On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5

Mihoub Bouderbala

Abstract

Let $d(n)$ and $d^{*}(n)$ be the numbers of divisors and the numbers of unitary divisors of the integer $n \geq 1$. In this paper, we prove that $$
\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} \frac{d(n)}{d^{*}(n)}=\frac{16 \pi^{2}}{123} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right),(x \geqslant 1, \varepsilon>0),
$$ where \mathcal{B} is the set which contains any integer that is not a multiple of 5 , but some permutations of its digits is a multiple of 5 .

1 Introduction and main result

A positive integer is called \mathcal{A}-multiple of 5 if a permutation of its digits is a multiple of 5 , comprising the identity permutation (for example $50,55,505,5505, \ldots$). A positive integer is called \mathcal{B}-multiple of 5 if it is not a multiple of 5 , but some permutations of its digits is multiples of 5 (for example $51,53,107,151, \ldots$). For practical reasons, \mathcal{A} represents the set of all integers \mathcal{A}-multiple of 5 , and \mathcal{B} represents the set of all integers \mathcal{B}-multiple of 5 .

In this paper, we will use deep analytic methods to give an asymptotic formula to the following sum

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} \frac{d(n)}{d^{*}(n)}, \tag{1}
\end{equation*}
$$

[^0]where
$$
d(n)=\sum_{d \mid n} 1 \quad \text { and } \quad d^{*}(n)=\sum_{\substack{d \mid n \\(d, n \mid d)=1}} 1, \quad(n \text { denotes a strictly positive integer })
$$

In order to estimate the sum (1) by noting that the function $\frac{d(n)}{d^{*}(n)}$ is multiplicative, we first recall by the following two concepts of the Riemann zeta function:

We have for all $s \in \mathbb{C}$, such that $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

and

$$
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s}+1} d t
$$

where $\{t\}$ denotes the fractional part of the real t.
Recall that according to this last form, the function ζ extends to a meromorphic function on $\operatorname{Re}(s)>0$, which has a simple pole at $s=1$ with residue 1 and no other poles. Moreover, if a is a strictly positive constant, we have, in the region of the plane defined by the inequalities $\sigma \geq \frac{1}{2}, \sigma \geq 1-a / \log |t|$, and $\sigma \leq 2$, the following majoration

$$
\zeta(\sigma+i t) \ll \mathcal{O}(\log |t|), \text { for }|t| \text { large enough (see }[2, p .54-55])
$$

Secondly, we present the first effective formula of Perron (see [3, p. 147]): Let

$$
f(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

be the Dirichlet series of finite absolute convergence abscissa σ_{a}. Then, if $x \geq 1, T \geq 1$ and $c>\max \left(0, \sigma_{a}\right)$, we have the following asymptotic formula

$$
\sum_{n \leq x} a(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} f(s) \frac{x^{s}}{s} d s+\mathcal{O}\left(x^{c} \sum_{n \geq 1} \frac{|a(n)|}{n^{c}(1+T|\ln (x / n)|}\right)
$$

In the following, we will present the main result that has been proven:
Theorem 1.1. For any real $x \geq 1$, we have the following asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} \frac{d(n)}{d^{*}(n)}=\frac{16 \pi^{2}}{123} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right)
$$

where

$$
\frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) \simeq 1.4276565 \cdots, \text { and } \varepsilon>0
$$

The proof of the theorem is based on the following lemmas:
Lemma 1.2. Let q be a prime number or $q=1$. So for any real number $x \geq 1$, we have the following asymptotic formula

$$
\sum_{n \leq x} \mathcal{D}(q n)=\frac{2 q^{2}-q}{2 q^{2}-2 q+1} \frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where $\mathcal{D}(n)=\frac{d(n)}{d^{*}(n)}$, and ε denotes a positive real number.
Proof. For a prime number q and a complex number s such that $\operatorname{Re}(s)>1$, we put

