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On a sum of a multiplicative function linked to the divisor
function over the set of integers B-multiple of 5

Mihoub Bouderbala

Abstract. Let d(n) and d*(n) be the numbers of divisors and the numbers of unitary
divisors of the integer n > 1. In this paper, we prove that

d(n) 1672 1 1 Ing
_ 1 — 4+ - O(1n10+6)’ =1, >0),
Zd*(n) 1oz LI o2 Tt Ol (x>1,¢>0)
n<x p
neB
where B is the set which contains any integer that is not a multiple of 5, but some
permutations of its digits is a multiple of 5.

1 Introduction and main result

A positive integer is called A-multiple of 5 if a permutation of its digits is a multiple
of 5, comprising the identity permutation (for example 50, 55, 505, 5505, ... ). A positive
integer is called B-multiple of 5 if it is not a multiple of 5, but some permutations of
its digits is multiples of 5 (for example 51, 53, 107, 151, ...). For practical reasons, A
represents the set of all integers A-multiple of 5, and B represents the set of all integers
B-multiple of 5.

In this paper, we will use deep analytic methods to give an asymptotic formula to the

following sum
d(n)
: (1)
; d*(n)
neB
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where

d(n) = Zl and d*(n) = Z 1, (n denotes a strictly positive integer).

dln dln
(d,n|d)=1

In order to estimate the sum (1) by noting that the function is multiplicative,

(n
d*(n)
we first recall by the following two concepts of the Riemann zeta function:

We have for all s € C, such that Re(s) > 1,

¢(s) = T - pi>
and . o
C(S):l—f—r—S/l ts{jldt,

where {t} denotes the fractional part of the real t.

Recall that according to this last form, the function { extends to a meromorphic func-
tion on Re(s) > 0, which has a simple pole at s = 1 with residue 1 and no other poles.
Moreover, if a is a strictly positive constant, we have, in the region of the plane defined by

the inequalities o > 3 0 >1—a/loglt], and o < 2, the following majoration
((o+it) < O (loglt|), for |t| large enough (see [2,p. 54 — 55]).
Secondly, we present the first effective formula of Perron (see [3, p. 147]): Let
o)=Y

ns
n=1

be the Dirichlet series of finite absolute convergence abscissa o,. Then, ifx > 1, T"> 1 and
¢ > max(0, 0,), we have the following asymptotic formula

1 etiT . z . » la(n)]
Za(n) = 27”./ f(s) . d +O< ch<1+T|ln(x/n)|> '

n<x c—iT n>1

In the following, we will present the main result that has been proven:

Theorem 1.1. For any real x > 1, we have the following asymptotic formula

d(n) 1671'2 1 1 In8
= —¥ ]_ _— —_— nl +€
Zd*(n) 123 1. (I=gm+gp)rt0 (” ’ )

n<x
neB

where

s 1 1
—JJa- a2t 2—p3) ~ 1.4276565 - - - , and & > 0.
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The proof of the theorem is based on the following lemmas:

Lemma 1.2. Let g be a prime number or ¢ = 1. So for any real number x > 1, we have
the following asymptotic formula

2¢> —q 7 1 1 1
> D(gn) = s [(1 = 55 + 55)0 + O™

n<x

d
where D(n) = d*<(n))7 and € denotes a positive real number.
n

Proof. For a prime number ¢ and a complex number s such that Re(s) > 1, we put

ns
n=1

Then, by the product formula Eulerian [1,p.230], we get

o=y Y P

(n1,9)=1
Sy
a=0 2(]0‘3 n1=1 ni
(n1,9)=1
1 (a+1 1) 0 ( “D(pk)>
— 5 as as 1+ Z ks ’
2a:0 q 1 P = P
(p.g)=1
then
1[0 1 =D (p") 1
f(S) - 5 ans qes H 1 Z pks S D(qk>
a=0 a=0 p k=1 1+ Z P
k=1
1 1 1 1 1 2(¢° — 1)
5 (1_L>2+1_q% C(s)¢( s)];[( 2p28+2p35) 2 T 1
qS
2q2s _ qs 1 1
= - 2 1— .
(2q23 _ 2qs + 1) C(S)C( S)H ( 2p2s + 2p33)

We notice that the function f(s), is convergent if Re(s) > =, where we recall here that

1 < |t
((s) =1+ 1 s/ t{%dt. According to Perron’s formula, for all z > 1 and
s — 1 18
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T > 1, we getting

1 34T s :L.%Jrs
Sopn) = g [ S s O )

such that € is a positive real.

3 1
Now, if we choose a linear contour integral of s = 3 +iT to s = 3 44T, in this case

the function F(s) = f(s)x— admits a simple pole in s = 1, then

——zT +zT —HT 7—zT s
/ / / / ds—Res[f(s)—,l} .
2mi 1 ST ST +iT s

Note that hH}C (s)(s —1) =1, and we can get immediately
S—
x® 2¢°> — q 2 1 1
es[f(s)s, } <2q2—2q+1) 5 |p| 2p2+2p3 z,

1
—H ( ——+ —) ~ 1.4276565 . . .

such that

we obtain
3 . 1, -
1 §_ZT §+ZT xs
— / +/ C(s)R(s)—ds
2mi 1T 24T s
3 3
2 ) T2
< [ ot + R 5| do
3
3.
<< $; — x§+€7
and X
1 2T 8 T 1 x% 1
— R(s)—d — +it)R(s)—|dt 3te
2W/ C(5)Rls) = ds <</0 ((y +it)R(s) |t <o
So by estimate
——zT 2+1T ——zT
B o] o
—HT +iT
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and from the formula (2), we get
2¢°> — q i 1 1 1
D =————]|—= l——+— O(z279). O
; (am) <2q2 o0+ 1) ( 6 1;[( 52 T o)t OT)
Lemma 1.3. For any real x > 1, we have the following asymptotic formula

>_D(n =—H 1= 55+ 55)0 + O™, g

n<zx

neA

where D(n) = %, and € denotes a positive real number.

Proof. For any real x > 1, there exists a positive integer k such that 10¥ < z < 10+,
Consequently, k£ < logx < k+1. According to the definition of the set A, we know that the
number of integers (< z) that is not in A is 8**1. Indeed, there are 8 integers composed of
a single number, they are 1,2,3,4,6,7,8,9; there are 8% integers composed of two digits;
and the number of integers composed of k digits is 8*. Since

Ins
8k < 81033‘” = rhio,

we get

k+2
8 < %8’? < %xﬁffo

Zl§8+82+83+...+8’““_

n<x 7
n¢ A
. d(n)
Note that for any € > 0 and for all n > 1, we have d(n) < n¢, and since () <d(n), we
n
d(n) :
get () < n®. Now we apply the lemma 2 with ¢ = 1, we get
*(n
>D) = D) - PG
n<z n<lz n<lx
neA n¢A
Yoo | Y
n<x n<z
n¢A
=Y "D(n) + 0wt
n<x
2 1
= 5110 - 5 + e+ 0 (=47)

This proves Lemma 3. O



374 Mihoub Bouderbala

2 Proof of Theorem 1.1

In this section, we complete the proof of Theorem. From the definition of the set A
and set B, we know the relation between them. Therefore

Y D(n)=> D(n)— > D(5n)

n<lx nlx n<x
neBb neA
= D(n) - Y _D(5n).
nlzx n<g
neA

Now we use the two results of Lemmas 2 and 3, we get

d(n) =2 1 1 3 1 1 Ins
;d*(n) :EIJ(l——Q—F—s)(L’—S—Q : (1—2—])2—1-?).%—'—0((171“0 >

neB

This completes the proof of the theorem.
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