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Cantor series expansions of rational numbers

Symon Serbenyuk

Abstract. This survey is devoted to necessary and sufficient conditions for a rational
number to be representable by a Cantor series. Necessary and sufficient conditions
are formulated for the case of an arbitrary sequence (qk).

1 Introduction

Let Q ≡ (qk) be a fixed sequence of positive integers, qk > 1, Θk be a sequence of the
sets Θk ≡ {0, 1, . . . , qk − 1}, and εk ∈ Θk.

The Cantor series expansion

ε1

q1

+
ε2

q1q2

+ · · ·+ εk
q1q2 . . . qk

+ . . . (1)

of x ∈ [0, 1], first studied by G. Cantor in [2], is a natural generalization of the b-ary
expansion

α1

b
+
α2

b2
+ · · ·+ αn

bn
+ . . .

of numbers from the closed interval [0, 1]. Here b is a fixed positive integer, b > 1, and
αn ∈ {0, 1, . . . , b− 1}.

By x = ∆Q
ε1ε2...εk...

denote a number x ∈ [0, 1] represented by series (1). This notation
is called the representation of x by Cantor series (1).

We note that certain numbers from [0, 1] have two different representations by Cantor
series (1), i.e.,

∆Q
ε1ε2...εm−1εm000... = ∆Q

ε1ε2...εm−1[εm−1][qm+1−1][qm+2−1]... =
m∑
i=1

εi
q1q2 . . . qi

.

Such numbers are called Q-rational. The other numbers in [0, 1] are called Q-irrational.
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Cantor series expansions have been intensively studied from different points of view
during the last century. The metric, probability, and fractal theories of number represen-
tations by positive Cantor series were studied by a number of researchers. Also, functions
and fractal sets defined in terms of Cantor series expansions were investigated. These
problems were considered by the following researchers: P. Erdös, J. Galambos, G. Iommi,
P. Kirschenhofer, T. Komatsu, V. Laohakosol, B. Li, M. Paštéka, S. Prugsapitak, J. Rat-
tanamoong, A. Rényi, B. Skorulski, R. F. Tichy, P. Turán, Yi Wang, M. S. Waterman,
H. Wegmann, Liu Wen, Zhixiong Wen, Lifeng Xi, and other mathematicians.

Such investigations can be divided into two groups. The first is the investigation of
the fractional parts of real numbers represented by Cantor series (1), and the other is the
investigation of representations of non-negative integers represented by positive Cantor
series of the form

n =
∞∑
k=1

εkq1q2 . . . qk,

where εk ∈ Θk.
We give a brief description of these investigations.
A number of researches are devoted to studying various types of the normality of

numbers represented by the Cantor series. In these papers, the notions of Q-distribution
normality, Q-normality, and Q-ratio normality, are studied. For example, in the papers [1],
[27], [28], the notion of Q-distribution normality is investigated. Indeed, one can note the
following investigations: relations between various types of normality (e.g., see [1], [26]);
the average value of the function of the sum of digits in the Cantor series representation of
a number (see [20] and references in the last-mentioned article); behaviour of the frequency
of the most frequently used digit among the first digits in the representation of a number
(e.g., see [4]); necessary, sufficient, necessary and sufficient conditions for a number to be a
number having the property of certain type normality (see [27], [26], [28]); the completeness
of the Lebesgue measure, the density, topological properties, the Hausdorff measure of a
set whose elements are numbers having the property of the normality of a certain type
(e.g., see [27], [28]); the rationality and irrationality of a number which has the property
of the normality of a certain type (see [26]), etc. Note that, in the papers [4], [5], [33], [34],
[36], [49], P. Erdös, A. Rényi, and P. Turán introduced and studied the problem on normal
numbers and other statistical properties of real numbers with respect to large classes of
Cantor series expansions. Some investigations of Cantor series expansions were published
by J. Galambos in [8], [9].

In some papers, certain generalizations of real numbers representations by the Cantor
series are studied. For example, properties of digits (sequences of digits) of the polyadic
number α as functions (sequences of functions) of α are studied in [32]; in [23], the notion
of a complex Cantor series is introduced, and the Q-algebraic and Q-linearly independence
of numbers represented by Cantor series are investigated; matrix expansions are studied
in [51]; the papers [38], [44] are devoted to certain generalizations of alternating Cantor
series.