$$
f(s)=\sum_{n=1}^{\infty} \frac{\mathcal{D}(q n)}{n^{s}}
$$

Then, by the product formula Eulerian [1, p.230], we get

$$
\begin{aligned}
f(s) & =\sum_{\alpha=0}^{\infty} \sum_{\substack{n_{1}=1 \\
\left(n_{1}, q\right)=1}}^{\infty} \frac{\mathcal{D}\left(q^{\alpha+1} n_{1}\right)}{q^{\alpha s} n_{1}^{s}} \\
& =\sum_{\alpha=0}^{\infty} \frac{\alpha+2}{2 q^{\alpha s}} \sum_{\substack{n_{1}=1 \\
\left(n_{1}, q\right)=1}}^{\infty} \frac{\mathcal{D}\left(n_{1}\right)}{n_{1}^{s}} \\
& =\frac{1}{2} \sum_{\alpha=0}^{\infty}\left(\frac{\alpha+1}{q^{\alpha s}}+\frac{1}{q^{\alpha s}}\right) \prod_{\substack{p \\
(p, q)=1}}\left(1+\sum_{k=1}^{\infty} \frac{\mathcal{D}\left(p^{k}\right)}{p^{k s}}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
f(s) & =\frac{1}{2}\left(\left(\sum_{\alpha=0}^{\infty} \frac{1}{q^{\alpha s}}\right)^{2}+\sum_{\alpha=0}^{\infty} \frac{1}{q^{\alpha s}}\right) \prod_{p}\left(1+\sum_{k=1}^{\infty} \frac{\mathcal{D}\left(p^{k}\right)}{p^{k s}}\right) \frac{1}{1+\sum_{k=1}^{\infty} \frac{\mathcal{D}\left(q^{k}\right)}{q^{k s}}} \\
& =\frac{1}{2}\left(\frac{1}{\left(1-\frac{1}{q^{s}}\right)^{2}}+\frac{1}{1-\frac{1}{q^{s}}}\right) \zeta(s) \zeta(2 s) \prod_{p}\left(1-\frac{1}{2 p^{2 s}}+\frac{1}{2 p^{3 s}}\right) \frac{2\left(q^{s}-1\right)^{2}}{2 q^{2 s}-2 q^{s}+1} \\
& =\left(\frac{2 q^{2 s}-q^{s}}{2 q^{2 s}-2 q^{s}+1}\right) \zeta(s) \zeta(2 s) \prod_{p}\left(1-\frac{1}{2 p^{2 s}}+\frac{1}{2 p^{3 s}}\right) .
\end{aligned}
$$

We notice that the function $f(s)$, is convergent if $\operatorname{Re}(s)>\frac{1}{2}$, where we recall here that $\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s}+1} d t$. According to Perron's formula, for all $x \geq 1$ and
$T \geq 1$, we getting

$$
\begin{equation*}
\sum_{n \leq x} \mathcal{D}(q n)=\frac{1}{2 \pi i} \int_{\frac{3}{2}-i T}^{\frac{3}{2}+i T} f(s) \frac{x^{s}}{s} d s+\mathcal{O}\left(\frac{x^{\frac{3}{2}+\varepsilon}}{T}\right) \tag{2}
\end{equation*}
$$

such that ε is a positive real.
Now, if we choose a linear contour integral of $s=\frac{3}{2} \pm i T$ to $s=\frac{1}{2} \pm i T$, in this case the function $F(s)=f(s) \frac{x^{s}}{s}$, admits a simple pole in $s=1$, then

$$
\frac{1}{2 \pi i}\left(\int_{\frac{1}{2}-i T}^{\frac{3}{2}-i T}+\int_{\frac{3}{2}-i T}^{\frac{3}{2}+i T}+\int_{\frac{3}{2}+i T}^{\frac{1}{2}+i T}+\int_{\frac{1}{2}+i T}^{\frac{1}{2}-i T}\right) f(s) \frac{x^{s}}{s} d s=\operatorname{Re} s\left[f(s) \frac{x^{s}}{s}, 1\right]
$$

Note that $\lim _{s \rightarrow 1} \zeta(s)(s-1)=1$, and we can get immediately

$$
\operatorname{Re} s\left[f(s) \frac{x^{s}}{s}, 1\right]=\left(\frac{2 q^{2}-q}{2 q^{2}-2 q+1}\right) \frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x
$$

such that

$$
\frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) \simeq 1.4276565 \ldots
$$

By taking $T=x$, and $f(s)=\zeta(s) R(s)$, where

$$
R(s)=\left(\frac{2 q^{2 s}-q^{s}}{2 q^{2 s}-2 q^{s}+1}\right) \zeta(2 s) \prod_{p}\left(1-\frac{1}{2 p^{2 s}}+\frac{1}{2 p^{3 s}}\right)
$$

we obtain

$$
\begin{aligned}
& \left|\frac{1}{2 \pi i}\left(\int_{\frac{1}{2}-i T}^{\frac{3}{2}-i T}+\int_{\frac{3}{2}+i T}^{\frac{1}{2}+i T}\right) \zeta(s) R(s) \frac{x^{s}}{s} d s\right| \\
& \ll \int_{\frac{1}{2}}^{\frac{3}{2}}\left|\zeta(\sigma+i T) R(s) \frac{x^{\frac{3}{2}}}{T}\right| d \sigma \\
& \ll \frac{x^{\frac{3}{2}+\varepsilon}}{T}=x^{\frac{1}{2}+\varepsilon},
\end{aligned}
$$

and

$$
\left|\frac{1}{2 \pi i} \int_{\frac{1}{2}+i T}^{\frac{1}{2}-i T} \zeta(s) R(s) \frac{x^{s}}{s} d s\right| \ll \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right) R(s) \frac{x^{\frac{1}{2}}}{t}\right| d t \ll x^{\frac{1}{2}+\varepsilon} .
$$

