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On the Diophantine equation Bn1 +Bn2 = 2a1 +2a2 +2a3

Kisan Bhoi and Prasanta Kumar Ray

Abstract. In this study we find all solutions of the Diophantine equation

Bn1 + Bn2 = 2a1 + 2a2 + 2a3

in positive integer variables (n1, n2, a1, a2, a3), where Bn denotes the n-th balancing
number.

1 Introduction

Balancing sequence {Bn}n≥1 is originated from a simple Diophantine equation

1 + 2 + . . .+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

introduced by Behera and Panda [1]. Here, r is called a balancer corresponding to a
balancing number n. The balancing sequence satisfies the binary recurrence

Bn+1 = 6Bn −Bn−1, n ≥ 1

with seeds B0 = 0 and B1 = 1. The Binet’s formula for {Bn}n≥1 is given by

Bn =
αn − βn

4
√

2
,

where α = 3 +
√

8 and β = 3 −
√

8 are the zeros of the polynomial f(x) = x2 − 6x + 1.
Clearly, β−1 = α. It can be easily seen that

αn−1 < Bn < αn, for n > 1. (1)

MSC 2020: 11B39, 11J86, 11D61
Keywords: Balancing sequence, linear forms in logarithms, Baker-Davenport reduction method
Affiliation:

Kisan Bhoi – Sambalpur University, Jyoti Vihar, Burla, India
E-mail: kisanbhoi.95@suniv.ac.in

Prasanta Kumar Ray – Sambalpur University, Jyoti Vihar, Burla, India
E-mail: prasantamath@suniv.ac.in

ar
X

iv
:2

21
2.

06
37

2v
2 

 [
m

at
h.

N
T

] 
 2

1 
D

ec
 2

02
2



376 Kisan Bhoi and Prasanta Kumar Ray

Diophantine equations involving powers and binary recurrence sequences have been ex-
tensively studied by many researchers in recent past. For example, Bravo and Luca [2]
found all solutions of the equation Fn + Fm = 2a, where Fn is the n-th Fibonacci number.
Later, Bravo and Bravo [3] extended this work and found all positive integer solutions of
the Diophantine equation Fn +Fm +Fl = 2a. In [9], Şiar and Keskin solved the same type
equation, instead of taking sum, they considered the difference of two Fibonacci numbers
and found solutions to the equation Fn − Fm = 2a. Chim and Ziegler [5] considered the
equations Fn1 + Fn2 = 2a1 + 2a2 + 2a3 and Fm1 + Fm2 + Fm3 = 2t1 + 2t2 and proved that
max{n1, n2, a1, a2, a3} ≤ 18 and max{m1,m2,m3, t1, t2} ≤ 16, respectively.

The authors used lower bounds for linear forms in logarithms and a version of Baker-
Davenport reduction method as their main tools to solve all the problems stated above.
A natural question arises: What will be the solution if we replace Fibonacci numbers by
balancing numbers? Therefore, in this note, we look at the Diophantine equation

Bn1 +Bn2 = 2a1 + 2a2 + 2a3 , (2)

where Bn is the n-th balancing number with n1 ≥ n2 ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0 and try
to find all solutions using the same techniques.

The main result of this article is the following.

Theorem 1.1. All non-negative integer solutions (n1, n2, a1, a2, a3) of the equation (2) are
given by

(n1, n2, a1, a2, a3) ∈
{

(2, 0, 1, 1, 1), (2, 0, 2, 0, 0), (2, 1, 2, 1, 0), (2, 2, 2, 2, 2), (2, 2, 3, 1, 1),

(3, 0, 5, 1, 0), (3, 1, 4, 4, 2), (3, 1, 5, 1, 1), (3, 2, 5, 3, 0), (3, 3, 6, 2, 1)
}
.

For the proof of Theorem 1.1, we run a program in Mathematica and search all solutions
(n1, n2, a1, a2, a3) with n1 < 100 to the equation (2). Then, we take n1 > 100 and write
(2) in six different ways. We apply lower bounds for linear forms in logarithms to obtain
an upper bound on n1 = max{n1, n2, a1, a2, a3}. This is done in the following seven steps:

Step 1: We find an upper bound

min {(a1 − a2) log 2, (n1 − n2) logα} < 8.22 · 1012(1 + log n1).

