functions are discussed in section 5.

In the following section we recall some symbols and results on the Fourier-Jacobi series
of different classes of functions.

2 Preliminaries and results on Fourier-Jacobi series

This section serves to recall the relevant materials from [2], [10], [11] which will be used
in the forthcoming sections.

Zorshchikov [11] in 1967 first derived the condition which guarantees the uniform con-
vergence of Fourier-Jacobi series

s(γ,δ)(f, y) :=
∞∑
n=0

anp
(γ,δ)
n (y), n ∈ N (10)

on the whole segment [−1, 1], where an represents the Fourier-Jacobi coefficients of con-
tinuous functions f defined as in (9). He established this result if the scalars an are the
Fourier-Jacobi coefficients of some class of continuous functions f in DL[−1, 1] whose mod-
ulus of continuity decreases rapidly in comparison to log n. The class of functions DL[a, b]
is defined below.

Definition 2.1 ([4]). The modulus of continuity of a function f in the space of continuous
functions on [a, b] with a uniform norm is defined as

$(f, ε, [a, b]) := sup
|x−t|≤ε

{
|f(x)− f(t)|, x, t ∈ [a, b]

}
.

Definition 2.2 ([4]). The DL[a, b] represents the class of functions f in C[a, b], if

$
(
f,

1

n
, [a, b]

)
ln n = o(1), as n→∞.

In 1973, Prasad and Hayashi [10] considered the weighted Jacobi polynomials u
(1/2,−1/2)
n

which are defined by

u(1/2,−1/2)n (y) :=

[
(2n+ 1)Γ(n+ 1)Γ(n+ 1)

2Γ(n+ 3/2)Γ(n+ 1/2)

]1/2
p(1/2,−1/2)n (y), (11)

where p
(1/2,−1/2)
n is the nth degree normalized Jacobi polynomial p

(γ,δ)
n , with γ = 1/2,

δ = −1/2, and investigated the convergence of the Jacobi series

∞∑
n=0

bnu
(1/2,−1/2)
n (y). (12)
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They showed that if the scalars bn defined as

bn :=

∫ 1

−1
f(t)u(1/2,−1/2)n (t)ρ(1/2,−1/2)(t)dt (13)

are the Fourier-Jacobi coefficients of some functions f whose pth derivative is continuous
and belongs to the Lipschitz class of order µ less than 1 on [−1, 1], then the Jacobi se-

ries (12) with weighted Jacobi polynomials u
(1/2,−1/2)
n (y) converges uniformly to f(y) on

[−1, 1]. We will denote the class of function f whose pth derivative is continuous and

belongs to the Lipschitz class of order µ less than 1 on [−1, 1] as LC
(p,µ)
[−1,1].

As we know the Lipschitz class of order µ < 1 is the set of functions f satisfy

|f(x)− f(y)| ≤ C|x− y|µ,

for all x, y ∈ [−1, 1], where C is a constant independent of x, y.
The result for the convergence of the Fourier-Jacobi series of f on the entire segment

of orthogonality [−1, 1] established by Belen’kii [2] in 1989 is stated below.

Theorem 2.3. Let γ > −1 and δ > −1. If the Fourier-Jacobi series (10) of a function
f ∈ DL[−1, 1] is convergent at ±1, then the Fourier-Jacobi series of f converges uniformly
on the whole segment of orthogonality [−1, 1].

3 Random Fourier-Jacobi series associated with symmetric stable
process

Let X(t, ω) be a symmetric stable process of index α ∈ [1, 2]. Consider the random
Fourier-Jacobi series

∞∑
n=0

anAn(ω)p(γ,δ)n (y) (14)

in Jacobi polynomials p
(γ,δ)
n (y), γ, δ > −1 with random coefficients An(ω) as defined in

(8). Theorem 3.2 below establishes the convergence of the series (14) in probability to the
stochastic integral ∫ 1

−1
f(y, t)ρ(η,τ)(t)dX(t, ω), η, τ ≥ 0, (15)

depending on the choice of the scalars an defined as in (9). In fact, a sequence of random
variables Xn is said to converge in probability to a random variable X if

lim
n→∞

P (|Xn −X| > ε) = 0, ε > 0.