In certain papers, fractal properties of representations of real numbers by positive
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Cantor series and fractal properties of certain type sets whose elements are represented by
a positive Cantor series, are studied (e.g., see [19], [50], [29], [26]). For example, in [19],
the Hausdorff-Besicovitch dimensions of sets whose elements are defined in terms of the
frequencies of digits, are investigated. The paper [52] is devoted to studying the conditions
under which the family of all possible rank cylinders ∆Q

c1c2...cn
is faithful for the Hausdorff-

Besicovitch dimension calculation. Sets whose elements have a restriction on using digits
in their own representations are studied in [29]. In the last-mentioned article, the formula
for a calculation of the Hausdorff dimension of the following set is proved, and conditions
for the equality of the Hausdorff, packing, and box dimensions of this set, are discovered:

RI(Q) =

{
x : x =

∞∑
k=1

εk
q1q2 . . . qk

, εk ∈ Ik ⊆ Θk

}
.

Here the condition

lim
k→∞

log qk
log q1q2 . . . qk

= 0

holds.
Also, we can note several investigations of functions. The arguments or values of these

functions are defined by positive [2] or alternating [39] Cantor series. In [53], properties of
the following function were investigated:

u = f(x) =
∞∑
k=1

uk
k(k + 1)

,

where u1 = 1 and for k = 1, 2, . . .

uk+1 =


−uk

k
, if εk+1 = 0 but εk 6= 0,

or if εk+1 = qk+1 − 1 but εk 6= qk − 1;

uk, otherwise.

Here x is represented by series (1). This function is well-defined and continuous. Also,
u = f(x) is nowhere differentiable when qk ≥ 3 for all k = 1, 2, . . . , and the condition

lim
k→∞

q1q2 . . . qk
k!

=∞

holds. The last-mentioned function is a function with a complicated local structure. Cer-
tain examples of functions with a complicated local structure are described in [42], [37],
[40]. In the paper [29], the following function are studied:

ψP,Q(x) =
∞∑
k=1

min(Ek, qk − 1)

q1q2 . . . qk
,

where

x = E0 +
∞∑
k=1

Ek
p1p2 . . . pk

, ε0 +
∞∑
k=1

εk
q1q2 . . . qk

.
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Here E0, ε0 ∈ Z, Q ≡ (qk) and P ≡ (pk) are sequences of positive integers, that greater
than 1. Also, Ek 6= pk − 1 and εk 6= qk − 1 infinitely often, Ek ∈ {0, 1, . . . , pk − 1} and
εk ∈ Θk.

In the present article, the main attention is given to necessary and sufficient conditions
for x (represented by Cantor series with an arbitrary basic sequence (qk)) to be rational.

Remark 1.1. In the present article, we use the following notations: N, Z0, Z, Q, and I.
Here by N denote the set of all positive integers and by Z0 denotes the set N∪{0}, Z is the
set of all integers, and Q is the set of all rational numbers, and I is the set of all irrational
numbers.

2 Description of research of the main problem

The problem of expansions of rational/irrational numbers in terms of generalizations
of the b-ary numeral system is difficult. A version of this problem for Cantor series (1)
was introduced in the paper [2] in 1869 and has been studied by a number of researchers.
For example, G. Cantor, P. A. Diananda, A. Oppenheim, P. Erdös, J. Hančl, E. G. Straus,
P. Rucki, R. Tijdeman, P. Kuhapatanakul, V. Laohakosol, D. Marques, Pingzhi Yuan and
other scientists studied this problem.

In the monograph [8], Prof. János Galambos called the problem on representations of
rational numbers by Cantor series (1) as the fourth open problem, and wrote the following:

“Problem Four. Give a criterion of rationality for numbers given by a Cantor series.
What one should seek here is a directly applicable criterion. A general sufficient condition
for rationality would also be of interest, in which the quoted theorems of Diananda and
Oppenheim (including the abstract criterion by condensations) can be guides or useful
tools.

