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On a sum of a multiplicative function linked to the divisor
function over the set of integers B-multiple of 5

Mihoub Bouderbala

Abstract. Let d(n) and d∗(n) be the numbers of divisors and the numbers of unitary
divisors of the integer n ≥ 1. In this paper, we prove that∑

n≤x
n∈B

d(n)

d∗(n)
=

16π2

123

∏
p

(1− 1

2p2
+

1

2p3
)x+O

(
x

ln 8
ln 10

+ε
)
, (x > 1, ε > 0) ,

where B is the set which contains any integer that is not a multiple of 5, but some
permutations of its digits is a multiple of 5.

1 Introduction and main result

A positive integer is called A-multiple of 5 if a permutation of its digits is a multiple
of 5, comprising the identity permutation (for example 50, 55, 505, 5505, . . . ). A positive
integer is called B-multiple of 5 if it is not a multiple of 5, but some permutations of
its digits is multiples of 5 (for example 51, 53, 107, 151, . . . ). For practical reasons, A
represents the set of all integers A-multiple of 5, and B represents the set of all integers
B-multiple of 5.

In this paper, we will use deep analytic methods to give an asymptotic formula to the
following sum ∑

n≤x
n∈B

d(n)

d∗(n)
, (1)
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where

d(n) =
∑
d|n

1 and d∗(n) =
∑
d|n

(d,n|d)=1

1, (n denotes a strictly positive integer).

In order to estimate the sum (1) by noting that the function
d(n)

d∗(n)
is multiplicative,

we first recall by the following two concepts of the Riemann zeta function:
We have for all s ∈ C, such that Re(s) > 1,

ζ(s) =
∏
p

(1− 1

ps
)−1,

and

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{t}
ts + 1

dt,

where {t} denotes the fractional part of the real t.
Recall that according to this last form, the function ζ extends to a meromorphic func-

tion on Re(s) > 0, which has a simple pole at s = 1 with residue 1 and no other poles.
Moreover, if a is a strictly positive constant, we have, in the region of the plane defined by

the inequalities σ ≥ 1

2
, σ ≥ 1− a/ log |t|, and σ ≤ 2, the following majoration

ζ(σ + it)� O (log |t|) , for |t| large enough (see [2, p. 54− 55]).

Secondly, we present the first effective formula of Perron (see [3, p. 147]): Let

f(s) =
∞∑
n=1

a(n)

ns

be the Dirichlet series of finite absolute convergence abscissa σa. Then, if x ≥ 1, T ≥ 1 and
c > max(0, σa), we have the following asymptotic formula∑

n≤x

a(n) =
1

2πi

∫ c+iT

c−iT
f(s)

xs

s
ds+O

(
xc
∑
n≥1

|a(n)|
nc(1 + T |ln(x/n)|

)
.

In the following, we will present the main result that has been proven:

Theorem 1.1. For any real x ≥ 1, we have the following asymptotic formula∑
n≤x
n∈B

d(n)

d∗(n)
=

16π2

123

∏
p

(1− 1

2p2
+

1

2p3
)x+O

(
x

ln 8
ln 10

+ε
)
,

where
π2

6

∏
p

(1− 1

2p2
+

1

2p3
) ' 1.4276565 · · · , and ε > 0.
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The proof of the theorem is based on the following lemmas:

Lemma 1.2. Let q be a prime number or q = 1. So for any real number x ≥ 1, we have
the following asymptotic formula∑

n≤x

D(qn) =
2q2 − q

2q2 − 2q + 1

π2

6

∏
p

(1− 1

2p2
+

1

2p3
)x+O(x

1
2
+ε),

where D(n) =
d(n)

d∗(n)
, and ε denotes a positive real number.

Proof. For a prime number q and a complex number s such that Re(s) > 1, we put

f(s) =
∞∑
n=1

D(qn)

ns
,

Then, by the product formula Eulerian [1, p.230], we get

f(s) =
∞∑
α=0

∞∑
n1=1

(n1,q)=1

D(qα+1n1)

qαsns1

=
∞∑
α=0

α + 2

2qαs

∞∑
n1=1

(n1,q)=1

D(n1)

ns1

=

∞
1

2

∑
α=0

(
α + 1

qαs
+

1

qαs

) ∏
p

(p,q)=1

(
1 +

∞∑
k=1

D
(
pk
)

pks

)
,

then

f(s) =
1

2

( ∞∑
α=0

1

qαs

)2

+
∞∑
α=0

1

qαs

∏
p

(
1 +

∞∑
k=1

D
(
pk
)

pks

)
1

1 +
∞∑
k=1

D(qk)
qks

=
1

2

 1(
1− 1

qs

)2 +
1

1− 1
qs

 ζ(s)ζ(2s)
∏
p

(
1− 1

2p2s
+

1

2p3s

)
2 (qs − 1)2

2q2s − 2qs + 1

=

(
2q2s − qs

2q2s − 2qs + 1

)
ζ(s)ζ(2s)

∏
p

(
1− 1

2p2s
+

1

2p3s

)
.

We notice that the function f(s), is convergent if Re(s) >
1

2
, where we recall here that

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{t}
ts + 1

dt. According to Perron’s formula, for all x ≥ 1 and
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T ≥ 1, we getting ∑
n≤x

D(qn) =
1

2πi

∫ 3
2
+iT

3
2
−iT

f(s)
xs

s
ds+O(

x
3
2
+ε

T
), (2)

such that ε is a positive real.

