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On the Diophantine equation B,,, 4+ B,,, = 2% 4 292 4 293

Kisan Bhoi and Prasanta Kumar Ray

Abstract. In this study we find all solutions of the Diophantine equation
By, + Bp, = 2% 4292 429

in positive integer variables (ni,ne, a1, as,as), where B,, denotes the n-th balancing
number.

1 Introduction
Balancing sequence {B,,},>1 is originated from a simple Diophantine equation
1+2+...+(n—-1)=n+1)+(n+2)+ -+ (n+7)

introduced by Behera and Panda [1]. Here, r is called a balancer corresponding to a
balancing number n. The balancing sequence satisfies the binary recurrence

Bn+1 = 6Bn - anh n Z 1
with seeds By = 0 and B; = 1. The Binet’s formula for {B,, },>; is given by

_an_ﬂn

B, = ;
42

where o = 3 + /8 and = 3 — /8 are the zeros of the polynomial f(z) = 22 — 6z + 1.
Clearly, 37! = . It can be easily seen that

"' < B,<a", for n>1. (1)
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Diophantine equations involving powers and binary recurrence sequences have been ex-
tensively studied by many researchers in recent past. For example, Bravo and Luca [2]
found all solutions of the equation F),, + F;, = 2%, where F,, is the n-th Fibonacci number.
Later, Bravo and Bravo [3] extended this work and found all positive integer solutions of
the Diophantine equation F, + F, + F; = 2%. In [9], Siar and Keskin solved the same type
equation, instead of taking sum, they considered the difference of two Fibonacci numbers
and found solutions to the equation F,, — F,, = 2* Chim and Ziegler [5] considered the
equations F,, + F,, = 2% + 2% 4+ 2% and F,,, + F,,, + F,,; = 2"* 4+ 2 and proved that
max{ni, ny, ai, as, az} < 18 and max{my, mq, ms,t1,t} < 16, respectively.

The authors used lower bounds for linear forms in logarithms and a version of Baker-
Davenport reduction method as their main tools to solve all the problems stated above.
A natural question arises: What will be the solution if we replace Fibonacci numbers by
balancing numbers? Therefore, in this note, we look at the Diophantine equation

By, + By, = 2 4 2% 4 2%, (2)

where B, is the n-th balancing number with n; > ny > 0 and a; > as > az > 0 and try
to find all solutions using the same techniques.
The main result of this article is the following.

Theorem 1.1. All non-negative integer solutions (ny,ns, ai, as,az) of the equation (2) are
given by

(n17n27a17a27a3) € {(2707 17 17 1)a (270727()’0)7 (27 17 2a 17 0)7 (2727 2a 272)7 (27 2a37 17 1)7
(37()’ 57 1>0>7 (37 174747 2)7 (3a 1757 17 1)a (3727573a0)7 (373767 2a 1)}

For the proof of Theorem 1.1, we run a program in Mathematica and search all solutions
(n1,n2, a1, as,az) with n; < 100 to the equation (2). Then, we take n; > 100 and write
(2) in six different ways. We apply lower bounds for linear forms in logarithms to obtain
an upper bound on n; = max{ny, ns, ai, as, az}. This is done in the following seven steps:

Step 1: We find an upper bound

min {(a; — as)log2, (n; — ny)loga} < 8.22-10"(1 + logn,).

So, we divide into two cases:
Case 1: min{(a; — az)log2, (ny —ng)loga} = (a; — asz)log2
Case 2: min{(a; — az)log2, (ny — ny)loga} = (n; — ny)log a.
Step 2: We consider case 1 and show that

min{(a; — az)log2, (n; — ny)loga} < 4-10%°(1 + logn,)?.
We further divide case 1 into two following sub-cases:

Case 1A: min{(a; — a3)log2, (ny — ny)loga} = (a1 — asz)log2
Case 1B: min{(a; — a3)log2, (n; — ny)loga} = (n; — ny)log a.
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Step 3: We consider case 1A and show that
(n1 —ny)loga < 2-10°(1 + logny ).
Step 4: We consider case 1B and show that
(a1 — az)log2 < 9.96 - 10°"(1 + log ny ).
Step 5: We consider case 2 and show that
(a; — ag)log2 < 2-10%(1 + logny )?.
Step 6: We continue to consider case 2 and show that
(a1 — az)log2 < 9.96 - 10°"(1 + log ny ).