If in a Cantor series, negative and positive terms are permitted, somewhat less is known
about the rationality or irrationality of the resulting sum. G. Lord (personal communica-
tion) tells me that the condensation method can be extended to this case as well, but still,
the results are less complete than in the case of ordinary Cantor series.”([8, p. 134]).

The paper [46] is devoted to the last-mentioned discussion and to expansions of rational
numbers by sign-variable Cantor series. For fullness, one can note the following result of
Diananda and Oppenheim noted by J. Galambos.

Theorem 2.1 ([3]). A necessary and sufficient condition that x given by (1) shall be rational
is this: coprime integers h, k, 0 ≤ h ≤ k, an integer N and a condensation shall exist such
that

Ai =
h

k
(Bi − 1)

for all i ≥ N .

Here

x = X = A0 +
A1

B1

+
A2

B1B2

+ · · ·+ An
B1B2 · · ·Bn

+ . . . ,
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where A0 = ε0 is the integer part of x,

B1 = q1q2 · · · qi1 , B2 = qi1+1qi2+1 · · · qi1+i2 , . . . ,

and Bi ≥ 2, 0 ≤ Ai ≤ Bi − 1,

ε1

q1

+
ε2

q1q2

+ · · ·+ εi1
q1q2 · · · qi1

=
A1

B1

.

We begin with a brief description of investigations of rational numbers represented by
the Cantor series.

Much research [48], [10], [13], [11], [14] has been devoted to necessary or/and suffi-
cient conditions for a rational number to be representable by Cantor series (1) such that
sequences (qk) and (εk) are sequences of integers. In some papers (see [13], [48],[7], [11],
[26]), the case of Cantor series for which sequences (qk) and (εk) are sequences of integers
and the condition Z 3 qk > 1 holds for all k ∈ N, is investigated. However, the main
problem of the present article is studied for the case of series (1) (e.g., see [2], [3], [24],
[31]) and still for the case of Cantor series of a special type (e.g., see [15], [17], [16], [13]).
For example, in the papers [3], [14], [6], [21], Ahmes series are considered. The last series
is Cantor series (1) for which εk = const = 1 holds for all k ∈ N.

In the papers [3], [10], [11], [13], [14], [15],[7], [31], [48], necessary and sufficient condi-
tions for a rational (irrational) number to be representable by a Cantor series are studied,
and sufficient conditions are investigated in the papers [7], [3], [13], [24], [31], [48]. Although
much research has been devoted to the problem of representations of rational (irrational)
numbers by Cantor series for which sequences (qk) and (εk) are sequences of special types
(see [2],[7], [10], [11], [13], [24], [31],[48]), little is known about necessary and sufficient
conditions of the rationality (irrationality) for the case of an arbitrary sequence (qk) (see
[3], [13], [41], [43], [39], [45], [46], [48]).

Finally, several papers (see [12], [21], [24], [48]) were devoted to investigations of con-
ditions of the rationality or irrationality of numbers represented by series of the form∑∞

k=1
ak
bk

. Furthermore, in [24], a necessary and sufficient condition of the rationality of

the sum
∑∞

k=1
ak(−1)k+1

bk
is proved for the case of certain properties which are satisfied by

sequences (ak) and (bk).
Let us consider our problem more in detail.

3 Cantor’s investigations, finite expansions, and conditions for finite
expansions of rational numbers

Let us begin with a consideration of the results presented in the first paper on this
topic (i.e., [2]). In [2], G. Cantor proved a fact that an arbitrary number x ∈ [0, 1) is
a rational number if and only if (εk) is ultimately periodic under the condition when a
sequence (qk) is periodic. In addition, one can note the following theorem which necessity
was given in [2] with the other formulation and with a more complicated proof for the case
of positive Cantor series.
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Theorem 3.1. A rational number p
r

has a finite expansion by a positive or sign-variable
Cantor series if and only if there exists a number n0 such that

q1q2 . . . qn0 ≡ 0 (mod r).

The interest in the last theorem can be explained ([41], [43], [39], [46]) by the fact that
there exist certain sequences (qk) such that all rational numbers represented by Cantor
series (positive or sign-variable) have finite expansions. For example, all rational numbers
represented by the following representations have finite expansions.

x = ∆−(2k)
ε1ε2...εk...

