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On the square of the antipode in a connected filtered Hopf
algebra

Darij Grinberg

Abstract. It is well-known that the antipode S of a commutative or cocommutative
Hopf algebra satisfies S2 = id (where S2 = S ◦ S). Recently, similar results have
been obtained by Aguiar, Lauve and Mahajan for connected graded Hopf algebras:
Namely, if H is a connected graded Hopf algebra with grading H =

⊕
n≥0Hn, then

each positive integer n satisfies
(
id−S2

)n
(Hn) = 0 and (even stronger)(

(id +S) ◦
(
id−S2

)n−1
)

(Hn) = 0.

For some specific H’s such as the Malvenuto–Reutenauer Hopf algebra FQSym, the
exponents can be lowered.

In this note, we generalize these results in several directions: We replace the
base field by a commutative ring, replace the Hopf algebra by a coalgebra (actually,
a slightly more general object, with no coassociativity required), and replace both
id and S2 by “coalgebra homomorphisms” (of sorts). Specializing back to connected
graded Hopf algebras, we show that the exponent n in the identity

(
id−S2

)n
(Hn) = 0

can be lowered to n − 1 (for n > 1) if and only if
(
id−S2

)
(H2) = 0. (A sufficient

condition for this is that every pair of elements of H1 commutes; this is satisfied, e.g.,
for FQSym.)

Consider, for simplicity, a connected graded Hopf algebra H over a field (we will soon
switch to more general settings). Let S be the antipode of H. A classical result (e.g., [13,
Proposition 4.0.1 6)] or [6, Corollary 3.3.11] or [1, Theorem 2.1.4 (vi)] or [12, Corollary
7.1.11]) says that S2 = id when H is commutative or cocommutative. (Here and in the
following, powers are composition powers; thus, S2 means S ◦S.) In general, S2 = id need
not hold. However, in [3, Proposition 7], Aguiar and Lauve showed that S2 is still locally
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unipotent, and more precisely, we have(
id−S2

)n
(Hn) = 0 for each n > 0,

where Hn denotes the n-th graded component of H. Later, Aguiar and Mahajan [2,
Lemma 12.50] strengthened this equality to(

(id +S) ◦
(
id−S2

)n−1
)

(Hn) = 0 for each n > 0.

For specific combinatorially interesting Hopf algebras, even stronger results hold; in par-
ticular, (

id−S2
)n−1

(Hn) = 0 holds for each n > 1

when H is the Malvenuto–Reutenauer Hopf algebra (see [3, Example 8]).
In this note, we will unify these results and transport them to a much more general

setting. First of all, the ground field will be replaced by an arbitrary commutative ring;
this generalization is not unexpected, but renders the proof strategy of [3, Proposition 7]
insufficient1. Second, we will replace the Hopf algebra by a coalgebra, or rather by a
more general structure that does not even require coassociativity. The squared antipode
S2 will be replaced by an arbitrary “coalgebra” endomorphism f (we are using scare
quotes because our structure is not really a coalgebra), and the identity map by another
such endomorphism e. Finally, the graded components will be replaced by an arbitrary
sequence of submodules satisfying certain compatibility relations. We state the general
result in Section 2.1 and prove it in Section 3.1. In Sections 2.2–2.4, we progressively
specialize this result: first to connected filtered coalgebras with coalgebra endomorphisms
(in Section 2.2), then to connected filtered Hopf algebras with S2 (in Section 2.3), and
finally to connected graded Hopf algebras with S2 (in Section 2.4). The latter specialization
covers the results of Aguiar and Lauve. (The Malvenuto–Reutenauer Hopf algebra turns
out to be a red herring; any connected graded Hopf algebra H with the property that
ab = ba for all a, b ∈ H1 will do.)

1 Notations

We will use the notions of coalgebras, bialgebras and Hopf algebras over a commutative
ring, as defined (e.g.) in [1, Chapter 2], [5, Chapter 1], [6, Chapters 2, 3], [12, Chapters
2, 5, 7] or [13, Chapters I–IV]. (In particular, our Hopf algebras are not twisted by a
Z/2-grading as the topologists’ ones are.) We use the same notations for Hopf algebras as
in [5, Chapter 1]. In particular:

1In fact, the proof in [3, Proposition 7] relies on the coradical filtration of H and its associated graded
structure grH. If the base ring is a field, then grH is a well-defined commutative Hopf algebra (see, e.g.,
[3, Lemma 1]), and thus the antipode of H can be viewed as a “deformation” of the antipode of grH.
But the latter antipode does square to id because grH is commutative. Unfortunately, this proof does not
survive our generalization; in fact, even defining a Hopf algebra structure on grH would likely require at
least some flatness assumptions.
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• We let N = {0, 1, 2, . . .}.

• “Rings” and “algebras” are always required to be associative and have a unity.

• We fix a commutative ring k. The symbols “⊗” and “End” shall always mean “⊗k”
and “Endk”, respectively. The unity of the ring k will be called 1k or just 1 if
confusion is unlikely.

• The comultiplication and the counit of a k-coalgebra are denoted by ∆ and ε.

• “Graded” k-modules mean N-graded k-modules. The base ring k itself is not sup-
posed to have any nontrivial grading.

• The n-th graded component of a graded k-module V will be called Vn. If n < 0,
then this is the zero submodule 0.

• A graded k-Hopf algebra means a k-Hopf algebra that has a grading as a k-module,
and whose structure maps (multiplication, unit, comultiplication and counit) are
graded maps. (The antipode is automatically graded in this case, by [5, Exercise
1.4.29 (e)].)

• If f is a map from a set to itself, and if k ∈ N is arbitrary, then fk shall denote the
map f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

. (Thus, f 1 = f and f 0 = id.)

2 Theorems

2.1 The main theorem

We can now state the main result of this note:

Theorem 2.1. Let D be a k-module, and let (D1, D2, D3, . . .) be a sequence of k-submodules
of D. Let δ : D → D ⊗D be any k-linear map.

Let e : D → D and f : D → D be two k-linear maps such that

Ker δ ⊆ Ker (e− f) and (1)

(f ⊗ f) ◦ δ = δ ◦ f and (2)

(e⊗ e) ◦ δ = δ ◦ e and (3)

f ◦ e = e ◦ f. (4)

Let p be a positive integer such that

(e− f) (D1 +D2 + · · ·+Dp) = 0. (5)
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Assume furthermore that

δ (Dn) ⊆
n−1∑
i=1

Di ⊗Dn−i for each n > p. (6)

(Here, the “Di ⊗ Dn−i” on the right hand side means the image of Di ⊗ Dn−i under the
canonical map Di ⊗Dn−i → D ⊗D that is obtained by tensoring the two inclusion maps
Di → D and Dn−i → D together. When k is not a field, this canonical map may fail to be
injective.)

Then, for any integer u > p, we have

(e− f)u−p (Du) ⊆ Ker δ (7)

and
(e− f)u−p+1 (Du) = 0. (8)

As the statement of this theorem is not very intuitive, some explanations are in order.
The reader may think of the D in Theorem 2.1 as a “pre-coalgebra”, with δ being its
“reduced coproduct”. Indeed, the easiest way to obtain a nontrivial example is to fix a
connected graded Hopf algebra H, then define D to be either H or the “positive part” of
H (that is, the submodule

⊕
n>0Hn of H), and define δ to be the map

x 7→ ∆ (x)− x⊗ 1− 1⊗ x+ ε (x) 1⊗ 1

(the so-called reduced coproduct of H). From this point of view, Ker δ can be regarded as
the set of “primitive” elements of D. The maps f and e can be viewed as two commuting
“coalgebra endomorphisms” of D (indeed, the assumptions (2) and (3) are essentially
saying that f and e preserve the “reduced coproduct” δ). The submodules D1, D2, D3, . . .
are an analogue of the (positive-degree) graded components of D, while the assumption
(6) says that the “reduced coproduct” δ “respects the grading” (as is indeed the case for
connected graded Hopf algebras).

We stress that p is allowed to be 1 in Theorem 2.1; in this case, the assumption (5)
simplifies to (e− f) (0) = 0, which is automatically true by the linearity of e− f .

We shall prove Theorem 2.1 in Section 3.1. First, however, let us explore its conse-
quences for coalgebras and Hopf algebras, recovering in particular the results of Aguiar
and Lauve promised in the introduction.