Step T: Using the upper bounds (a; —az)log2, (a1 —as)log 2, (ny —n2) log o, we obtain
an absolute upper bound for n; as

ny < 7.9-10%.

We repeat all seven steps after finding an upper bound for ny, but instead of lower
bounds for linear forms in logarithms, we apply the Baker-Davenport reduction method.
As a result, we have small absolute bounds and get to n; < 86, a contradiction. In this
way, we complete the proof of our main result.

In order to prove Theorem 1.1, we need some preliminary results which are discussed
in the next section.

2 Preliminaries

Baker’s theory of linear forms in logarithms of algebraic numbers plays an important
role while solving various Diophantine equations. Here, we use several times the same to
solve the equation (2), but before that, we recall some basic notations and results from
algebraic number theory.

Let n be an algebraic number with minimal primitive polynomial

F(X)=a(X =) ... (X —9™) e Z[X],

where ag > 0, and 7?’s are conjugates of 7. Then, the logarithmic height of 1 is defined
by

k
1 .
h(n) = % <log ap + Zmax{(),log \77(])]}> :

j=1
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If n = a/b is a rational number with ged(a,b) =1 and b > 1, then h(n) = log(max{|al, b}).
The following are some known properties of logarithmic height function:

h(n+) < h(n) + h(y) +log2,

h(ny™) < h(n) + h(y),
h(n*) = |klh(n), k€ Z.

The following theorem is a modified version of a result of Matveev (see [8] or [4, Theo-
rem 9.4]) which provides a large upper bound for n; in (2).

Theorem 2.1. Let L be an algebraic number field of degree dy. Let my,1n9,...,m € L be
positive real numbers and by, bs, ..., b be nonzero integers. If ' = H§=1 nf — 1 is not zero,
then

log || > —1.4- 302 . 1** . @2 (1 + logdy)(1 + log D)A Ay ... Ay,
where D > max{|b1],|ba|,..., |0} and Ay, Ay, ..., A; are positive real numbers such that
A; > max{d.h (n;),|logn;|,0.16} forj=1,...,L

We use the following method of Baker-Davenport due to Dujella and Pethé [6] to reduce
the bound on n;.

Lemma 2.2 ([6]). Let M be a positive integer and p/q be a convergent of the continued
fraction of the irrational number T such that ¢ > 6M. Let A, B, u be some real numbers
with A > 0 and B > 1. Let € := ||uq|| — M||7q||, where ||.|| denotes the distance from the
nearest integer. If € > 0, then there exists no solution to the inequality

0<|ur—v+pl <AB™,
i positive integers u, v, w with

log(Ag/<)

u <M and w > log B

The following results will also be used to prove Theorem 1.1.

Lemma 2.3 ([7]). Let r > 1 and H > 0 be such that H > (4r*)" and H > L/(log L)".
Then

L <2"H(logH)".

Lemma 2.4. All solutions of (2) satisfy (ny — 1) < 1282 o

log o <a’1 - 1) =2 :

log
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Proof. From (1) and (2) we have
a™ < B, < By, + B, =2" 427 4+2% <3.2%,
Taking logarithm on both sides, we get
(ny —1)log o < log 3 + a; log 2,
which implies

log 3 log 2
(g —1) < 282 4 4 8

log o alloga'

On the other hand, 2a™ > 2B,, > B,, + B, = 2% 4 2% + 29 > 2% Taking logarithm
on both sides, we get

log2 + nqloga > a;log 2,

which implies
log 2

ny > (a1 — 1)10ga‘

3 Proof of Theorem 1.1

Consider the Diophantine equation
B, + B, = 2 4 2% 4 2%,

First, we search the solutions to the above equation using Mathematica for n; < 100.
Using Lemma 2.4, we calculate a; < 256. By Mathematica, for 0 < ny < ny < 100 and
0 <az <ay <a; <256, we find all the solutions that are listed in Theorem 1.1. Now,
assume that n; > 100.
3.1 An upper bound on n,
Using Binet’s formula (2) can be written as
O{nl _ [Am an2 __ [ANn2
s n s

44/2 44/2

We write (3) in the following six different ways and examine each one to prove our result.