The inequality in the following lemma is required to establish this result.
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Lemma 3.1 ([9]). If X(t, ω) is a symmetric stable process of index α, for 1 ≤ α ≤ 2 and
f(t) is any function in Lp[a, b], p ≥ 1, then for all ε > 0,

P

(∣∣∣∣∣
∫ b

a

f(t)dX(t, ω)

∣∣∣∣∣ > ε

)
≤ C2α+1

(α + 1)ε′α

∫ b

a

|f(t)|αdt,

where C is a positive constant and ε′ < ε.

Theorem 3.2. Let X(t, ω), t ∈ R be a symmetric stable process of index α ∈ [1, 2], and
An(ω) be the Fourier-Jacobi coefficients of X(t, ω) defined as in (8). If an are the Fourier-
Jacobi coefficients of some functions f in DL[−1, 1] such that the Fourier-Jacobi series (10)
of f is convergent at the end point of segment [−1, 1], then the random Fourier-Jacobi
series (14) converges in probability to the stochastic integral (15) on the entire segment
[−1, 1], for η, τ ≥ 0 and γ, δ > −1.

Proof. Consider the nth partial sum of random Fourier-Jacobi series (14)

S(γ,δ)
n (f, y, ω) :=

n∑
k=0

akAk(ω)p
(γ,δ)
k (y) (16)

=
n∑
k=0

ak

(∫ 1

−1
p
(γ,δ)
k (t)ρ(η,τ)(t)dX(t, ω)

)
p
(γ,δ)
k (y)

=

∫ 1

−1

(
n∑
k=0

akp
(γ,δ)
k (y)p

(γ,δ)
k (t)

)
ρ(η,τ)(t)dX(t, ω)

=

∫ 1

−1
s(γ,δ)n (f, y, t)ρ(η,τ)(t)dX(t, ω),

where

s(γ,δ)n (f, y, t) :=
n∑
k=0

akp
(γ,δ)
k (y)p

(γ,δ)
k (t).

Since f ∈ DL[−1, 1] are continuous in [−1, 1] and C[−1, 1] is dense in Lp[−1, 1], p ≥ 1,
using Lemma 3.1,

P

(∣∣∣ ∫ 1

−1
f(y, t)ρ(η,τ)(t)dX(t, ω)− S(γ,δ)

n (f, y, ω)
∣∣∣ > ε

)

= P

(∣∣∣ ∫ 1

−1
f(y, t)ρ(η,τ)(t)dX(t, ω)−

∫ 1

−1
s(γ,δ)n (f, y, t)ρ(η,τ)(t)dX(t, ω)

∣∣∣ > ε

)

≤ C2α+1

(α + 1)ε′α

∫ 1

−1

∣∣∣(f(y, t)− s(γ,δ)n (f, y, t)
)
ρ(η,τ)(t)

∣∣∣αdt,
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where ε′ < ε. Since for f ∈ DL[−1, 1], the nth partial sum s
(γ,δ)
n (f, t) converges uniformly

to f(t) (Theorem 2.3), and ρ(η,τ)(t) is bounded in [−1, 1], for η, τ ≥ 0, we have

lim
n→∞

∫ 1

−1

∣∣∣(f(t)− s(γ,δ)n (f, t)
)
ρ(η,τ)(t)

∣∣∣αdt = 0, for α ∈ [1, 2].

This implies the convergence of the random Fourier-Jacobi series (14) in probability to the
stochastic integral (15).

The following theorem is concerned about a particular value of γ, δ i.e. 1/2,−1/2

respectively. Consider the weighted orthonormal Jacobi polynomial u
(1/2,−1/2)
n (y) as defined

in (11) instead of the orthonormal Jacobi polynomial p
(γ,δ)
n (y). The random coefficients in

the series (6) are chosen to be the weighted Fourier-Jacobi coefficients of X(t, ω). Let us
denote it as Bn(ω) which is defined as

Bn(ω) :=

∫ 1

−1
u(1/2,−1/2)n (t)ρ(η,τ)(t)dX(t, ω), for η, τ ≥ 0. (17)

The random series that will be dealt with now

∞∑
n=0

bnBn(ω)u(1/2,−1/2)n (y). (18)

It is proved that the random Jacobi series (18) in weighted orthonormal Jacobi polynomials

u
(1/2,−1/2)
n (y) converges in probability, if bn are the weighted Fourier-Jacobi coefficients of

the functions f in the class LC
(p,µ)
[−1,1] as defined in (13).