2.2 Connected filtered coalgebras

We begin by specializing Theorem 2.1 to the setting of a connected filtered coalgebra.
There are several ways to define what a filtered coalgebra is; ours is probably the most
liberal:

Definition 2.2. A filtered k-coalgebra means a k-coalgebra C equipped with an infinite se-
quence (C≤0, C≤1, C≤2, . . .) of k-submodules of C satisfying the following three conditions:
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• We have
C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . (9)

• We have ⋃
n∈N

C≤n = C. (10)

• We have

∆ (C≤n) ⊆
n∑
i=0

C≤i ⊗ C≤n−i for each n ∈ N. (11)

(Here, the “C≤i ⊗ C≤n−i” on the right hand side means the image of C≤i ⊗ C≤n−i
under the canonical map C≤i ⊗ C≤n−i → C ⊗ C that is obtained by tensoring the
two inclusion maps C≤i → C and C≤n−i → C together. When k is not a field, this
canonical map may fail to be injective.)

The sequence (C≤0, C≤1, C≤2, . . .) is called the filtration of the filtered k-coalgebra C.

A more categorically-minded person might replace the condition (11) by a stronger
requirement (e.g., asking ∆ to factor through a linear map C≤n →

⊕n
i=0C≤i ⊗ C≤n−i,

where the “⊗” signs now signify the actual tensor products rather than their images in
C⊗C). However, we have no need for such stronger requirements. Mercifully, all reasonable
definitions of filtered k-coalgebras agree when k is a field.

The condition (10) in Definition 2.2 shall never be used in the following; we merely
state it to avoid muddling the meaning of “filtered k-coalgebra”.

A graded k-coalgebra C automatically becomes a filtered k-coalgebra; indeed, we can
define its filtration (C≤0, C≤1, C≤2, . . .) by setting

C≤n =
n⊕
i=0

Ci for all n ∈ N.

Definition 2.3. Let C be a filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .). Let 1k

denote the unity of the ring k.
(a) The filtered k-coalgebra C is said to be connected if the restriction ε |C≤0

is a
k-module isomorphism from C≤0 to k.

(b) In this case, the element
(
ε |C≤0

)−1
(1k) ∈ C≤0 is called the unity of C and is

denoted by 1C .
Now, assume that C is a connected filtered k-coalgebra.
(c) An element x of C is said to be primitive if ∆ (x) = x⊗ 1C + 1C ⊗ x.
(d) The set of all primitive elements of C is denoted by PrimC.

These notions of “connected”, “unity” and “primitive” specialize to the commonly
established concepts of these names when C is a graded k-bialgebra. Indeed, Definition
2.3 (b) defines the unity 1C of C to be the unique element of C≤0 that gets sent to 1k by
the map ε; but this property is satisfied for the unity of a graded k-bialgebra as well. (We
will repeat this argument in more detail later on, in the proof of Proposition 2.10.)

The following property of connected filtered k-coalgebras will be crucial for us:
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Proposition 2.4. Let C be a connected filtered k-coalgebra, and let (C≤0, C≤1, C≤2, . . .) be
its filtration. Define a k-linear map δ : C → C ⊗ C by setting

δ (c) := ∆ (c)− c⊗ 1C − 1C ⊗ c+ ε (c) 1C ⊗ 1C for each c ∈ C.

Then:
(a) We have

δ (C≤n) ⊆
n−1∑
i=1

C≤i ⊗ C≤n−i for each n > 0.

(b) If f : C → C is a k-coalgebra homomorphism satisfying f (1C) = 1C, then we have
(f ⊗ f) ◦ δ = δ ◦ f .

(c) We have PrimC = (Ker δ) ∩ (Ker ε).
(d) The set PrimC is a k-submodule of C.
(e) We have Ker δ = k · 1C + PrimC.

The map δ in Proposition 2.4 is called the reduced coproduct of C. Nothing in Proposi-
tion 2.4 is really novel; in particular, results similar to Proposition 2.4 (a) have appeared all
over the literature (e.g., in [7, Lemma 1.3.6 (1)] with the right hand side

∑n−1
i=1 C≤i⊗C≤n−i

replaced by the weaker C≤n−1 ⊗ C≤n−1, or in [7, Lemma 1.3.6 (2)] for graded coalgebras,
or in [13, Proposition 10.0.2] for a specific filtration defined over a field, or in [8, (3.2.6)]
for δ (C≤n ∩Ker ε) instead of δ (C≤n)), and the arguments used in these sources can of-
ten be repurposed with some care to apply to Proposition 2.4 (a). Parts (b)–(e) of the
proposition are folklore as well. For the sake of completeness, we shall nevertheless prove
Proposition 2.4 in Section 3.2, which any reader with subject experience can skip.

Proposition 2.4 helps us apply Theorem 2.1 to filtered k-coalgebras, resulting in the
following:

Corollary 2.5. Let C be a connected filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .).
Let e : C → C and f : C → C be two k-coalgebra homomorphisms such that

e (1C) = 1C and

f (1C) = 1C and

PrimC ⊆ Ker (e− f) and (12)

f ◦ e = e ◦ f. (13)

Let p be a positive integer such that

(e− f) (C≤p) = 0. (14)

Then:
(a) For any integer u > p, we have

(e− f)u−p (C≤u) ⊆ PrimC. (15)
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(b) For any integer u ≥ p, we have

(e− f)u−p+1 (C≤u) = 0. (16)

Corollary 2.5 results from an easy (although not completely immediate) application of
Theorem 2.1 and Proposition 2.4. A detailed proof can be found in Section 3.3.

Specializing Corollary 2.5 further to the case of p = 1, we can obtain a nicer result:

Corollary 2.6. Let C be a connected filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .).
Let e : C → C and f : C → C be two k-coalgebra homomorphisms such that

e (1C) = 1C and

f (1C) = 1C and

PrimC ⊆ Ker (e− f) and

f ◦ e = e ◦ f.

Then:
(a) For any integer u > 1, we have

(e− f)u−1 (C≤u) ⊆ PrimC.

(b) For any positive integer u, we have

(e− f)u (C≤u) = 0.

See Section 3.3 for a proof of this corollary.
The particular case of Corollary 2.6 for e = id is particularly simple:

Corollary 2.7. Let C be a connected filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .).
Let f : C → C be a k-coalgebra homomorphism such that

f (1C) = 1C and PrimC ⊆ Ker (id−f) .

Then:
(a) For any integer u > 1, we have

(id−f)u−1 (C≤u) ⊆ PrimC.

(b) For any positive integer u, we have

(id−f)u (C≤u) = 0.

Again, the proof of this corollary can be found in Section 3.3.
Note that Corollary 2.7 (b) is precisely [4, Theorem 37.1 (a)].



310 Darij Grinberg

2.3 Connected filtered bialgebras and Hopf algebras

We shall now apply our above results to connected filtered bialgebras and Hopf algebras.
We first define what we mean by these notions:

Definition 2.8. (a) A filtered k-bialgebra means a k-bialgebra H equipped with an infinite
sequence (H≤0, H≤1, H≤2, . . .) of k-submodules of H satisfying the following five conditions:

• We have
H≤0 ⊆ H≤1 ⊆ H≤2 ⊆ · · · .

• We have ⋃
n∈N

H≤n = H.

• We have

∆ (H≤n) ⊆
n∑
i=0

H≤i ⊗H≤n−i for each n ∈ N.

(Here, the “H≤i ⊗H≤n−i” on the right hand side means the image of H≤i ⊗H≤n−i
under the canonical map H≤i ⊗H≤n−i → H ⊗H that is obtained by tensoring the
two inclusion maps H≤i → H and H≤n−i → H together.)

• We have H≤iH≤j ⊆ H≤i+j for any i, j ∈ N. (Here, H≤iH≤j denotes the k-linear span
of the set of all products ab with a ∈ H≤i and b ∈ H≤j.)

• The unity of the k-algebra H belongs to H≤0.

The sequence (H≤0, H≤1, H≤2, . . .) is called the filtration of the filtered k-bialgebra H.
(b) A filtered k-Hopf algebra means a filtered k-bialgebra H such that the k-bialgebra

H is a Hopf algebra (i.e., has an antipode) and such that the antipode S of H respects the
filtration (i.e., satisfies S (H≤n) ⊆ H≤n for each n ∈ N).