≡
∞∑
k=1

(−1)kεk
2 · 4 · 8 · . . . · 2k

, where εk ∈ {0, 1, . . . , 2k − 1};

x = ∆(k+1)!
ε1ε2...εk...

≡
∞∑
k=1

εk
2 · 3 · 4 · . . . · (k + 1)

, where εk ∈ {0, 1, . . . , k}.

It is easy to see that there exist sequences (qk) and (εk) such that a finite expansion is
a necessary or/and sufficient condition of the rationality of any number represented by a
Cantor series. Several papers were devoted to such investigations. For example, see [24],
[11]. Let us consider several related results.

In 2006, J. Sondow gave a geometric proof of the irrationality of the number e [47]. In
[30], the following statement was proved by a generalization to Sondow’s construction.

Theorem 3.2 ([30]). Let x =
∑∞

k=1
εn

q1q2···qk
. Suppose that each prime divides infinitely

many of the qk. Then x ∈ I if and only if both 0 < εk < qk − 1 hold infinitely often.

For example, in [11], attention is given to conditions of finite expansions of rational
numbers by positive and sign-variable Cantor expansions. That is,

∑∞
n=1

εk
q1q2···qk

∈ Q if
and only if εk = 0 for every sufficiently large positive integer k under one of the following
two systems of conditions:

• System 1 of conditions (the case of sign-variable series): suppose (qk) is a sequence
of positive integers greater than one, (εk) is a sequence of integers such that the
condition

lim inf
k→∞

|εk|+ 1

qk
= 0

holds and for every sufficiently large positive integer k

|εk+1| ≤
1

2
max (|εk|, 1)qk+1.

• System 2 of conditions (the case of positive series): suppose (qk) is a sequence of
positive integers greater than one and K ∈ (0, 1), (εk) is a sequence of non-negative
integers such that the condition

lim inf
n→∞

εk + 1

qk
= 0

holds and for every sufficiently large positive integer k

εk+1 ≤ K max (εk, 1)qk+1.
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4 The shift operator and related investigations

We must note that the notion of the shift operator plays an important role in investiga-
tions of expansions of rational numbers defined by the Cantor series (positive, alternating,
or sign-variable).

We begin with definitions. Let NB be a fixed subset of positive integers,

ρk =

{
1 if k ∈ NB

2 if k /∈ NB,

and Q ≡ (qk) be a fixed sequence of positive integers such that qk > 1 for all n ∈ N. Then
we get the following representation of real numbers

x = ∆(±Q,NB)
ε1ε2...εk...

≡ (−1)ρ1ε1

q1

+
(−1)ρ2ε2

q1q2

+ · · ·+ (−1)ρkεk
q1q2 . . . qk

+ . . . , (2)

where εk ∈ {0, 1, . . . , qk − 1}.
The last representation is called the representation of a number x by a sign-variable

Cantor series or the quasi-nega-Q-representation. It is easy to see that we get a positive
Cantor series whenever NB = ∅.

Define the shift operator σ of expansion (2) by the rule

σ(x) = σ
(
∆(±Q,NB)
ε1ε2...εk...

)
=
∞∑
k=2

(−1)ρkεk
q2q3 . . . qk

= q1∆
(±Q,NB)
0ε2...εk...

.

Clearly,

σn(x) = σn
(
∆(±Q,NB)
ε1ε2...εk...

)
=

∞∑
k=n+1

(−1)ρkεk
qn+1qn+2 . . . qk

= q1 . . . qn∆
(±Q,NB)

0 . . . 0︸ ︷︷ ︸
n

εn+1εn+2...
.

(3)

The following theorem is the most general statement on the representation of rational
numbers for any sequences (qk), (εk), and an arbitrary set NB.

Theorem 4.1 ([41], [43], [39], [45]). A number x represented by series (2) is rational for
the case of any NB ⊆ N if and only if there exist numbers n ∈ Z0 and m ∈ N such that
σn(x) = σn+m(x).

The last theorem can be formulated by the following way.