So, we divide into two cases:
Case 1: min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2
Case 2: min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα.

Step 2: We consider case 1 and show that

min{(a1 − a3) log 2, (n1 − n2) logα} < 4 · 1025(1 + log n1)2.

We further divide case 1 into two following sub-cases:
Case 1A: min{(a1 − a3) log 2, (n1 − n2) logα} = (a1 − a3) log 2
Case 1B: min{(a1 − a3) log 2, (n1 − n2) logα} = (n1 − n2) logα.
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Step 3: We consider case 1A and show that

(n1 − n2) logα < 2 · 1038(1 + log n1)3.

Step 4: We consider case 1B and show that

(a1 − a3) log 2 < 9.96 · 1037(1 + log n1)3.

Step 5: We consider case 2 and show that

(a1 − a2) log 2 < 2 · 1025(1 + log n1)2.

Step 6: We continue to consider case 2 and show that

(a1 − a3) log 2 < 9.96 · 1037(1 + log n1)3.

Step 7: Using the upper bounds (a1−a2) log 2, (a1−a3) log 2, (n1−n2) logα, we obtain
an absolute upper bound for n1 as

n1 < 7.9 · 1059.

We repeat all seven steps after finding an upper bound for n1, but instead of lower
bounds for linear forms in logarithms, we apply the Baker-Davenport reduction method.
As a result, we have small absolute bounds and get to n1 < 86, a contradiction. In this
way, we complete the proof of our main result.

In order to prove Theorem 1.1, we need some preliminary results which are discussed
in the next section.

2 Preliminaries

Baker’s theory of linear forms in logarithms of algebraic numbers plays an important
role while solving various Diophantine equations. Here, we use several times the same to
solve the equation (2), but before that, we recall some basic notations and results from
algebraic number theory.

Let η be an algebraic number with minimal primitive polynomial

f (X) = a0(X − η(1)) . . . (X − η(k)) ∈ Z [X],

where a0 > 0, and η(i)’s are conjugates of η. Then, the logarithmic height of η is defined
by

h(η) =
1

k

(
log a0 +

k∑
j=1

max{0, log |η(j)|}

)
.



378 Kisan Bhoi and Prasanta Kumar Ray

If η = a/b is a rational number with gcd(a, b) = 1 and b > 1, then h(η) = log(max{|a|, b}).
The following are some known properties of logarithmic height function:

h(η + γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηk) = |k|h(η), k ∈ Z.

The following theorem is a modified version of a result of Matveev (see [8] or [4, Theo-
rem 9.4]) which provides a large upper bound for n1 in (2).

Theorem 2.1. Let L be an algebraic number field of degree dL. Let η1, η2, . . . , ηl ∈ L be
positive real numbers and b1, b2, . . . , bl be nonzero integers. If Γ =

∏l
i=1 η

bi
i − 1 is not zero,

then

log |Γ| > −1.4 · 30l+3 · l4.5 · d2
L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D ≥ max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are positive real numbers such that

Aj ≥ max{dLh (ηj) , | log ηj|, 0.16} for j = 1, . . . , l.

We use the following method of Baker-Davenport due to Dujella and Pethő [6] to reduce
the bound on n1.

Lemma 2.2 ([6]). Let M be a positive integer and p/q be a convergent of the continued
fraction of the irrational number τ such that q > 6M . Let A, B, µ be some real numbers
with A > 0 and B > 1. Let ε := ‖µq‖ −M‖τq‖, where ‖.‖ denotes the distance from the
nearest integer. If ε > 0, then there exists no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following results will also be used to prove Theorem 1.1.

Lemma 2.3 ([7]). Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(logL)r.
Then

L < 2rH(logH)r.

Lemma 2.4. All solutions of (2) satisfy (n1 − 1) < log 3
logα

+ a1
log 2
logα

and n1 > (a1 − 1) log 2
logα

.
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Proof. From (1) and (2) we have

αn1−1 < Bn1 ≤ Bn1 +Bn2 = 2a1 + 2a2 + 2a3 ≤ 3 · 2a1 .

Taking logarithm on both sides, we get

(n1 − 1) logα < log 3 + a1 log 2,

which implies

(n1 − 1) <
log 3

logα
+ a1

log 2

logα
.