So by estimate

$$
\left|\frac{1}{2 \pi i}\left(\int_{\frac{1}{2}-i T}^{\frac{3}{2}-i T}+\int_{\frac{3}{2}+i T}^{\frac{1}{2}+i T}+\int_{\frac{1}{2}+i T}^{\frac{1}{2}-i T}\right) f(s) \frac{x^{s}}{s} d s\right| \ll x^{\frac{1}{2}+\varepsilon}
$$

and from the formula (2), we get

$$
\sum_{n \leq x} \mathcal{D}(q n)=\left(\frac{2 q^{2}-q}{2 q^{2}-2 q+1}\right)\left(\frac{\pi^{2}}{6}\right) \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

Lemma 1.3. For any real $x \geq 1$, we have the following asymptotic formula

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in \mathcal{A}}} \mathcal{D}(n)=\frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right) \tag{3}
\end{equation*}
$$

where $\mathcal{D}(n)=\frac{d(n)}{d^{*}(n)}$, and ε denotes a positive real number.
Proof. For any real $x \geq 1$, there exists a positive integer k such that $10^{k} \leq x \leq 10^{k+1}$. Consequently, $k \leq \log x \leq k+1$. According to the definition of the set \mathcal{A}, we know that the number of integers $(\leq x)$ that is not in \mathcal{A} is 8^{k+1}. Indeed, there are 8 integers composed of a single number, they are $1,2,3,4,6,7,8,9$; there are 8^{2} integers composed of two digits; and the number of integers composed of k digits is 8^{k}. Since

$$
8^{k} \leq 8^{\log x}=x^{\frac{\ln 8}{\ln 10}}
$$

we get

$$
\sum_{\substack{n \leq x \\ n \notin \mathcal{A}}} 1 \leq 8+8^{2}+8^{3}+\ldots+8^{k+1} \leq \frac{8^{k+2}}{7} \leq \frac{64}{7} 8^{k} \leq \frac{64}{7} x^{\frac{\ln 8}{\ln 10}}
$$

Note that for any $\varepsilon>0$ and for all $n \geq 1$, we have $d(n) \ll n^{\varepsilon}$, and since $\frac{d(n)}{d^{*}(n)} \leq d(n)$, we get $\frac{d(n)}{d^{*}(n)} \ll n^{\varepsilon}$. Now we apply the lemma 2 with $q=1$, we get

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \in \mathcal{A}}} \mathcal{D}(n) & =\sum_{n \leq x} \mathcal{D}(n)-\sum_{\substack{n \leq x \\
n \notin \mathcal{A}}} \mathcal{D}(n) \\
& =\sum_{n \leq x} \mathcal{D}(n)+\mathcal{O}\left(\sum_{\substack{n \leq x \\
n \notin \mathcal{A}}} x^{\varepsilon}\right) \\
& =\sum_{n \leq x} \mathcal{D}(n)+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right) \\
& =\frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right) .
\end{aligned}
$$

This proves Lemma 3.

2 Proof of Theorem 1.1

In this section, we complete the proof of Theorem. From the definition of the set \mathcal{A} and set \mathcal{B}, we know the relation between them. Therefore

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \in \mathcal{B}}} \mathcal{D}(n) & =\sum_{\substack{n \leq x \\
n \in \mathcal{A}}} \mathcal{D}(n)-\sum_{5 n \leq x} \mathcal{D}(5 n) \\
& =\sum_{\substack{n \leq x \\
n \in \mathcal{A}}} \mathcal{D}(n)-\sum_{n \leq \frac{x}{5}} \mathcal{D}(5 n)
\end{aligned}
$$

Now we use the two results of Lemmas 2 and 3, we get

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \in \mathcal{B}}} \frac{d(n)}{d^{*}(n)} & =\frac{\pi^{2}}{6} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x-\frac{3 \pi^{2}}{82} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right) \\
& =\frac{16 \pi^{2}}{123} \prod_{p}\left(1-\frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}\right) x+\mathcal{O}\left(x^{\frac{\ln 8}{\ln 10}+\varepsilon}\right)
\end{aligned}
$$

This completes the proof of the theorem.

Acknowledgments

The author thank Professor Olivier Bordellès for his help and attention to this work.

References

[1] T. Apostol.: Introduction to Analytic Number Theory. New York (1976).
[2] A. Blanchard.: Initiation à théorie analytique des nombres. Dunod, Paris (1969).
[3] G.Tenenbaum.: Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics, 46 (1990).

Received: July 23, 2021
Accepted for publication: September 06, 2022
Communicated by: Attila Bérczes

[^0]: MSC 2020: 11A25, 11N37.
 Keywords: Arithmetic function, asymptotic formula, Perron's formula.
 Affiliation:
 Faculty of Science and Technology, University of Djilali Bounaama. Department of Mathematics and Informatics, FIMA Laboratory. Ain Defla, Khemis Miliana (44225), Algeria
 E-mail: mihoub75bouder@gmail.com