Theorem 4.2 ([41], [43], [45]). A number x = ∆
(±Q,NB)
ε1ε2...εk... is rational if and only if there

exist numbers n ∈ Z0 and m ∈ N such that

∆
(±Q,NB)

0 . . . 0︸ ︷︷ ︸
n

εn+1εn+2...
= qn+1 . . . qn+m∆

(±Q,NB)

0 . . . 0︸ ︷︷ ︸
n+m

εn+m+1εn+m+2...
.
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Let us recall several auxiliary statements which are true for positive Cantor series but
do not hold for the general case of sign-variable Cantor series (i.e., for certain sets NB).

Lemma 4.3 ([41], [43]). Let n0 be a fixed positive integer. Then the condition σn(x) = const
holds for all n ≥ n0 if and only if εn

qn−1
= const for all n > n0.

Lemma 4.4 ([41], [43]). Suppose we have q = minn∈N qn and fixed ε ∈ {0, 1, . . . , q − 1}.
Then the condition σn(x) = x = ε

q−1
holds if and only if the condition qn−1

q−1
ε = εn ∈ Z0

holds for all n ∈ N.

Let us consider cases when the condition εk
qk−1

= const (the last equality holds for all k

greater than some fixed k0) is a necessary and/or sufficient condition for a rational number
to be representable by a positive Cantor series. For more information, see [3], [13], [48].

In [13], J. Hančl and R. Tijdeman formulated certain conditions of the irrationality
of a number represented by Cantor series (1) when sequences (qk) and (εk) are sequences
of positive integers and qk > 1 for all k ∈ N. Applications of the shift operator to
representations of rational numbers by such series are considered. This article is partially
devoted to conditions under which the condition εk

qk−1
= const is a necessary and sufficient

condition of the rationality of numbers represented by such expansions. In particular, the
following cases are considered:

lim inf
k→∞

(
εk+1

qk+1

− εk
qk

)
= 0, εk = o(qk−1qk), εk+1 − εk = o(qk−1qk).

Also, in [13], the authors noted that sum (1) is equal to a rational number if εk
qk−1

= const
holds for all k greater than some number n0. Let us recall some results.

Lemma 4.5 ([13]). If S =
∑∞

k=1
εk

q1q2...qk
= r

p
holds for a certain r ∈ Z and p ∈ N, then

pSN ∈ Z for all N ∈ N.

Here S = σ0(x) and SN = σN−1(x). That is,

SN =
∞∑
k=N

εn
qN · · · qk

.

Proposition 4.6 ([13]). If (Sk) is bounded from below and for every ε > 0 we have

Sk+1 − Sk < ε

for k ≥ k0(ε), then S =
∑∞

k=1
εk

q1q2···qk
∈ Q if and only if εk

qk−1
= const for N > N0.

Corollary 4.7 ([13]). If (εk) is a sequence of positive integers such that εk+1 − εk = o(k),
then

∑∞
k=1

εk
k!
∈ Q if and only if εk

k−1
= const for k greater than some k1.

Theorem 4.8 ([13]). Let (qk) be a sequence of positive integers which is monotonic and
satisfies εk = o(q2

k). Then
∑∞

k=1
εk

q1q2···qk
∈ Q if and only if εk

qk−1
= const for k ≥ k0.
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Theorem 4.9 ([13]). Let (qk) and (εk) be sequences of integers such that qk > 1 for all

k ∈ N. If
(
εk
qk

)
is bounded from below, limk→∞

εk
qk−1qk

= 0, and for each ε > 0 there exists

k0(ε) such that the condition εk+1

qk+1
< εk

qk
+ ε holds for k > k0(ε), then

∑∞
k=1

εk
q1q2···qk

∈ Q if

and only if εk
qk−1

= const for k ≥ N0.

Theorem 4.10 ([13]). Let (qk) be a monotonic sequence of positive integers satisfying
limk→∞

qk
log k

=∞. Then
∑∞

k=1
εk

q1q2···qk
∈ Q if and only if εk

qk−1
= const for k ≥ k0.

Theorem 4.11 ([13]). Let (qk) be an unbounded monotonic sequence of positive integers.
Then

∑∞
k=1

k
q1q2···qk

∈ Q if and only if k
qk−1

= const for k ≥ k0.