Theorem 3.3. Let X(t, ω), t ∈ R be a symmetric stable process of index α ∈ [1, 2] and
Bn(ω) be defined as in (17). If bn are the Fourier-Jacobi coefficients of some functions

f in the class LC
(p,µ)
[−1,1], with p + µ ≥ 5/2, then the random Fourier-Jacobi series (18)

converges in probability to the stochastic integral (15), for η, τ ≥ 0.

Proof. The nth partial sum of random Fourier-Jacobi series (18) is

S(1/2,−1/2)
n (f, y, ω) :=

n∑
k=0

bkBk(ω)u
(1/2,−1/2)
k (y)

=

∫ 1

−1
v (1/2,−1/2)
n (f, y, t)ρ(η,τ)(t)dX(t, ω),

where

v (1/2,−1/2)
n (f, y, t) :=

n∑
k=0

bku
(1/2,−1/2)
k (y)u

(1/2,−1/2)
k (t).



On the convergence of random Fourier-Jacobi series of continuous functions 57

With the use of inequality in Lemma 3.1,

P

(∣∣∣ ∫ 1

−1
f(y, t)ρ(η,τ)(t)dX(t, ω)− S(1/2,−1/2)

n (f, y, ω)
∣∣∣ > ε

)

≤ C2α+1

(α + 1)ε′α

∫ 1

−1

∣∣∣(f(y, t)− v (1/2,−1/2)
n (f, y, t)

)
ρ(η,τ)(t)

∣∣∣αdt, (19)

where 0 < ε′ < ε. From Theorem 1 of [10],∣∣∣f(y)− v (1/2,−1/2)
n (y)

∣∣∣ ≤ C∗1 lnn

np+µ−3/2
, y ∈ [−1, 1], for p+ µ ≥ 3/2.

Since ρ(η,τ)(t) is bounded in [−1, 1], for η, τ ≥ 0, the right hand side of (19) will tend to 0
if p+ µ ≥ 5/2 which completes the proof.

4 Random Fourier-Jacobi series associated with Wiener process

Let us consider the Wiener process W (t, ω) and the nth degree polynomial

q(γ,δ)n (t) := p(γ,δ)n (2t− 1), γ, δ > −1, n ∈ N ∪ 0 (20)

instead of ϕn(t) in the random series (6). These polynomials q
(γ,δ)
n (t) are defined in the

interval [0, 1] and form a complete orthonormal set in [0, 1] with respect to the weight
function

σ(γ,δ)(t) := (1− t)γtδ, γ, δ ≥ −1.

Call q
(γ,δ)
n (t) as the modified Jacobi polynomial. It is easy to see that Theorem 2.3 now

have the following modified form which will be use in this section.

Theorem 4.1. Let γ, δ > −1. If Fourier-Jacobi series

∞∑
n=0

cnq
(γ,δ)
n (y) (21)

is convergent at 0 and 1, then the Fourier-Jacobi series of f converges uniformly on the
whole segment of orthogonality [0, 1], for cn are the Fourier-Jacobi coefficients of some
functions f ∈ DL[0, 1] defined as

cn :=

∫ 1

0

f(t)q(γ,δ)n (t)σ(γ,δ)(t)dt. (22)

It is well known that the stochastic integral
∫ b
a
f(t)dW (t, ω) exists in quadratic mean,

for f ∈ L2[a, b] [9]. As we know, a random sequence {Xn}∞n=0 is said to be convergent to a
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random variable X in quadratic mean, if limn→∞E (|Xn −X|2) = 0. This stochastic inte-

gral is normally distributed random variable with mean zero and finite variance
∫ b
a
|f(t)|2dt,

if f(t) is a continuous function in [a, b] (c.f. [7, Lukas, p. 148]). The q
(γ,δ)
n (t)σ(η,τ)(t) remains

continuous, for η, τ ≥ 0, and hence the stochastic integral

Cn(ω) :=

1∫
0

q(γ,δ)n (t)σ(η,τ)(t)dW (t, ω), (23)

with weight σ(η,τ)(t), η, τ ≥ 0 exists in quadratic mean. The random Jacobi series that we
will deal with now is