The H≤iH≤j ⊆ H≤i+j condition in Definition 2.8 (a) will not actually be used in what
follows. Thus, we could have omitted it; but this would have resulted in a less common
(and less well-behaved in other ways) concept of “filtered bialgebra”. Likewise, we have
included the S (H≤n) ⊆ H≤n condition in Definition 2.8 (b), even though we will never
use it.

Every k-bialgebra is automatically a k-coalgebra. Thus, every filtered k-bialgebra is
automatically a filtered k-coalgebra. This allows the following definition:

Definition 2.9. A filtered k-bialgebra H is said to be connected if the filtered k-coalgebra
H is connected.

Thus, if H is a connected filtered k-bialgebra, then Definition 2.3 (b) defines a “unity”
1H of H. This appears to cause an awkward notational quandary, since H already has a
unity by virtue of being a k-algebra (and this latter unity is also commonly denoted by
1H). Fortunately, this cannot cause any confusion, since these two unities are identical, as
the following proposition shows:
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Proposition 2.10. Let H be a connected filtered k-bialgebra. Then, the unity 1H defined
according to Definition 2.3 (b) equals the unity of the k-algebra H.

Proof of Proposition 2.10. Both unities in question belong to H≤0 (indeed, the former
does so by its definition, whereas the latter does so because H is a filtered k-bialgebra)
and are sent to 1k by the map ε (indeed, the former does so by its definition, whereas
the latter does so by the axioms of a k-bialgebra). However, since the map ε |H≤0

is
a k-module isomorphism (because the filtered k-coalgebra H is connected), these two
properties uniquely determine these unities. Thus, these two unities are equal. Proposition
2.10 is thus proven.

In Definition 2.3, we have defined the notion of a “primitive element” of a connected
filtered k-coalgebra C. In the same way, we can define a “primitive element” of a k-
bialgebra H (using the unity of the k-algebra H instead of 1C):

Definition 2.11. Let H be a k-bialgebra with unity 1H .
(a) An element x of H is said to be primitive if ∆ (x) = x⊗ 1H + 1H ⊗ x.
(b) The set of all primitive elements of H is denoted by PrimH.

When H is a connected filtered k-bialgebra, Definition 2.11 (a) agrees with Definition
2.3 (c), since Proposition 2.10 shows that the two meanings of 1H are actually identical.
Thus, when H is a connected filtered k-bialgebra, Definition 2.11 (b) agrees with Definition
2.3 (d). The notation PrimH is therefore unambiguous.

For later use, we state some basic properties of the antipode in a Hopf algebra:

Lemma 2.12. Let H be a k-Hopf algebra with unity 1H ∈ H and antipode S ∈ EndH.
Then:

(a) The map S2 : H → H is a k-coalgebra homomorphism.
(b) We have S (1H) = 1H .
(c) We have S (x) = −x for every primitive element x of H.
(d) We have S2 (x) = x for every primitive element x of H.

All of these facts are easy to prove and well-known (see [4, proof of Lemma 37.8] for
detailed proofs, or derive them easily from [7, Proposition 1.2.17 (1)]).

We can now state our main consequence for connected filtered Hopf algebras; all proofs
can be found in Section 3.4 below:

Corollary 2.13. Let H be a connected filtered k-Hopf algebra with antipode S and filtration
(H≤0, H≤1, H≤2, . . .).

Let p be a positive integer such that(
id−S2

)
(H≤p) = 0. (17)

Then:
(a) For any integer u > p, we have(

id−S2
)u−p

(H≤u) ⊆ PrimH (18)
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and (
(id +S) ◦

(
id−S2

)u−p)
(H≤u) = 0. (19)

(b) For any integer u ≥ p, we have(
id−S2

)u−p+1
(H≤u) = 0. (20)

Specializing this to p = 1, we can easily obtain the following:

Corollary 2.14. Let H be a connected filtered k-Hopf algebra with antipode S and filtration
(H≤0, H≤1, H≤2, . . .). Then:

(a) For any integer u > 1, we have(
id−S2

)u−1
(H≤u) ⊆ PrimH (21)

and (
(id +S) ◦

(
id−S2

)u−1
)

(H≤u) = 0. (22)

(b) For any positive integer u, we have(
id−S2

)u
(H≤u) = 0. (23)

Corollary 2.14 (b) has already appeared in [4, Theorem 37.7 (a)].

2.4 Connected graded Hopf algebras

Let us now specialize our results even further to connected graded Hopf algebras.
We have already seen that any graded k-coalgebra automatically becomes a filtered k-
coalgebra. In the same way, any graded k-Hopf algebra automatically becomes a filtered
k-Hopf algebra. Moreover, a graded k-Hopf algebra H is connected (in the sense that
H0
∼= k as k-modules) if and only if the filtered k-coalgebra H is connected. (This follows

easily from [5, Exercise 1.3.20 (e)].) Thus, our above results for connected filtered k-Hopf
algebras can be applied to connected graded k-Hopf algebras. From Corollary 2.14, we
easily obtain the following:

Corollary 2.15. Let H be a connected graded k-Hopf algebra with antipode S. Then, for
any positive integer u, we have(

id−S2
)u−1

(Hu) ⊆ PrimH (24)

and (
(id +S) ◦

(
id−S2

)u−1
)

(Hu) = 0 (25)

and (
id−S2

)u
(Hu) = 0. (26)
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We will prove this corollary – as well as all others stated in Section 2.4 – in Section 3.5
further below. In essence, Corollary 2.15 follows from Corollary 2.14, once the case u = 1
(which is not covered by Corollary 2.14 (a)) is accounted for.

The equality (25) in Corollary 2.15 yields [2, Lemma 12.50], whereas the equality (26)
yields [3, Proposition 7]. Next, we apply Corollary 2.13 to the graded setting:

Corollary 2.16. Let H be a connected graded k-Hopf algebra with antipode S.
Let p be a positive integer such that all i ∈ {2, 3, . . . , p} satisfy(

id−S2
)

(Hi) = 0. (27)

Then:
(a) For any integer u > p, we have(

id−S2
)u−p

(H≤u) ⊆ PrimH (28)

and (
(id +S) ◦

(
id−S2

)u−p)
(H≤u) = 0. (29)

(b) For any integer u ≥ p, we have(
id−S2

)u−p+1
(H≤u) = 0. (30)

The particular case of Corollary 2.16 for p = 2 is the most useful, as the condition
(27) boils down to the equality (id−S2) (H2) = 0 in this case, and the latter equality is
satisfied rather frequently. Here is one sufficient criterion:

Corollary 2.17. Let H be a connected graded k-Hopf algebra with antipode S. Assume that

ab = ba for every a, b ∈ H1. (31)

Then:
(a) We have (

id−S2
)

(H2) = 0.

(b) For any integer u > 2, we have(
id−S2

)u−2
(H≤u) ⊆ PrimH (32)

and (
(id +S) ◦

(
id−S2

)u−2
)

(H≤u) = 0. (33)

(c) For any integer u > 1, we have(
id−S2

)u−1
(H≤u) = 0. (34)
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The equality (34) generalizes [3, Example 8]. Indeed, if H is the Malvenuto–Reutenauer
Hopf algebra2, then the condition (31) is satisfied (since H1 is a free k-module of rank 1
in this case); therefore, Corollary 2.17 (c) can be applied in this case, and we recover [3,
Example 8]. Likewise, we can obtain the same result if H is the Hopf algebra WQSym of
word quasisymmetric functions3.

It is worth noticing that the condition (31) is only sufficient, but not necessary for (34).
For example, if H is the tensor algebra of a free k-module V of rank ≥ 2, then (34) holds
(since H is cocommutative, so that S2 = id), but (31) does not (since u ⊗ v 6= v ⊗ u if u
and v are two distinct basis vectors of V ).

An example of a connected graded Hopf algebra H that does not satisfy (34) (and thus
does not satisfy (31) either) is not hard to construct:

Example 2.18. Assume that the ring k is not trivial. Let H be the free k-algebra with
three generators a, b, c. We equip this k-algebra H with a grading, by requiring that
its generators a, b, c are homogeneous of degrees 1, 1, 2, respectively. Next, we define a
comultiplication ∆ on H by setting

∆ (a) = a⊗ 1 + 1⊗ a;

∆ (b) = b⊗ 1 + 1⊗ b;
∆ (c) = c⊗ 1 + a⊗ b+ 1⊗ c

(where 1 is the unity of H). Furthermore, we define a counit ε on H by setting

ε (a) = ε (b) = ε (c) = 0.