Results obtained in [13] were generalized and corrected by Robert Tijdeman and
Pingzhi Yuan in paper [48]. In particular, results are generalized for the cases when
εk = k and qk → ∞, qk = k and εk+1 − εk = O(k). In the last-mentioned article, it is
shown that, in order that the condition εk

qk−1
= const for all k ≥ k0 is a necessary and suf-

ficient condition of the rationality, one can neglect the condition εk = o(q2
k) in the system

of conditions: εk = o(q2
k) , εk ≥ 0, εk+1 − εk < εqk for k ≥ k1(ε). We note the following

statements.

Theorem 4.12 ([48]). Let (qn) be a monotonic integer sequence with qn > 1 for all n and
(εn) be an integer sequence such that εn+1 − εn = o(qn+1). Then

∑∞
n=1

εn
q1q2···qn ∈ Q if and

only if εn
qn−1

= const for all n greater than some n0.

Theorem 4.13 ([48]). Let (qk) be a monotonic sequence of positive integers, qk > 1. Let
(εk) be a sequence of positive integers satisfying

lim sup
k→∞

εk+1 − εk
qk

≤ 0.

Then
∑∞

k=1
εk

q1q2...qk
∈ Q if and only if εk

qk−1
= const for all k greater than some k0.

In addition, the following sufficient condition of the irrationality is proved.

Theorem 4.14 ([48]). Let qk > 1 be such that εk = O(qk) for all k and limk→∞
εk
qk

= α ∈ I.
Then

∑∞
k=1

εk
q1q2···qk

∈ I.

The last statement with the condition 0 ≤ εk < qk without εk = O(qk) was proved in
[31].

Finally, in [48], the following denotations are used in proofs:

S =
∞∑
k=1

ε∗k
q∗1q
∗
2 · · · q∗k

, Snk
=

k∑
j=1

ε∗j
q∗1q
∗
2 · · · q∗j

, Rnk
=

∞∑
j=k+1

ε∗j
q∗k+1q

∗
k+2 · · · q∗j

.

Here (nk) is a subsequence of positive integers, n0 = 1,

ε∗k = εnk−1 + εnk−2qnk−1 + · · ·+ εnk−1
qnk−1qnk−2 · · · qnk−1+1,
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and q∗k = qnk−1qnk−2 · · · qnk−1
, k = 1, 2, 3, . . .. For series (1), where (qn) and (εn) are

sequences of integers such that qn > 0 for all n ∈ N and series (1) converges, the following
statements are true.

Lemma 4.15 ([48]). Using the notation above, if there exists a subsequence (nk) of positive
integers such that Rnk

= Rnk+1
for k = 1, 2, . . . , then S ∈ Q.

Proposition 4.16 ([48]). If (Rn) is bounded from below and there exists a subsequence
(nk) of positive integers with Rnk+1

− Rnk
< ε for k ≥ k0(ε), then S ∈ Q if and only if

Rnk
= Rnk+1

for all large k.

In [31], A. Oppenheim studied sufficient conditions of the irrationality of numbers
represented by Cantor series (1) and, also, alternating series (1) such that |εi| < qi − 1 for
i = 1, 2, 3, . . . , and εmεn < 0 for some m > i and n > i when i is any fixed integer. Also,
in [31], the main results obtained by using some results from [2] and sums of the form

xik =
εik
qik

+
εik+1

qikqik+1

+
εik+2

qikqik+1qik+2

+ . . . ,

where (ik) is some subsequence of positive integers, and by investigation of the limit of
cik =

εik
qik

as k →∞. That is, here xik = σik−1(x).

Lemma 4.17 ([31]). A necessary and sufficient condition that x given by convergent series
(1), where qk and εk are integers, shall be irrational is that for every integer p ∈ N we can
find an integer r ∈ Z and a subsequence (ik) such that

r

p
< xik <

r + 1

p
, k = 1, 2, 3, . . . .

Finally, in this section, we note necessary and sufficient conditions for a rational number
to be representable by certain types of Cantor series which were investigated by P. Erdös
and E. G. Straus in [7].

Theorem 4.18 ([7]). Let (εn) be a sequence of integers and (qk) be a sequence of positive
integers with qk > 1 for all large k and

lim
k→∞

|εk|
qk−1qk

= 0.