∞∑
n=0

cnCn(ω)q(γ,δ)n (y), y ∈ [0, 1], (24)

where Cn(ω) are random variables associated with the Wiener process W (t, ω) defined as
in (23) and the scalars cn are defined as in (22). The random coefficients Cn(ω) are no
doubt independent random variables. We will address Cn(ω) and cn as the modified Jacobi
coefficients of W (t, ω) and function f respectively. The following theorem proved that the
random series (24) converges in quadratic mean to the stochastic integral∫ 1

0

f(y, t)σ(η,τ)(t)dW (t, ω), (25)

if cn are the modified Fourier-Jacobi coefficients of some functions f in DL[0, 1].

Theorem 4.2. Let W (t, ω), t ≥ 0 be the Wiener process and Cn(ω) be as defined in (23). If
the continuous function f is in DL[0, 1] and the Fourier-Jacobi series (21) is convergent at
the end points of the segment [0, 1], then the random Fourier-Jacobi series (24) converges in
the entire interval [0, 1] to the integral (25) in quadratic mean, for η, τ ≥ 0 and γ, δ > −1.

Proof. Let

T(γ,δ)
n (f, y, ω) :=

n∑
k=0

ckCk(ω)q
(γ,δ)
k (y), γ, δ > −1 (26)

be the nth partial sum of the random Fourier-Jacobi series (24). Putting the expression

in (23) of Ck(ω) in (26) reduces T
(γ,δ)
n (f, y, ω) into integral form∫ 1

0

s(γ,δ)n (f, y, t)σ(η,τ)(t)dW (t, ω), η, τ ≥ 0,

where

s(γ,δ)n (f, y, t) :=
n∑
k=0

ckq
(γ,δ)
k (y)q

(γ,δ)
k (t), for t ∈ [0, 1].



On the convergence of random Fourier-Jacobi series of continuous functions 59

For g ∈ L2[a, b] and W (t, ω) the Wiener process, we know (Lukacs [7])

E
∣∣∣ ∫ b

a

g(t)dW (t, ω)
∣∣∣2 = β2

∫ b

a

|g(t)|2dt, (27)

where β is a constant associated with the normal law of increment of the process W (t, ω),
for t ∈ [a, b]. Hence

E
(∣∣∣ ∫ 1

0

f(y, t)σ(η,τ)(t)dW (t, ω)− T (γ,δ)
n (f, y, ω)

∣∣∣2)
= E

(∣∣∣ ∫ 1

0

f(y, t)σ(η,τ)(t)dW (t, ω)−
∫ 1

0

s(γ,δ)n (f, y, t)σ(η,τ)(t)dW (t, ω)
∣∣∣2)

= β2

∫ 1

0

∣∣∣(f(y, t)− s(γ,δ)n (f, y, t)
)
σ(η,τ)(t)

∣∣∣2dt. (28)

Since σ(η,τ)(t) is bounded, for η, τ ≥ 0, and s
(γ,δ)
n (f, t) converges uniformly to f(t) on the

whole segment [0, 1], if f ∈ DL[0, 1], γ, δ ≥ −1 (Theorem 4.1). Then the integral (28)
converges to 0 implies the convergence of the series (24) in quadratic mean to the inte-
gral (25).

5 Continuity property of the sum functions

It is observed that the sum function of the random Fourier-Jacobi series (9) associated
with symmetric stable processes X(t, ω) of index α ∈ [1, 2] is weakly continuous in proba-
bility, where as the sum function of the random series (24) associated with Wiener process
is continuous in quadratic mean. It is known that a function f(t, ω) is said to be weakly
continuous in probability at t = t0, if for all ε > 0, limh→0 P (|f(t0+h, ω)−f(t0, ω)| > ε) = 0.
If a function f(t, ω) is weakly continuous at every t0 ∈ [a, b], then the function f(t, ω) is
weakly continuous in probability in the closed interval [a, b]. These facts are established in
the following two theorems respectively. The proofs use the following lemma.