It is straightforward to see that H thus becomes a connected graded k-bialgebra, hence
(by [5, Proposition 1.4.16]) a connected graded k-Hopf algebra. Its antipode S is easily
seen to satisfy S (c) = ab− c and S2 (c) = ba− ab+ c 6= c; thus, (id−S2) (H2) 6= 0. Hence,
(34) does not hold for u = 2.

The Hopf algebra H in this example is in fact an instance of a general construction (to
be elaborated upon in future work) of connected graded k-Hopf algebras that are “generic”
(in the sense that their structure maps satisfy no relations other than ones that hold in
every connected graded k-Hopf algebra).

Remark 2.19. A brave reader might wonder whether the connectedness condition in Corol-
lary 2.15 could be replaced by something weaker – e.g., instead of requiring H to be
connected, we might require that the subalgebra H0 be commutative. However, such a
requirement would be insufficient. In fact, let k = C. Then, for any integer n > 1 and any
primitive n-th root of unity q ∈ k, the Taft algebra Hn,q defined in [12, §7.3] can be viewed
as a graded Hopf algebra (with a ∈ H0 and x ∈ H1) whose subalgebra H0 = k [a] / (an − 1)

2See [9, §12.1], [6, §7.1] or [5, §8.1] for the definition of this Hopf algebra. (It is denoted FQSym in [9]
and [5], and denoted MPR in [6].)

3See (e.g.) [10, §4.3.2] for a definition of this Hopf algebra.
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is commutative, but whose antipode S does not satisfy (id−S2)
k

(H1) = 0 for any k ∈ N
(since S2 (x) = q−1x and therefore (id−S2)

k
(x) = (1− q−1)

k
x 6= 0 because q−1 6= 1).

3 Proofs

We shall now prove all statements left unproved above.

3.1 Proof of Theorem 2.1

Proof of Theorem 2.1. We shall prove (7) and (8) by strong induction on u:
Induction step: Fix an integer n > p. Assume (as the induction hypothesis) that (7)

and (8) hold for all integers u > p satisfying u < n. We must prove that (7) and (8) hold
for u = n. In other words, we must prove that

(e− f)n−p (Dn) ⊆ Ker δ

and
(e− f)n−p+1 (Dn) = 0.

We shall focus on proving the first of these two equalities; the second will then easily follow
from (1).

Consider the k-algebras EndD and End (D ⊗D). (The multiplication in each of these
k-algebras is composition of k-linear maps.) Note that u ⊗ v ∈ End (D ⊗D) for any
u, v ∈ EndD.

We have e, f ∈ EndD. Let us define two elements g ∈ EndD and h ∈ End (D ⊗D) by

g = e− f and h = e⊗ e− f ⊗ f.

Then, we easily obtain
h = g ⊗ f + e⊗ g.

Moreover, (5) rewrites as g (D1 +D2 + · · ·+Dp) = 0 (since g = e− f). Thus,

g (Du) = 0 for all u ∈ {1, 2, . . . , p} . (35)

Now, recall that the multiplication in the k-algebra EndD is composition of maps.
Thus, αβ = α ◦ β for any α, β ∈ EndD. (The same holds for End (D ⊗D).) Hence, (4)
rewrites as fe = ef . In other words, e and f commute. Therefore, the difference g = e−f
commutes with e and f as well, i.e., we have ge = eg and gf = fg. Hence, for each i ∈ N
and j ∈ N, we have

giej = ejgi (36)

(since powers of commuting elements always commute).
Furthermore, in End (D ⊗D), we have

(g ⊗ f) (e⊗ g) = (ge)︸︷︷︸
=eg

⊗ (fg)︸︷︷︸
=gf

= (eg)⊗ (gf) = (e⊗ g) (g ⊗ f) .
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Hence, we can apply the binomial formula to g⊗ f and e⊗ g. We thus conclude that each
k ∈ N satisfies

(g ⊗ f + e⊗ g)k =
k∑
r=0

(
k

r

)
(g ⊗ f)r (e⊗ g)k−r︸ ︷︷ ︸
=(gr⊗fr)(ek−r⊗gk−r)
=(grek−r)⊗(frgk−r)

=
k∑
r=0

(
k

r

)(
grek−r

)︸ ︷︷ ︸
=ek−rgr

(by (36))

⊗
(
f rgk−r

)

=
k∑
r=0

(
k

r

)(
ek−rgr

)
⊗
(
f rgk−r

)︸ ︷︷ ︸
=(ek−r⊗fr)(gr⊗gk−r)

=
k∑
r=0

(
k

r

)(
ek−r ⊗ f r

) (
gr ⊗ gk−r

)
. (37)

For each k ∈ N and r ∈ N, we define a map hk,r ∈ End (D ⊗D) by

hk,r =

(
k

r

)(
ek−r ⊗ f r

) (
gr ⊗ gk−r

)
. (38)

Thus, we can rewrite (37) as follows: Each k ∈ N satisfies

hk =
k∑
r=0

hk,r (39)

(because of (38), and because h = g ⊗ f + e⊗ g).
Subtracting (2) from (3), we obtain

(e⊗ e− f ⊗ f) ◦ δ = δ ◦ (e− f)

(since δ is k-linear). In view of g = e−f and h = e⊗e−f⊗f , this rewrites as h◦δ = δ◦g.
In other words, δ ◦ g = h ◦ δ. Hence, by induction on k, we easily see that

δ ◦ gk = hk ◦ δ for each k ∈ N. (40)

Our induction hypothesis says that (7) and (8) hold for all integers u > p satisfying
u < n. In particular, (8) holds for all integers u > p satisfying u < n. In other words, for
each integer u > p satisfying u < n, we have

gu−p+1 (Du) = 0 (41)

(since g = e − f). Hence, it is easy to see that every positive integer u < n and every
positive integer v > u− p satisfy

gv (Du) = 0. (42)

(Indeed, if u > p, then this follows from (41), because v ≥ u − p + 1. However, if u ≤ p,
then (42) follows from (35), because v ≥ 1. Thus, (42) is proved in all possible cases.)



On the square of the antipode in a connected filtered Hopf algebra 317

Now, let k = n−p. Then, k > 0 (since n > p), so that k ∈ N. Furthermore, (40) yields
δ ◦ gk = hk ◦ δ. Thus,(

δ ◦ gk
)

(Dn) =
(
hk ◦ δ

)
(Dn) = hk (δ (Dn))

⊆ hk

(
n−1∑
i=1

Di ⊗Dn−i

)
(by (6))

=
n−1∑
i=1

hk (Di ⊗Dn−i) . (43)

We shall now prove that each i ∈ {1, 2, . . . , n− 1} and each r ∈ {0, 1, . . . , k} satisfy(
gr ⊗ gk−r

)
(Di ⊗Dn−i) = 0. (44)

[Proof of (44): Fix i ∈ {1, 2, . . . , n− 1} and r ∈ {0, 1, . . . , k}. We must prove (44).
We have i ∈ {1, 2, . . . , n− 1}. Thus, 0 < i < n, so that 0 < n − i < n. Also,

min {k, i} > 0 (since k > 0 and i > 0). Also, k = n− p > i− p (since n > i) and i > i− p
(since p > 0). Therefore, min {k, i} > i− p.

We are in one of the following two cases:
Case 1: We have r ≥ min {k, i}.
Case 2: We have r < min {k, i}.
Let us first consider Case 1. In this case, we have r ≥ min {k, i}. This entails that

r ≥ min {k, i} > i − p. Moreover, the integer r is positive (since r ≥ min {k, i} > 0).
Hence, (42) (applied to u = i and v = r) yields gr (Di) = 0 (since r > i− p). Now,(

gr ⊗ gk−r
)

(Di ⊗Dn−i) = gr (Di)︸ ︷︷ ︸
=0

⊗gk−r (Dn−i) = 0.