Then
∑∞

k=1
εk

q1q2···qk
∈ Q if and only if there exist a positive integer B and a sequence of

integers (ck) such that for all large k we have

Bεk = ckqk − ck+1, |ck+1| <
qk
2
.

Theorem 4.19 ([7]). Let pk be the kth prime and let (qk) be a monotonic sequence of
positive integers satisfying

lim
k→∞

pk
q2
k

= 0, lim inf
k→∞

qk
pk

= 0.

Then
∑∞

k=1
pk

q1q2···qk
∈ I.
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5 Certain approaches to investigations of expansions of rational num-
bers

We considered mainly the shift operator. Now one can consider another approaches
to investigations of expansions of rational numbers but some of them are related with the
shift operator.

In [26], the probabilistic approach is used and the attention is given to Cantor series (1)
for which εk 6= qk−1 infinitely often. Irrationality of numbers having a property of a certain
type of the normality is investigated.

Definition 5.1 ([26, p.45]). A number x ∈ [0, 1) is called Q-distribution normal if the
sequence

X = (x (mod 1), q1x (mod 1), q1q2x (mod 1), q1q2 · · · qkx (mod 1), . . . )

is uniformly distributed in [0, 1).

Theorem 5.2 ([26, p. 264]). A number x ∈ [0, 1) is irrational if and only if there exists a
basic sequence Q = (qk) such that x is Q-distribution normal.

In the paper [22], the subspace theorem is used for proving conditions for a transcenden-
tal number to be representable by positive Cantor series. Such conditions were formulated
in terms of blocks of digits εk and in terms of tuples of digits for expansion (1).

Finally, one approach based on the notion of cylinders of Cantor expansions gives
an opportunity to model rational numbers. However, we have necessary and sufficient
conditions for the case of the positive Cantor series and a necessary condition for the
sign-variable Cantor series. Let us consider the following two theorems.

Theorem 5.3 ([45]). A number x = ∆Q
ε1ε2...εn...

∈ (0, 1) represented by series (1) is a
rational number p

r
, where p, r ∈ N, (p, r) = 1, and p < r, if and only if the condition

εn =

[
qn(∆n−1 − rεn−1)

r

]
holds for all 1 < n ∈ N, where ∆1 = pq1, ε1 =

[
∆1

r

]
, and [a] is the integer part of a.

For fullness, we give some examples of rational numbers from [45]. Really, suppose

x = ∆(2n+1)
ε1ε2...εn...

=
∞∑
n=1

εn
3 · 5 · 7 · · · (2n+ 1)

.

Then
1

4
= ∆

(2n+1)
035229[11]4...,

3

8
= ∆

(2n+1)
104341967....
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Theorem 5.4 ([46]). If x = ∆
(±Q,NB)
ε1ε2...εk... = p

r
, where p ∈ Z, r ∈ N, (|p|, |r|) = 1, and |p| < r,

then the condition

εk =

∣∣∣∣∣
[
qk(∆

(g)
k−1 − (−1)ρk−1rεk−1)

r
+ sn

]∣∣∣∣∣
holds for all 1 < k ∈ N. Here ∆

(g)
1 = pq1, ε1 =

∣∣∣∣[∆
(g)
1

r
+ s1

]∣∣∣∣, and [a] is the integer part of

a. Also,

s1 =
∑

1<k∈NB

qk − 1

q2q3 · · · qk
, sk =

{
qksk−1 whenever k /∈ NB

qksk−1 − (qk − 1) whenever k ∈ NB.

One can note that the two last statements are related to the shift operator. Really, in
the case of positive Cantor series [45], we have σn(x) = {∆n

r
} and εn = [∆n

r
]. In the general

case of sign-variable Cantor series (i.e., there is no number k0 such that any k ∈ NB or
any k /∈ NB for all k > k0), we obtain [46] the following:{

∆
(g)
n

r

}
=

{
σn(x) whenever σn(x) ≥ 0

1− σn(x) whenever σn(x) < 0,

where {a} is the fractional part of a (i.e., a = [a] + {a}).
In this survey, we have demonstrated the main conditions for a rational number to

be representable by positive, alternating, and sign-variable Cantor series. Connections
among some of them are described. An important role of the notion of the shift operator
in investigations in this topic, is noted.
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