=20 2% 4 2%, (3)

a™ 6711 a™ — an

— 2% =29 4 2% 4 — . 4
44/2 44/2 44/2 (4)
aﬂl /Bnl anZ _ /8”2

. 2(11 _ 2a2 — 2a3 +
42 42 42

(5)
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anl /Bnl OénQ _ ﬁnz
— 20 0% _ 99 — — 6
44/2 44/2 44/2 (6)
am aﬂz ) ﬁm 5712
+ — 201 2% = 2% + 7
44/2 42 42 0

42

anl anz Bm ﬁm

—— b= -2 =2m 2 Dy 8

42 4V2 42 4V2 (®)
ni no ni n2

« « _2a1_2a2_2a3:5 +ﬁ

— t+ —= — 9
42 42 42 42 ©)
Step 1: First, we consider (4). Here, we assume n; and a; to be large and collect the

large terms involving n; and a; on the left side. Taking absolute values on both sides of
(4), we get

ni n2

<ot L Y g

42

< 2.5max {22, a"} .

(67

42

— 2u

Dividing both sides by 2%, we get

m 2.5 7.5a7
@ _9-a 1| < max{25.90a 220 g lo 5. gaema 12X L
4\/5 2m am—l1

Hence, we obtain

a™

42

271 — 1‘ < 43.72max {2927 oM} (10)

Put

a™

42

Suppose I' = 0, then ot € Q which is not possible for any n; > 0. Therefore, I" # 0. To
apply Theorem 2.1 in (11), let

F=——2"%_1. (11)

mh =, 772:2, 773:4\/57 blznl, bgz—al, b3:—1, l:3,

where 71, 12, 13 € Q(a) and by, by, by € Z. The degree dy, = [Q(«) : Q] is 2.
Since ny > ay > 1, therefore D = max{1,ny, |as|} = ny. We calculate the logarithmic
heights of 11,12, n3 as follows:
_ loga

h(m) =h(a) = ==, h(n) =log2 and h(ns) = log(4v'2).

Thus, we can take

Ay =loga, Ay =2log2 and As = 2log(4v/2).
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Applying Theorem 2.1 we find
log || > —1.4-30%-3%%. 22(1 4 log 2)(1 + log ny ) (log @) (21log 2)(21log(4+/2)).
Comparing the above inequality with (10) gives
min {(a; — as)log2, (n; — ny)loga} < 8.22-10"(1 + logny).

Now, we divide into two cases.
Case 1: min{(a; — az)log2, (ny — ns)loga} = (a; — as) log 2.
Case 2: min{(a; — az)log2, (n; — ny)loga} = (ny — ny) log a.
Step 2: First, we consider case 1 and assume that

min{(a; — az)log2, (n1 — ny)logal = (a1 — as)log?2 < 8.22-10"(1 +1logny).  (12)

Assuming nq,a; and as to be large and collecting large terms on the left hand side, we
consider (5). Taking absolute values on both sides of (5), we have

ni

0] _2(11_2&2 _ 2a3+ /8”1 _O[n2—/8n2 ’
442 44/2 442
which implies
o O 101 < 1.2max{2%, a™)
—— =201 2% < 2% 4 + 0.1 < 1.2max{2%, a"?}.
442 442
Dividing both sides by %, we obtain
1.2)(4v/2
‘1 _amMoe4/o(2m e 1)‘ < max {—( J(4v2) 9% (1.2)(4\/§)a”2—"1}
am™
1.2)(4v/2
< max {(Z)GE—_}/_) - 2%, (1.2)(4\/5)04"2_”1} :
Hence, we obtain
1-— 04_”12“24\/5(2‘“_“2 + 1)‘ < 13.57 max {2“3_“1, a”Z_”l} . (13)

Put
Ty =1—a ™224y/2(297%2 4 1),

By similar arguments as before we can show that I'y # 0. With the notations of Theo-
rem 2.1, we take