Thus, (44) is proved in Case 1.
Next, let us consider Case 2. In this case, we have r < min {k, i}. Now, the integer

k − r is positive (since r < min {k, i} ≤ k). Furthermore, from k = n− p, we obtain

k − r = n− p− r︸︷︷︸
<min{k,i}≤i

> n− p− i = n− i− p.

Hence, (42) (applied to u = n− i and v = k − r) yields gk−r (Dn−i) = 0. Now,(
gr ⊗ gk−r

)
(Di ⊗Dn−i) = gr (Di)⊗ gk−r (Dn−i)︸ ︷︷ ︸

=0

= 0.

Thus, (44) is proved in Case 2.
The proof of (44) is now complete.]
Using (44), we can easily see that each i ∈ {1, 2, . . . , n− 1} and each r ∈ {0, 1, . . . , k}

satisfy
hk,r (Di ⊗Dn−i) = 0. (45)
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(Indeed, (38) expresses hk,r as a product, but the rightmost factor gr⊗gk−r in this product
already kills Di ⊗Dn−i according to (44).)

Now, each i ∈ {1, 2, . . . , n− 1} satisfies

hk (Di ⊗Dn−i) =

(
k∑
r=0

hk,r

)
(Di ⊗Dn−i) (by (39))

⊆
k∑
r=0

hk,r (Di ⊗Dn−i)︸ ︷︷ ︸
=0

(by (45))

= 0.

Hence, (43) becomes

(
δ ◦ gk

)
(Dn) ⊆

n−1∑
i=1

hk (Di ⊗Dn−i)︸ ︷︷ ︸
⊆0

⊆ 0.

In other words, δ
(
gk (Dn)

)
⊆ 0. Equivalently,

gk (Dn) ⊆ Ker δ.

Since g = e− f and k = n− p, we can rewrite this as follows:

(e− f)n−p (Dn) ⊆ Ker δ. (46)

However, we can rewrite (1) as (e− f) (Ker δ) = 0. Thus,

(e− f)n−p+1 (Dn) = (e− f)

(e− f)n−p (Dn)︸ ︷︷ ︸
⊆Ker δ

(by (46))

 ⊆ (e− f) (Ker δ) = 0.

In other words,
(e− f)n−p+1 (Dn) = 0. (47)

We have now proved the relations (46) and (47). In other words, (7) and (8) hold for
u = n. This completes the induction step. Thus, Theorem 2.1 is proven.

3.2 Proof of Proposition 2.4

Our next goal is to prove Proposition 2.4. We shall work towards this goal by proving
a simple lemma:

Lemma 3.1. Let C be any k-coalgebra. Let a, b, d ∈ C be three elements satisfying ε (a) = 1
and ε (b) = 1 and ∆ (d) = d⊗ a+ b⊗ d. Then, ε (d) = 0.
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We shall later apply Lemma 3.1 to the case when a = b = 1C (and C is either a
connected filtered k-coalgebra or a k-bialgebra, so that 1C does make sense); however, it
is not any harder to prove it in full generality:

Proof of Lemma 3.1. Let γ be the canonical k-module isomorphism C⊗k→ C, c⊗λ 7→ λc.
One of the axioms of a coalgebra says that γ ◦ (id⊗ε) ◦ ∆ = id. Applying both sides of
this equality to d, we obtain (γ ◦ (id⊗ε) ◦∆) (d) = id (d) = d. Hence,

d = (γ ◦ (id⊗ε) ◦∆) (d) = ε (a)︸︷︷︸
=1

d+ ε (d) b (since ∆ (d) = d⊗ a+ b⊗ d)

= d+ ε (d) b.

Subtracting d from both sides, we obtain ε (d) b = 0. Applying the map ε to this equality,
we find ε (ε (d) b) = 0. In view of

ε (ε (d) b) = ε (d) ε (b)︸︷︷︸
=1

= ε (d) ,

this rewrites as ε (d) = 0. This proves Lemma 3.1.

Next, let us define a “reduced identity map” id for any connected filtered k-coalgebra
C, and explore some of its properties:

Lemma 3.2. Let C be a connected filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .).
Define a k-linear map id : C → C by setting

id (c) := c− ε (c) 1C for each c ∈ C.

Define a k-linear map δ : C → C ⊗ C by setting

δ (c) := ∆ (c)− c⊗ 1C − 1C ⊗ c+ ε (c) 1C ⊗ 1C for each c ∈ C.

Then:
(a) We have δ =

(
id⊗ id

)
◦∆.

(b) We have id (C≤n) ⊆ C≤n for each n ∈ N.
(c) We have id (C≤0) = 0.

Proof of Lemma 3.2. (a) Let c ∈ C. Write the tensor ∆ (c) ∈ C ⊗ C in the form

∆ (c) =
m∑
i=1

ci ⊗ di (48)

for some m ∈ N, some c1, c2, . . . , cm ∈ C and some d1, d2, . . . , dm ∈ C.
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According to the axioms of a coalgebra4, we thus have

c =
m∑
i=1

ε (di) ci (49)

and

c =
m∑
i=1

ε (ci) di. (50)

Applying the map ε to both sides of (50), we obtain

ε (c) = ε

(
m∑
i=1

ε (ci) di

)
=

m∑
i=1

ε (ci) ε (di) . (51)

Now, applying the map id⊗ id to both sides of the equality (48), we obtain(
id⊗ id

)
(∆ (c))

=
(
id⊗ id

)( m∑
i=1

ci ⊗ di

)
=

m∑
i=1

id (ci)︸ ︷︷ ︸
=ci−ε(ci)1C

(by the definition of id )

⊗ id (di)︸ ︷︷ ︸
=di−ε(di)1C

(by the definition of id )

=
m∑
i=1

(ci − ε (ci) 1C)⊗ (di − ε (di) 1C)

=
m∑
i=1

ci ⊗ di︸ ︷︷ ︸
=∆(c)

(by (48))

−
m∑
i=1

ci ⊗ (ε (di) 1C)︸ ︷︷ ︸
=(

∑m
i=1 ε(di)ci)⊗1C

−
m∑
i=1

(ε (ci) 1C)⊗ di︸ ︷︷ ︸
=1C⊗(

∑m
i=1 ε(ci)di)

+
m∑
i=1

(ε (ci) 1C)⊗ (ε (di) 1C)︸ ︷︷ ︸
=(

∑m
i=1 ε(ci)ε(di))1C⊗1C

= ∆ (c)−

(
m∑
i=1

ε (di) ci

)
︸ ︷︷ ︸

=c
(by (49))

⊗1C − 1C ⊗

(
m∑
i=1

ε (ci) di

)
︸ ︷︷ ︸

=c
(by (50))

+

(
m∑
i=1

ε (ci) ε (di)

)
︸ ︷︷ ︸

=ε(c)
(by (51))

1C ⊗ 1C

= ∆ (c)− c⊗ 1C − 1C ⊗ c+ ε (c) 1C ⊗ 1C = δ (c)

(by the definition of δ). Thus,

δ (c) =
(
id⊗ id

)
(∆ (c)) =

((
id⊗ id

)
◦∆
)

(c) . (52)

4Specifically, we are using the axioms

idC = γ ◦ (id⊗ε) ◦∆ and idC = γ′ ◦ (ε⊗ id) ◦∆,

where γ : C⊗k→ C, c⊗λ 7→ λc and γ′ : k⊗C → C, λ⊗c 7→ λc are the canonical k-module isomorphisms.
We are applying both identities to c and using (48) to expand ∆ (c) on the right hand side.
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Since we have proved this for all c ∈ C, we thus obtain δ =
(
id⊗ id

)
◦ ∆. This proves

Lemma 3.2 (a).
(b) Let n ∈ N. Definition 2.3 (b) yields 1C ∈ C≤0 ⊆ C≤n (by (9)). Now, for each

c ∈ C≤n, the definition of id yields

id (c) = c− ε (c) 1C ∈ C≤n (since c ∈ C≤n and 1C ∈ C≤n) .

In other words, we have id (C≤n) ⊆ C≤n. This proves Lemma 3.2 (b).
(c) The filtered k-coalgebra C is connected. In other words, the restriction ε |C≤0

is a
k-module isomorphism from C≤0 to k (by Definition 2.3 (a)). Thus, this restriction ε |C≤0

is injective. Also, Definition 2.3 (b) yields 1C ∈ C≤0 and ε (1C) = 1k.
Now, let c ∈ C≤0. Set d = ε (c) 1C . Then, d ∈ C≤0 (since 1C ∈ C≤0). From d = ε (c) 1C ,

we obtain

ε (d) = ε (ε (c) 1C) = ε (c) ε (1C) = ε (c) (since ε (1C) = 1k) .