Now, if we choose a linear contour integral of s =
3

2
± iT to s =

1

2
± iT , in this case

the function F (s) = f(s)
xs

s
, admits a simple pole in s = 1, then

1

2πi

(∫ 3
2
−iT

1
2
−iT

+

∫ 3
2
+iT

3
2
−iT

+

∫ 1
2
+iT

3
2
+iT

+

∫ 1
2
−iT

1
2
+iT

)
f(s)

xs

s
ds = Re s

[
f(s)

xs

s
, 1

]
.

Note that lim
s→1

ζ(s)(s− 1) = 1, and we can get immediately

Re s

[
f(s)

xs

s
, 1

]
=

(
2q2 − q

2q2 − 2q + 1

)
π2

6

∏
p

(
1− 1

2p2
+

1

2p3

)
x,

such that
π2

6

∏
p

(
1− 1

2p2
+

1

2p3

)
' 1.4276565 . . .

By taking T = x, and f(s) = ζ(s)R(s), where

R(s) =

(
2q2s − qs

2q2s − 2qs + 1

)
ζ(2s)

∏
p

(
1− 1

2p2s
+

1

2p3s

)
,

we obtain ∣∣∣∣∣ 1

2πi

(∫ 3
2
−iT

1
2
−iT

+

∫ 1
2
+iT

3
2
+iT

)
ζ(s)R(s)

xs

s
ds

∣∣∣∣∣
�
∫ 3

2

1
2

∣∣∣∣∣ζ(σ + iT )R(s)
x

3
2

T

∣∣∣∣∣ dσ
� x

3
2
+ε

T
= x

1
2
+ε,

and ∣∣∣∣∣ 1

2πi

∫ 1
2
−iT

1
2
+iT

ζ(s)R(s)
xs

s
ds

∣∣∣∣∣�
∫ T

0

∣∣∣∣∣ζ(
1

2
+ it)R(s)

x
1
2

t

∣∣∣∣∣ dt� x
1
2
+ε.

So by estimate ∣∣∣∣∣ 1

2πi

(∫ 3
2
−iT

1
2
−iT

+

∫ 1
2
+iT

3
2
+iT

+

∫ 1
2
−iT

1
2
+iT

)
f(s)

xs

s
ds

∣∣∣∣∣� x
1
2
+ε ,



On a sum of a multiplicative function 373

and from the formula (2), we get∑
n≤x

D(qn) =

(
2q2 − q

2q2 − 2q + 1

)(
π2

6

)∏
p

(1− 1

2p2
+

1

2p3
)x+O(x

1
2
+ε).

Lemma 1.3. For any real x ≥ 1, we have the following asymptotic formula∑
n≤x
n∈A

D(n) =
π2

6

∏
p

(1− 1

2p2
+

1

2p3
)x+O(x

ln 8
ln 10

+ε). (3)

where D(n) =
d(n)

d∗(n)
, and ε denotes a positive real number.

Proof. For any real x ≥ 1, there exists a positive integer k such that 10k ≤ x ≤ 10k+1.
Consequently, k ≤ log x ≤ k+1. According to the definition of the set A, we know that the
number of integers (≤ x) that is not in A is 8k+1. Indeed, there are 8 integers composed of
a single number, they are 1, 2, 3, 4, 6, 7, 8, 9; there are 82 integers composed of two digits;
and the number of integers composed of k digits is 8k. Since

8k ≤ 8log x = x
ln 8
ln 10 ,

we get ∑
n≤x
n/∈A

1 ≤ 8 + 82 + 83 + ...+ 8k+1 ≤ 8k+2

7
≤ 64

7
8k ≤ 64

7
x

ln 8
ln 10 ,

Note that for any ε > 0 and for all n ≥ 1, we have d(n)� nε, and since
d(n)

d∗(n)
≤ d(n), we

get
d(n)

d∗(n)
� nε. Now we apply the lemma 2 with q = 1, we get

∑
n≤x
n∈A

D(n) =
∑
n≤x

D(n)−
∑
n≤x
n/∈A

D(n)

=
∑
n≤x

D(n) +O

∑
n≤x
n/∈A

xε


=
∑
n≤x

D(n) +O
(
x

ln 8
ln 10

+ε
)

=
π2

6

∏
p

(1− 1

2p2
+

1

2p3
)x+O

(
x

ln 8
ln 10

+ε
)
.

This proves Lemma 3.
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2 Proof of Theorem 1.1

In this section, we complete the proof of Theorem. From the definition of the set A
and set B, we know the relation between them. Therefore∑

n≤x
n∈B

D(n) =
∑
n≤x
n∈A

D(n)−
∑
5n≤x

D(5n)

=
∑
n≤x
n∈A

D(n)−
∑
n≤x

5

D(5n).

Now we use the two results of Lemmas 2 and 3, we get∑
n≤x
n∈B

d(n)

d∗(n)
=
π2

6

∏
p

(1− 1

2p2
+

1

2p3
)x− 3π2

82

∏
p

(1− 1

2p2
+

1

2p3
)x+O

(
x

ln 8
ln 10

+ε
)

=
16π2

123

∏
p

(1− 1

2p2
+

1

2p3
)x+O

(
x

ln 8
ln 10

+ε
)
.

This completes the proof of the theorem.
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