=, 1 = 2, T3 = 4\/5(2‘11_(12 + ]_), b1 = —Nny, bg = a9, bg = 1, l = 3.
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Since as < ni, we take D = ny. As before, we have the same logarithmic heights for 7,
and 75. Thus A; and A, remain unchanged. Computing the height of 73, we have

hing) = h(4v/2(217% + 1))
< h(4V2) + h(2m7%2 4+ 1)
< log(4V2) + (a1 — as)log 2 + log 2.
Hence, from (12), we get
h(ns) < 8.23 - 10"%(1 + log ny).
So, we take
Az = 16.46 - 10'*(1 + log n,).
Using all these values in Theorem 2.1, we have
log [Ty | > —1.4-30°-3%° . 2%(1 + log 2)(1 + log ny ) (log a)(2log 2)(16.46 - 10*2(1 + logny)).
Comparing the above inequality with (13) gives
min{(a; — az)log2, (n; — ny)loga} < 4-10%°(1 + logn,)?.
Now, we divide this into two sub-cases.
Case 1A: min{(a; — a3) log 2, (n1 — ny)loga} = (a3 — az)log 2.
Case 1B: min{(a; — a3)log?2, (ny — ns) loga} = (n; — ny)log a.
Step 3: Assume the first sub-case, that is
min{(a; — as)log2, (n1 — ng)logal = (a1 — as)log2 < 4 - 10%(1 4 logn,)>. (14)

In this step, we consider ny, a1, as and as to be large. By collecting large terms on the left
side, we consider (6), that is

ni ni1 nz __ n2
O gu _gu _gu| _| P70
44/2 44/2 44/2
which implies
a™ a™?
— 2% 2% 9293 <« + 0.1 < 0.3a™.
44/2 44/2

Dividing both sides by %, we obtain

44/2

‘1 — QMM 4/2(1 4 220 4 297 | < (.30 <_n> = 1.7a™™, (15)

«
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Put
Ty=1-—a ™2"4y2(1 +2%27% 4 2%71),
We can show that 'y # 0. Take
m=a, =2, N3 = 4\/5(1 + 29279 4 287 L h) = —ny, by = ay, by = 1.
Computing the logarithmic height of n3, we get

h) = h(AVE(L -+ 27 4 97m)
< h(4V2) 4 h(1 + 2027 4 2050y
< log(4v/2) + (ay — az)log 2 + (a; — as) log 2 + 2log 2.

Hence, from (12) and (14), we get
h(ns) < 4.1-10%(1 + logn;)>
So, we take
Az =8.2-10%(1 +logny)>.

The parameters A; and A remain unchanged as before. Using all these values in Theo-
rem 2.1, we have

log [T 4] > —1.4-30%-3%*%.2%(1 4+ 10og 2)(1 + log n;)(log @) (210g 2)(8.2 - 10?°(1 + log ny)?).
Comparing the above inequality with (15) gives
(n1 —ny)loga < 2-10°%(1 + logny ).
Step 4: Now, we consider the second sub-case, that is
min{(a; — as)log2, (n; — ng)logal = (n; — ny)loga < 4 - 10*°(1 + logny )% (16)

Equation (7) implies

n2(q ni—ns
(0% ( + « ) _2a2(2a17a2+1) < 1.1 .99

4v/2

Dividing both sides by 2%2(2%17%2 + 1), we obtain
1 ni—ns
mg-a_(1H0MT™) 1 gua (17)
4y/2(20-a2 4 1)
Take
1 ni1—no
L= amye UTa"™)

44/2(201-a2 1)
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(l+a"1’"2) b
4\/5(2a1—a2+1)7
D = ny. The height of 73 is calculated as

B (14 a™™"2)
) = 0 (4\/5(2a1—a2 n 1))
< A(1+a™7"2) + h(4V/2(297%2 4 1))

< (ng — no)h(@) + h(4V2) + (a1 — az)h(2) + 2log 2
log o

with my =, 7o =2, 13 = 1 =N, bp = —ay, b3 = 1. Since ay < ny < ny,

= (n1 — ng) +1og(4v/2) + (a1 — az)log 2 + 21log 2.
Hence, from (12) and (16), we get
h(nz) < 2.1-10%(1 + logn,)>.
So, we take
Az =4.2-10%(1 +logny)*.
Applying Theorem 2.1, we have
log |Tp| > —1.4-30°-3%° . 2%(1 + log 2)(1 + log n;)(log ) (2log 2)(4.2 - 10**(1 + log ny)?).
Comparing the above inequality with (17) gives
(a; — az)log2 < 9.96 - 10°"(1 + log ny ).
Step 5: Now, we consider case 2, that is
min{(a; — az)log2, (n; — no)loga} = (n; —ny)loga < 8.22-10"%(1 +logn;).  (18)