Since ε |C≤0
is injective, this entails d = c (because both d and c belong to C≤0). Therefore,

c = d = ε (c) 1C . Now, the definition of id yields id (c) = c−ε (c) 1C = 0 (since c = ε (c) 1C).
Since we have proved this for each c ∈ C≤0, we thus know that id (C≤0) = 0. This proves
Lemma 3.2 (c).

Proof of Proposition 2.4. (a) Define a k-linear map id : C → C as in Lemma 3.2.
Now, let n > 0 be an integer. Lemma 3.2 (a) yields δ =

(
id⊗ id

)
◦∆. Thus,

δ (C≤n) =
((

id⊗ id
)
◦∆
)

(C≤n) =
(
id⊗ id

)
(∆ (C≤n))

⊆
(
id⊗ id

)( n∑
i=0

C≤i ⊗ C≤n−i

)
(by (11))

=
n∑
i=0

id (C≤i)⊗ id (C≤n−i) =
n−1∑
i=1

id (C≤i)︸ ︷︷ ︸
⊆C≤i

(by Lemma 3.2 (b))

⊗ id (C≤n−i)︸ ︷︷ ︸
⊆C≤n−i

(by Lemma 3.2 (b)) here, we have removed the addends for i = 0 and
for i = n from the sum, since they are 0 (because

Lemma 3.2 (c) yields id (C≤0) = 0)


⊆

n−1∑
i=1

C≤i ⊗ C≤n−i.

This proves Proposition 2.4 (a).
(b) Let f : C → C be a k-coalgebra homomorphism satisfying f (1C) = 1C . The

definition of a coalgebra homomorphism thus yields (f ⊗ f) ◦∆ = ∆ ◦ f and ε = ε ◦ f .
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Let c ∈ C. The definition of δ yields δ (c) = ∆ (c) − c ⊗ 1C − 1C ⊗ c + ε (c) 1C ⊗ 1C .
Applying the map f ⊗ f to both sides of this equality, we obtain

(f ⊗ f) (δ (c))

= (f ⊗ f) (∆ (c)− c⊗ 1C − 1C ⊗ c+ ε (c) 1C ⊗ 1C)

= ((f ⊗ f) ◦∆)︸ ︷︷ ︸
=∆◦f

(c)− f (c)⊗ f (1C)︸ ︷︷ ︸
=1C

− f (1C)︸ ︷︷ ︸
=1C

⊗f (c) + ε︸︷︷︸
=ε◦f

(c) f (1C)︸ ︷︷ ︸
=1C

⊗ f (1C)︸ ︷︷ ︸
=1C

= ∆ (f (c))− f (c)⊗ 1C − 1C ⊗ f (c) + ε (f (c)) 1C ⊗ 1C .

Comparing this with

(δ ◦ f) (c) = δ (f (c)) = ∆ (f (c))− f (c)⊗ 1C − 1C ⊗ f (c) + ε (f (c)) 1C ⊗ 1C

(by the definition of δ) ,

we obtain (δ ◦ f) (c) = (f ⊗ f) (δ (c)) = ((f ⊗ f) ◦ δ) (c). Since we have proved this for
each c ∈ C, we thus obtain δ ◦ f = (f ⊗ f) ◦ δ. This proves Proposition 2.4 (b).

(c) Definition 2.3 (b) yields 1C ∈ C≤0 and ε (1C) = 1k.
Let c ∈ (Ker δ) ∩ (Ker ε). Thus, δ (c) = 0 and ε (c) = 0. From δ (c) = 0, we obtain

0 = δ (c) = ∆ (c)− c⊗ 1C − 1C ⊗ c+ ε (c)︸︷︷︸
=0

1C ⊗ 1C (by the definition of δ)

= ∆ (c)− c⊗ 1C − 1C ⊗ c.

In other words, ∆ (c) = c⊗ 1C + 1C ⊗ c. In other words, the element c of C is primitive.
In other words, c ∈ PrimC. Since we have proved this for each c ∈ (Ker δ) ∩ (Ker ε), we
thus obtain (Ker δ) ∩ (Ker ε) ⊆ PrimC.

Now, let d ∈ PrimC. Thus, the element d of C is primitive, i.e. ∆ (d) = d⊗1C+1C⊗d.
Hence, Lemma 3.1 (applied to a = 1C and b = 1C) yields ε (d) = 0 (since ε (1C) = 1k = 1).
Hence, d ∈ Ker ε.

Furthermore, the definition of δ yields

δ (d) = ∆ (d)− d⊗ 1C − 1C ⊗ d︸ ︷︷ ︸
=0

(since ∆(d)=d⊗1C+1C⊗d)

+ ε (d)︸︷︷︸
=0

1C ⊗ 1C = 0.

Hence, d ∈ Ker δ. Combining this with d ∈ Ker ε, we obtain d ∈ (Ker δ)∩(Ker ε). Since we
have proved this for each d ∈ PrimC, we have thus shown that PrimC ⊆ (Ker δ)∩ (Ker ε).
Combining this with (Ker δ) ∩ (Ker ε) ⊆ PrimC, we obtain the claim of Proposition 2.4
(c).

(d) This follows from Proposition 2.4 (c), since both Ker δ and Ker ε are k-submodules
of C.

(e) Definition 2.3 (b) yields 1C ∈ C≤0 ⊆ C≤1 (by (9)). Thus,

δ (1C) ∈ δ (C≤1) ⊆
1−1∑
i=1

C≤i ⊗ C≤1−i (by Proposition 2.4 (a), applied to n = 1)

= (empty sum) = 0.
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In other words, δ (1C) = 0. Hence, 1C ∈ Ker δ. Thus, k · 1C ⊆ Ker δ.
Also, Proposition 2.4 (c) yields

PrimC = (Ker δ) ∩ (Ker ε) ⊆ Ker δ.

Hence,
k · 1C︸ ︷︷ ︸
⊆Ker δ

+ PrimC︸ ︷︷ ︸
⊆Ker δ

⊆ Ker δ + Ker δ ⊆ Ker δ. (53)

Definition 2.3 (b) yields 1C ∈ C≤0 and ε (1C) = 1k.
Let u ∈ Ker δ. Thus, δ (u) = 0. Set v = u− ε (u) 1C . Thus,

δ (v) = δ (u− ε (u) 1C) = δ (u)︸︷︷︸
=0

−ε (u) δ (1C)︸ ︷︷ ︸
=0

= 0− ε (u) 0 = 0,

so that v ∈ Ker δ. Furthermore, from v = u− ε (u) 1C , we obtain

ε (v) = ε (u− ε (u) 1C) = ε (u)− ε (u) ε (1C)︸ ︷︷ ︸
=1k

= ε (u)− ε (u) = 0,

so that v ∈ Ker ε. Combining this with v ∈ Ker δ, we obtain v ∈ (Ker δ)∩(Ker ε) = PrimC
(by Proposition 2.4 (c)). Now, from v = u− ε (u) 1C , we obtain

u = ε (u)︸︷︷︸
∈k

1C + v︸︷︷︸
∈PrimC

∈ k · 1C + PrimC.

We thus have shown that u ∈ k · 1C + PrimC for each u ∈ Ker δ. In other words,

Ker δ ⊆ k · 1C + PrimC.

Combining this with (53), we obtain Ker δ = k ·1C+PrimC and prove Proposition 2.4 (e).

3.3 Proofs of the corollaries from Section 2.2

Proof of Corollary 2.5. From e (1C) = 1C and f (1C) = 1C , we obtain

(e− f) (1C) = 1C − 1C = 0.