Lemma 5.1 ([12, p. 37]). If f is a periodic function or in Lp, 1 ≤ p <∞ or a continuous
function, then the integral {∫ b

a

∣∣∣f(x+ t)− f(x)
∣∣∣pdx}1/p

tends to 0 as t tends to 0.

Theorem 5.2. If X(t, ω) is a symmetric stable process of index α ∈ [1, 2] and f is a

function of any class of LC
(p,µ)
[−1,1] or DL[−1, 1], with the conditions as stated in Theorem 3.2

and Theorem 3.3 respectively, then the sum function (15) of the random Fourier-Jacobi
series (14) as well as (18) is weakly continuous in probability, for η, τ ≥ 0.
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Proof. With the help of Lemma 3.1,

P

(∣∣∣ ∫ 1

−1
f(x, t)ρ(η,τ)(t)dX(t, ω)−

∫ 1

−1
f(y, t)ρ(η,τ)(t)dX(t, ω)

∣∣∣ > ε

)

≤ C2α+1

(α + 1)ε′α

∫ 1

−1

∣∣∣(f(x, t)− f(y, t)
)
ρ(η,τ)(t)

∣∣∣αdt, α ∈ [1, 2], (29)

for 0 < ε′ < ε. Since the Jacobi weight ρ(η,τ)(t) is bounded, for η, τ ≥ 0, and by Lemma 5.1,
the integral in (29) converges to 0, if x → y. This confirms the weakly continuity in
probability of the sum function (15).

Theorem 5.3. Let X(t, ω), t ∈ R be the Wiener process W (t, ω), t ≥ 0, and Cn(ω) be the
random variables as defined in (23). If the Fourier-Jacobi series (21) of the continuous
function f in DL[0, 1] is convergent at the end point of the segment [0, 1], then the sum
function (25) is continuous in quadratic mean.

Proof. As for Theorem 4.1 the Fourier-Jacobi series (21) converges in the whole segment
[0, 1]. By Lukacs [7, p. 147],

E
(∣∣∣ ∫ 1

0

f(y, t)σ(η,τ)(t)dW (t, ω)− f(x, t)σ(η,τ)(t)dW (t, ω)
∣∣∣2)

= E
(∣∣∣ ∫ 1

0

(
f(y, t)− f(x, t)

)
σ(η,τ)(t)dW (t, ω)

∣∣∣2)
= β2

∫ 1

0

∣∣∣(f(y, t)− f(x, t)
)
σ(η,τ)(t)

∣∣∣2dt.
For η, τ ≥ 0, the Jacobi weight σ(η,τ)(t) is bounded. Hence by Lemma 5.1, as y approaches
x, the right-hand side tends to zero. This shows that the sum function (25) is continuous
in the quadratic mean, for η, τ ≥ 0.
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[1] Arenas A., Ciaurri Ó. and Labarga E.: The convergence of discrete Fourier-Jacobi series. Proc.
Amer. Math. Soc. 148 (6) (2020) 2539–2550.

[2] Belen’kii A. M.: Uniform convergence of the Fourier-Jacobi series on the orthogonality segment.
Math. Notes 46 (1989) 901–906.

[3] Grauer J. A.: Random noise generation using Fourier series. J. Aircraft 55 (4) (2018) 1754–1760.



On the convergence of random Fourier-Jacobi series of continuous functions 61

[4] Kvernadze G.: Uniform convergence of Fourier-Jacobi series. J. Approx. Theory 117 (2002)
207–228.

[5] Liu Z. and Liu S.: Randomization of the Fourier transform. Opt. Lett. 32 (5) (2007) 478–480.

[6] Liu Z. and Liu S.: Random fractional Fourier transform. Opt. Lett. 32 (15) (2007) 2088–2090.

[7] Lukacs E.: Stochastic convergence. Second Ed., Academic Press, London (1975).

[8] Marian P. and Marian T. A.: On a power series involving classical orthogonal polynomials. Rom.
J. Phys. 55 (5) (2010) 631–644.

[9] Nayak C., Pattanayak S. and Mishra M. N.: Random Fourier-Stieltjes series associated with stable
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