Equation (8) implies

n2 (] ni—ng
aPAH"T™) gl 9990
42
Dividing both sides by 2%, we obtain
1 ni—nsa
g LEAT) ) oo guan (19)
42
Put
1 niy—mns
Iy = a”QQ*GIM 1
42
We can show that I's # 0. With the notations of Theorem 2.1, we take
(1+a™™"2)

m=a, =2, 773=T, bi =ng, by = —ay, b3 = 1.
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Since as < ny < ny, D = n;. Computing the logarithmic height of 73, we get

ni) = (F50)
< AL+ a™ ™) + h(4V2)
< (n1 — ng)h(a) + h(4v/2) + log 2
= (

1
oea log(4v/2) + log 2.

ny — n2)

Hence, from (18), we obtain
h(ns) < 4.12-10"%(1 + log ny).
So, we take
Az =8.24-10"(1 + logn,).

The value of A; and A, remain same as before. Applying Theorem 2.1, we have
log [Ty| > —1.4-30° - 3% . 2%(1 + log 2)(1 + log ;) (log ) (2 log 2)(8.24 - 10'*(1 + log ny)).
Comparing the above inequality with (19) gives

(ay — ag)log2 < 2-10%°(1 + logn, )>. (20)

Step 6: We apply Theorem 2.1 once more to obtain an upper bound for (a; —as) log 2.
The derivation is similar to case 1B. By the similar derivation as in step 4, we obtain

(1 + am—n2)
4y/2(20-a2 4 1)

ng 27(12

—1

<1.1-2% (21)

We estimate the height of 13 as
(14 a™~"2) )
h =h
(13) (4\/§(Qa1a2 +1)
< (n1 = na)h(@) + h(4V2) + (a1 — az)h(2) + 2log 2
log «

= (ny — ny) +1log(4v/2) + (a1 — az)log 2 + 21log 2.
Hence, from (18) and (20), we get
h(ns) < 2.1-10%(1 +logny)>.

So, we take

Az =4.2-10%(1 + logny)>.
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Applying Theorem 2.1, we have
log |Tp| > —1.4-30°-3%° . 2%(1 + log 2)(1 + log ;) (log ) (2log 2)(4.2 - 10**(1 + log ny)?).
Comparing the above inequality with (21) gives

(a1 — az)log2 < 9.96 - 10°"(1 + log ny ).

We summarize our results obtained so far in the following table.
Upper bound of ‘ Case 1A ‘ Case 1B ‘ Case 2
(a1 —ag)log2 | 8.22-10"(1 +logny) | 8.22-10"(1 +1logny) | 2-10%(1 + logn,)?
(a1 —az)log2 | 4-10%(1+logny)? | 9.96-10%(1 +logng)? | 9.96 - 1037(1 + logn,)?
(ny —ng)loga | 2-10%(1 +logny)® | 4-10%(1 + logn,)? 8.22-10"%(1 + logny)
Step 7: Lastly, we consider (9), that is

O{m Oén2 Bm 5“2
—_— ——= =291 292 _ 293 — + —.
42 42 42 4V2

Taking absolute values on both sides, we have

a™ (1 + M2
42

Dividing both sides by %\%rm) gives

< 0.1.

_ 2(11 (1 + 2a2*a1 + 2a3*a1)

44/2(1 + 202701 4 Qas—ar)
(14 an2—m)

R <0.6-a ™, (22)

Put

43/2(1 + 202701 4 Qas—ar)

[ —
s (14 qm2—m)

1 —a ™2%

Using similar arguments as before we can show that I's # 0. With the notations of Theo-
rem 2.1, we take

44/2(1 + 202701 4 Qas—ar)
(14 are—m)

m=aq, =2, n3= , by =—nq, by =ay, by =1.

Since a; < ny, D = ny. Computing the logarithmic height of ns, we get

4\/§ 1 —+ Qaz2—a1 + 9az—ai
h(nS) =h ( ( (1 + anzfm) )>
< h(4\/§<1 4 %7 2‘13—01)) + h(l + a”2—”1)

< h(4V2) 4 (a1 — a2)h(2) + (a1 — a3)h(2) + (n1 — na)h(a) + 3log 2
log a

= log(4\/§) + (a1 — az)log2 + (a; — az)log2 + (ny — na)

+ 3log 2.
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Hence, we get

h(ns) < 9.97 - 10°"(1 + log ny)?.
So, we take

Az =19.95-10°"(1 + logny)>.
Applying Theorem 2.1, we have
log |T'3| > —1.4-30°-3%%.2%(1 4+ log2)(1 + logn;)(log ) (21og 2)(19.95 - 10°7(1 + log n1)?).
Comparing the above inequality with (22) gives

niloga < 4.73 - 10°°(1 4 log ny )*.