Hence, 1C ∈ Ker (e− f), so that k · 1C ⊆ Ker (e− f).
Define the k-linear map δ : C → C ⊗ C as in Proposition 2.4. Proposition 2.4 (b)

yields that (f ⊗ f) ◦ δ = δ ◦ f . Likewise, (e⊗ e) ◦ δ = δ ◦ e. Moreover, Proposition 2.4 (e)
yields

Ker δ = k · 1C︸ ︷︷ ︸
⊆Ker(e−f)

+ PrimC︸ ︷︷ ︸
⊆Ker(e−f)
(by (12))

⊆ Ker (e− f) + Ker (e− f) ⊆ Ker (e− f) .
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However, Proposition 2.4 (a) shows that

δ (C≤n) ⊆
n−1∑
i=1

C≤i ⊗ C≤n−i for each n > p

(and, more generally, for each n > 0, but we only need this in the case n > p).
Moreover, (9) yields C≤1 + C≤2 + · · ·+ C≤p ⊆ C≤p. Therefore,

(e− f) (C≤1 + C≤2 + · · ·+ C≤p) ⊆ (e− f) (C≤p) = 0

(by (14)), so that (e− f) (C≤1 + C≤2 + · · ·+ C≤p) = 0.
Hence, Theorem 2.1 (applied to D = C and Di = C≤i) shows that for any integer

u > p, we have
(e− f)u−p (C≤u) ⊆ Ker δ (54)

and
(e− f)u−p+1 (C≤u) = 0. (55)

We are now close to proving Corollary 2.5. Let us begin with part (a):
(a) The map f is a k-coalgebra homomorphism, and thus satisfies ε ◦ f = ε (by the

definition of a k-coalgebra homomorphism). Similarly, ε◦e = ε. Since the map ε is k-linear,
we have

ε ◦ (e− f) = ε ◦ e︸︷︷︸
=ε

− ε ◦ f︸︷︷︸
=ε

= ε− ε = 0.

Now, let u > p be an integer. Thus, (e− f)u−p = (e− f) ◦ (e− f)u−p−1. Hence,

ε ◦ (e− f)u−p = ε ◦ (e− f)︸ ︷︷ ︸
=0

◦ (e− f)u−p−1 = 0 ◦ (e− f)u−p−1 = 0.

Therefore, (e− f)u−p (C≤u) ⊆ Ker ε. Combining this with (54), we find, by Proposi-
tion 2.4 (c), that

(e− f)u−p (C≤u) ⊆ (Ker δ) ∩ (Ker ε) = PrimC.

This proves Corollary 2.5 (a).
(b) Let u ≥ p be an integer. We must prove that (e− f)u−p+1 (C≤u) = 0. If u > p,

then this follows from (55). Thus, for the rest of this proof, we assume (without loss
of generality) that we don’t have u > p. Hence, u = p (since we have u ≥ p). Thus,
(e− f)u−p+1 = (e− f)p−p+1 = (e− f)1 = e− f and C≤u = C≤p, so that

(e− f)u−p+1 (C≤u) = (e− f) (C≤p) = 0

(by (14)). This proves Corollary 2.5 (b).
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Proof of Corollary 2.6. Define the k-linear map δ : C → C⊗C as in Proposition 2.4. Just
as we did in the proof of Corollary 2.5, we can show that Ker δ ⊆ Ker (e− f). As we have
seen in the proof of Proposition 2.4 (e), we have δ (C≤1) ⊆ 0. Hence,

C≤1 ⊆ Ker δ ⊆ Ker (e− f) .

In other words,
(e− f) (C≤1) = 0. (56)

Hence, we can apply Corollary 2.5 to p = 1. In particular, applying Corollary 2.5 (a) to
p = 1, we immediately obtain Corollary 2.6 (a), whereas applying Corollary 2.5 (b) to
p = 1 yields Corollary 2.6 (b).

Proof of Corollary 2.7. Clearly, id : C → C is a k-coalgebra homomorphism such that
id (1C) = 1C . Furthermore, f ◦ id = f = id ◦f . Hence, we can apply Corollary 2.6 to
e = id. As a result, we obtain precisely the claims of Corollary 2.7.

3.4 Proofs for Section 2.3

Before we prove the claims left unproved in Section 2.3, let us recall the defining
property of the antipode of a Hopf algebra (see, e.g., [5, (1.4.3)]):

Remark 3.3. Let H be a k-Hopf algebra with antipode S. Let 1H denote the unity of
the k-algebra H. Let m : H ⊗ H → H be the k-linear map that sends each pure tensor
x⊗ y ∈ H ⊗H to the product xy ∈ H. Let u : k→ H be the k-linear map that sends 1k

to 1H . Then,

m ◦ (S ⊗ idH) ◦∆ = u ◦ ε and (57)

m ◦ (idH ⊗S) ◦∆ = u ◦ ε. (58)

Proof of Corollary 2.13. Lemma 2.12 (b) yields S (1H) = 1H . Hence, it easily follows that
S2 (1H) = 1H . Moreover, Lemma 2.12 (a) yields that the map S2 : H → H is a k-coalgebra
homomorphism. Of course, the map id : H → H is a k-coalgebra homomorphism as well,
and satisfies id (1H) = 1H . Furthermore, every x ∈ PrimH is a primitive element of H
and therefore satisfies x ∈ Ker (id−S2) (since Lemma 2.12 (d) yields S2 (x) = x). Hence,
we have PrimH ⊆ Ker (id−S2). Moreover, S2 ◦ id = S2 = id ◦S2. Furthermore, p is a
positive integer and satisfies (id−S2) (H≤p) = 0 (by (17)). Hence, we can apply Corollary
2.5 to C = H and C≤i = H≤i and e = id and f = S2. Doing so, we immediately obtain

• that (18) holds for any integer u > p (by applying Corollary 2.5 (a)), and

• that (20) holds for any integer u ≥ p (by applying Corollary 2.5 (b)).

It thus remains to prove that (19) holds for any integer u > p. So let us do this now.
First, we shall show that (id +S) (PrimH) = 0.
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Indeed, each x ∈ PrimH is a primitive element of H and therefore satisfies

(id +S) (x) = x+ S (x) = 0 (since Lemma 2.12 (c) yields S (x) = −x) .

In other words, we have (id +S) (PrimH) = 0.
Now, let u > p be an integer. Applying the map id +S to (18), we obtain(

(id +S) ◦
(
id−S2

)u−p)
(H≤u) ⊆ (id +S) (PrimH) = 0.

Thus, (19) follows. This completes the proof of Corollary 2.13.

Proof of Corollary 2.14. In our above proof of Corollary 2.13, we have already shown that

• we have S2 (1H) = 1H ;

• the map S2 : H → H is a k-coalgebra homomorphism;

• we have PrimH ⊆ Ker (id−S2).

Hence, we can apply Corollary 2.7 to C = H and C≤i = H≤i and f = S2. Doing so,
we immediately obtain

• that (21) holds for any integer u > 1 (by applying Corollary 2.7 (a)), and

• that (23) holds for any positive integer u (by applying Corollary 2.7 (b)).

It thus remains to prove that (22) holds for any integer u > 1. But this can be deduced
from (21) in the same way as we deduced (19) from (18) in our above proof of Corollary
2.13. Thus, the proof of Corollary 2.14 is complete.

3.5 Proofs for Section 2.4

We shall next focus on proving the claims left unproven in Section 2.4. Before we do so,
let us first collect a few basic properties of connected graded Hopf algebras into a lemma
for convenience:

Lemma 3.4. Let H be a connected graded k-Hopf algebra with unity 1H and antipode S.
Then:

(a) If n is a positive integer, and if x is an element of Hn, then we have

∆ (x) = 1H ⊗ x+ x⊗ 1H + w for some w ∈
n−1∑
k=1

Hk ⊗Hn−k.

(b) We have H1 ⊆ PrimH.
(c) We have S (ab) = ba for any a, b ∈ H1.
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Proof of Lemma 3.4. (a) This is well-known; see [5, Exercise 1.3.20 (h)] or [8, Proposition
II.1.1] or [11, Theorem 2.18] for a proof.