With the notation of Lemma 2.3, we take r = 4, L = n and H = £319%  Applyving the

log
lemma, we have ¢
A (4.73-1050) ( (4.73-1050>)4
n <2 ——— ) (log | ——
log log

<7.9-10%.

The bound on n; is too large. So, in the next subsection, we reduce this bound using
Lemma 2.2.
3.2 Bound Reduction

To reduce the bound on ny, we use the following steps.
Step 1: Put

A =nqloga — a;log2 — log <4\/§) .

The inequality (10) can be written as

a™

42

Observe that A # 0 as e® — 1 = I' # 0. Assuming min {a; — as,n; — ny} > 7, the right-
hand side in the above inequality is at most % The inequality |e* — 1| < y for real values
of z and y implies z < 2y. Thus, we get

274 — 1‘ = |e* — 1] < 43.72max {227 o™ " }.

|A| < 87.44 max {2(12—1117 O_/”2_n1} 7
which implies that

nloga — a;log2 — log (4v/2) \ < 87.44max {20 gmam)
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Dividing both sides by log 2 gives

o (@) st log (1/4v/2)

log 2

{87.44 w3744 }
max{4 —— - 29274, ——— ™™
log 2

log 2 " log 2

< s {127 901702, 197 (0}

We let

, with

(log a) log (1/4v/2)
u=n;, T= L v=ay, p=—

log 2 log 2
(A, B,w) = (127,2, (a; — a2)) or (127, a, (ny — nay)).

Choose M = 7.9-10%. We find g9 exceeds 6 M with ¢ = ||uqias]| — M||7q126]| = 0.5. By
virtue of Lemma 2.2, we get a1 — as < 214 or n; — ny < 84. Now, we divide this into two
cases.

Case 1: a1 —ay, <214

Case 2: ny —ny < 84

Step 2: First, we consider case 1. Let

Al = —Nn IOgO{ —+ ag 10g2 —+ IOg <4\/§(1 4 2&1—112)) ‘
The inequality (13) can be written as
M — 1] = Ty | < 13.57 max {257 a2}

Assuming min {a; — a3, n; —ny} > 5, the right-hand side in the above inequality at most
5. Thus, we get

nylog a — aslog 2 + log (1/(4\/5(1 + 2‘“_“2))> ) < 27.14max {297 "M
Dividing both sides by log 2 gives

1 1 1/(4v2(1 + 201792 27.52 27.52
o ( oga) ot og (1/(4v2( )))' < max{ . 9az—a1 anz—nl}

log 2 log 2 log 2 " log 2

< max {40 - 2701%9) 400~}

Let

Y

log a log (1/(4v/2(1 +29172)))
U=mny, T= , U= Qg, =
log 2 log 2

with (A, B,w) = (40,2, (a1 — a3)) or (40, , (ny — ny)). With the same M, we find ¢j04
exceeds 6M with € > 0.00179287. By virtue of Lemma 2.2 for (a1 — ag) < 214, we get
a; —ag < 218 or ny — ny < 86.
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Again, we divide case 1 into two sub-cases.
Case 1A: q; — a3 < 218

Case 1B: n; —ny < 86

Step 3: We consider 1A. Put

Ay = —nyloga + aylog2 + log (4\/5(1 4 Qo2 2a3—a1)> .
Then, inequality (15) can be written as
M — 1] = |Ta| < L.7a"2™,

Assuming (n; —ng) > 1, we get

n1loga — ap log 2 + log (1/(4\/5(1 4 oma | 2“3*“1))) ‘ < 3d4amm,
which implies

log o log (1/(4V/2(1 + 20271 4 2%-a1)))
n —ap +
log 2 log 2

- 3.4
log 2

na2—ni

< Ha~(m—n2),

Let

Y

IOgOé log (1/(4\/5(1 4 Qaz—ar 1 2(137(11)))
Uu=nmniy, T= ,'U:ahluz
log 2 log 2

with (A, B,w) = (5,q,(n; — ng)). With the same M, we estimate ¢ > 0.0000354843.
Applying Lemma 2.2 for (a3 — a) < 214 and (a3 — ag) < 218, we get ny — ny < 87.
Step 4: We consider the case 1B. Put
(1+a™mm2)
4y/2(2m1—az2 1)