(b) We need to show that each x ∈ H1 is primitive, i.e., satisfies ∆ (x) = x⊗1H+1H⊗x.
But this follows easily by applying Lemma 3.4 (a) to n = 1 (and observing that the sum∑n−1

k=1 Hk ⊗Hn−k is empty for n = 1).
(c) Let a, b ∈ H1. Then, a ∈ H1 ⊆ PrimH (by Lemma 3.4 (b)). In other words, the

element a of H is primitive. Hence, S (a) = −a (by Lemma 2.12 (c), applied to x = a).
Similarly, S (b) = −b. However, it is well-known (see, e.g., [7, Proposition 1.2.17 (1)] or [5,
Proposition 1.4.10] or [12, Proposition 7.1.9 (a)]) that the antipode S of H is a k-algebra
anti-endomorphism, i.e., that it satisfies S (1H) = 1H and

S (uv) = S (v)S (u) for all u, v ∈ H. (59)

Applying (59) to u = a and v = b, we obtain S (ab) = S (b)︸︷︷︸
=−b

S (a)︸ ︷︷ ︸
=−a

= (−b) (−a) = ba. This

proves Lemma 3.4 (c).

Proof of Corollary 2.15. As we know, the graded k-Hopf algebra H automatically becomes
a filtered k-Hopf algebra with filtration (H≤0, H≤1, H≤2, . . .) defined by setting

H≤n :=
n⊕
i=0

Hi for all n ∈ N.

This filtered k-Hopf algebra H is connected, since H≤0 = H0. Thus, Corollary 2.14 can be
applied.

Let u be a positive integer. Then, the definition of H≤u yields Hu ⊆ H≤u.
Now, we must prove the three relations (24), (25) and (26). The third one is the easiest:

From Hu ⊆ H≤u, we obtain(
id−S2

)u
(Hu) ⊆

(
id−S2

)u
(H≤u) = 0

(by Corollary 2.14 (b)) and therefore (id−S2)
u

(Hu) = 0. This proves (26).
We shall now focus on proving (24). Indeed, if u > 1, then (24) follows from(

id−S2
)u−1

(Hu) ⊆
(
id−S2

)u−1
(H≤u) (since Hu ⊆ H≤u)

⊆ PrimH (by (21), since u > 1) .

Thus, in order to complete the proof of (24), we only need to prove it for u = 1. In other
words, we need to prove that (id−S2)

0
(H1) ⊆ PrimH. But this follows from Lemma 3.4

(b), since (id−S2)
0

= id. This completes our proof of (24).
Now, it remains to prove (25). But we can deduce (25) from (24) in the same way as

we deduced (19) from (18) in our above proof of Corollary 2.13. This completes the proof
of Corollary 2.15.



328 Darij Grinberg

Proof of Corollary 2.16. Let 1H denote the unity of the k-algebra H.
As in the proof of Corollary 2.15, we know that the graded k-Hopf algebra H automat-

ically becomes a filtered k-Hopf algebra, and this filtered k-Hopf algebra H is connected.
Now, we shall show that (

id−S2
)

(H≤p) = 0. (60)

[Proof of (60): In view of H≤p =
⊕p

i=0Hi, it will suffice to show that (id−S2) (Hi) = 0
for each i ∈ {0, 1, . . . , p}. But (27) shows that this is true for all i ∈ {2, 3, . . . , p}. Thus, it
remains to show that (id−S2) (Hi) = 0 for i = 0 and for i = 1.

This is not hard: Lemma 2.12 (b) easily yields (id−S2) (1H) = 0. However, since
the graded Hopf algebra H is connected, it is easy to see that H0 = k · 1H . Hence, from
(id−S2) (1H) = 0, we obtain (id−S2) (H0) = 0. Thus, (id−S2) (Hi) = 0 holds for i = 0.

Each element x ∈ H1 is primitive (by Lemma 3.4 (b)) and thus satisfies S2 (x) = x
(by Lemma 2.12 (d)), so that (id−S2) (x) = 0. In other words, (id−S2) (H1) = 0. Thus,
(id−S2) (Hi) = 0 holds for i = 1. Our proof of (60) is now complete.]

Hence, we can apply Corollary 2.13. As a result, we obtain precisely the claims of
Corollary 2.16.

Proof of Corollary 2.17. (a) Let 1H denote the unity of the k-algebra H. Define the maps
m and u as in Remark 3.3.

Let x ∈ H2. Then, Lemma 3.4 (a) (applied to n = 2) yields that we have

∆ (x) = 1H ⊗ x+ x⊗ 1H + w for some w ∈ H1 ⊗H1

(since
∑2−1

k=1Hk ⊗H2−k = H1 ⊗H1). Consider this w.
Now, w is a tensor in H1 ⊗H1. Write this tensor in the form

w =
k∑
i=1

ai ⊗ bi (61)

for some k ∈ N, some a1, a2, . . . , ak ∈ H1 and some b1, b2, . . . , bk ∈ H1.
The elements a1, a2, . . . , ak and b1, b2, . . . , bk belong to H1 and therefore are primitive

(since Lemma 3.4 (b) yields H1 ⊆ PrimH). Hence, each i ∈ {1, 2, . . . , k} satisfies

S (ai) = −ai (62)

(by Lemma 2.12 (c), applied to ai instead of x) and

S (aibi) = biai (by Lemma 3.4 (c), applied to a = ai and b = bi)

= aibi (63)

(by (31), applied to a = bi and b = ai).
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Applying the map S ⊗ idH : H ⊗H → H ⊗H to the equality (61), we obtain

(S ⊗ idH) (w) = (S ⊗ idH)

(
k∑
i=1

ai ⊗ bi

)
=

k∑
i=1

S (ai)︸ ︷︷ ︸
=−ai

(by (62))

⊗ idH (bi)︸ ︷︷ ︸
=bi

= −
k∑
i=1

ai ⊗ bi︸ ︷︷ ︸
=w

(by (61))

= −w. (64)

The Hopf algebra H is graded. Hence, its counit ε is a graded map from H to k. In
other words, ε (Hi) ⊆ ki for each i ∈ N. Thus, ε (H2) ⊆ k2 = 0 (since the graded k-module
k is concentrated in degree 0). Therefore, ε (x) = 0 (since x ∈ H2).

Lemma 2.12 (b) yields S (1H) = 1H .
Applying both sides of the equality (57) to x, we obtain

(m ◦ (S ⊗ idH) ◦∆) (x) = (u ◦ ε) (x) = u

ε (x)︸︷︷︸
=0

 = u (0) = 0.

Therefore,

0 = (m ◦ (S ⊗ idH) ◦∆) (x)

= m

S (1H)︸ ︷︷ ︸
=1H

⊗ idH (x)︸ ︷︷ ︸
=x

+S (x)⊗ idH (1H)︸ ︷︷ ︸
=1H

+ (S ⊗ idH) (w)︸ ︷︷ ︸
=−w

(by (64))


(since ∆ (x) = 1H ⊗ x+ x⊗ 1H + w)

= m (1H ⊗ x+ S (x)⊗ 1H − w)

= 1Hx+ S (x) · 1H −m (w) (by the definition of m)

= x+ S (x)−m (w) .

Solving this equality for S (x), we obtain

S (x) = m (w)− x. (65)

Applying the map m : H ⊗H → H to the equality (61), we obtain

m (w) = m

(
k∑
i=1

ai ⊗ bi

)
=

k∑
i=1

aibi (66)

(by the definition of m). Applying the map S to this equality, we obtain

S (m (w)) = S

(
k∑
i=1

aibi

)
=

k∑
i=1

S (aibi)︸ ︷︷ ︸
=aibi

(by (63))

=
k∑
i=1

aibi

= m (w) (by (66)) . (67)
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Now, applying the map S to both sides of the equality (65), we obtain

S (S (x)) = S (m (w)− x) = S (m (w))︸ ︷︷ ︸
=m(w)

(by (67))

− S (x)︸ ︷︷ ︸
=m(w)−x
(by (65))

= m (w)− (m (w)− x) = x.

In other words, S2 (x) = x. Hence, (id−S2) (x) = 0. Since we have shown this for each
x ∈ H2, we thus conclude that (id−S2) (H2) = 0. This proves Corollary 2.17 (a).

Now we know that (id−S2) (H2) = 0 (by Corollary 2.17 (a)). In other words, all
i ∈ {2, 3, . . . , 2} satisfy (id−S2) (Hi) = 0 (since the only i ∈ {2, 3, . . . , 2} is 2). Hence, we
can apply Corollary 2.16 to p = 2. Doing so, we obtain precisely the claims of parts (b)
and (c) of Corollary 2.17. (To be precise: Corollary 2.17 (b) follows by applying Corollary
2.16 (a), whereas Corollary 2.17 (c) follows by applying Corollary 2.16 (b).)
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