Ag =nologa — aslog2 + log

The inequality (17) can be written as
e — 1| = [Pp| < 1.1- 2%,
Assuming (a; — a3) > 2, we get

(1+a™7"2)
44/2(201-22 + 1)

ng log a — as log 2 + log

‘ <2.2.27 (@)

which implies

1 1 1 ni—nsa 4 2 2a1*a2 1 .
- og « R og (( +« )/( \/—( + ))) < 2.2 . 9Qaz—a1
log 2 log 2 log 2

< 3.1.27 (1),
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Let

9

log log ((1+ ™) /(4v/2(27 + 1))
U="mnz, T= , U= 202, W=
log 2 log 2

with (A, B,w) = (3.1,2, (a1 — a3)). With the same M we find ¢ > 0.0000119685. Applying
Lemma 2.2 for (a1 — ay) < 214 and (n; — ny) < 86, we get a; — az < 222,
Step 5: Now, consider case 2. Take

(1+ am—n2)
4/2

Ay = nyloga — aqlog2 + log

The inequality (19) can be written as
|ef? — 1| = Ty| < 2.2 2%,
Assuming (a; — ag) > 3, we get

(14 am=n2)
42

< 442770

ng log o — ay log 2 + log

Dividing both sides by log 2 gives

N9 (log Oé) —a + log ((1 + anl_n2)/4\/§)

log 2 log 2

- 4.4
log 2

< 6.3.92 (@1—a2),

—(a1—a2)

Let

I

log a log ((1+ a™~"2)/41/2)
U="mng, T= , UV=20a1, b=
log 2 log 2

with (A, B,w) = (6.3,2, (a1 — ag)). We calculate ¢ > 0.00225968. Applying Lemma 2.2 for
(n1 —ng) < 84, we get a; — as < 215.

Step 6: We continue case 2. We have that a; — as < 215 and n; — ny < 84. Applying
similar steps as in case 1B, we obtain a; — a3 < 222. We summarize our results obtained
so far in the following table.

Upper bound of ‘ Case 1A ‘ Case 1B ‘ Case 2

(a1 — as) 214 214 215
(a1 — a3) 218 222 222
(n1 — na) 87 86 84

Step 7: Now, under the assumption that ny —ny < 87,41 — as < 215,a; — ag < 222,
put

43/2(1 + 2027 4 Qas—ar)

A3 = —N1 IOgOL + aq 10g2 + 10g (1 + ang—n1>
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The inequality (22) can be written as
|efs — 1] = |T's] < 0.607 ™.
which implies that

(1+am™™)
44/2(1 4 202—a1 4 2as—ar)

nyloga — a; log 2 + log < 1.2a™™.

Dividing both sides by log 2 gives

—nq

(10ga) log (1 -+ a™=)/(4v/2(1 + 27 4 9-m))) ‘ L2
nq —a +

<
log2 log 2 log2”
< 1.7a7 ™.
Let
log o log ((1+ a2 =™ [(44/2(1 + 2021 gaa—a)))
U=ny, T= y V=201, (b= )
log 2 log 2

with (A, B,w) = (1.7, , ny). With the same M, we find € > 0.00001. Applying Lemma 2.2
for ny —no < 87,a1 —as < 215 and a; —az < 222, we get nq < 86, which is a contradiction.
Hence, the theorem is proved.

As a consequence of Theorem 1.1 we obtain the following corollaries.

Theorem 3.1. All non-negative integer solutions (ni,na, ar,as) of the equation
B,, + B, = 2" 4+ 2%
with ny > ny > 0 and a; > as > 0 are given by
(n1,n2,a1,a9) € {(1,1,0,0),(2,0,2,1),(2,2,3,2),(3,1,5,2)}.
Theorem 3.2. All non-negative integer solutions (ny,ng, ay) of the equation
B,, + B,, = 2",
with ny > ny > 0 and ay > 0 are given by

(n1,n9,a1) € {(1,1,0),(1,1,1)}.
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