On the other hand, 2αn1 > 2Bn1 ≥ Bn1 + Bn2 = 2a1 + 2a2 + 2a3 > 2a1 . Taking logarithm
on both sides, we get

log 2 + n1 logα > a1 log 2,

which implies

n1 > (a1 − 1)
log 2

logα
.

3 Proof of Theorem 1.1

Consider the Diophantine equation

Bn1 +Bn2 = 2a1 + 2a2 + 2a3 .

First, we search the solutions to the above equation using Mathematica for n1 ≤ 100.
Using Lemma 2.4, we calculate a1 ≤ 256. By Mathematica, for 0 ≤ n2 ≤ n1 ≤ 100 and
0 ≤ a3 ≤ a2 ≤ a1 ≤ 256, we find all the solutions that are listed in Theorem 1.1. Now,
assume that n1 > 100.

3.1 An upper bound on n1

Using Binet’s formula (2) can be written as

αn1 − βn1

4
√

2
+
αn2 − βn2

4
√

2
= 2a1 + 2a2 + 2a3 . (3)

We write (3) in the following six different ways and examine each one to prove our result.

αn1

4
√

2
− 2a1 = 2a2 + 2a3 +

βn1

4
√

2
− αn2 − βn2

4
√

2
. (4)

αn1

4
√

2
− 2a1 − 2a2 = 2a3 +

βn1

4
√

2
− αn2 − βn2

4
√

2
(5)
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αn1

4
√

2
− 2a1 − 2a2 − 2a3 =

βn1

4
√

2
− αn2 − βn2

4
√

2
(6)

αn1

4
√

2
+
αn2

4
√

2
− 2a1 − 2a2 = 2a3 +

βn1

4
√

2
+

βn2

4
√

2
(7)

αn1

4
√

2
+
αn2

4
√

2
− 2a1 = 2a2 + 2a3 +

βn1

4
√

2
+

βn2

4
√

2
(8)

αn1

4
√

2
+
αn2

4
√

2
− 2a1 − 2a2 − 2a3 =

βn1

4
√

2
+

βn2

4
√

2
(9)

Step 1: First, we consider (4). Here, we assume n1 and a1 to be large and collect the
large terms involving n1 and a1 on the left side. Taking absolute values on both sides of
(4), we get ∣∣∣∣ αn1

4
√

2
− 2a1

∣∣∣∣ < 2a2+1 +
αn2

4
√

2
+ 0.1

< 2.5 max {2a2 , αn2} .

Dividing both sides by 2a1 , we get∣∣∣∣ αn1

4
√

2
2−a1 − 1

∣∣∣∣ < max

{
2.5 · 2a2−a1 , 2.5αn2

2a1

}
< max

{
2.5 · 2a2−a1 , 7.5αn2

αn1−1

}
.

Hence, we obtain ∣∣∣∣ αn1

4
√

2
2−a1 − 1

∣∣∣∣ < 43.72 max
{

2a2−a1 , αn2−n1
}
. (10)

Put

Γ =
αn1

4
√

2
2−a1 − 1. (11)

Suppose Γ = 0, then α2n1 ∈ Q which is not possible for any n1 > 0. Therefore, Γ 6= 0. To
apply Theorem 2.1 in (11), let

η1 = α, η2 = 2, η3 = 4
√

2, b1 = n1, b2 = −a1, b3 = −1, l = 3,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is 2.
Since n1 > a1 > 1, therefore D = max{1, n1, |a2|} = n1. We calculate the logarithmic

heights of η1, η2, η3 as follows:

h(η1) = h (α) =
logα

2
, h(η2) = log 2 and h(η3) = log(4

√
2).

Thus, we can take

A1 = logα, A2 = 2 log 2 and A3 = 2 log(4
√

2).



On the Diophantine equation Bn1 + Bn2 = 2a1 + 2a2 + 2a3 381

Applying Theorem 2.1 we find

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(2 log(4
√

2)).

Comparing the above inequality with (10) gives

min {(a1 − a2) log 2, (n1 − n2) logα} < 8.22 · 1012(1 + log n1).

Now, we divide into two cases.
Case 1: min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2.
Case 2: min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα.
Step 2: First, we consider case 1 and assume that

min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2 < 8.22 · 1012(1 + log n1). (12)

Assuming n1, a1 and a2 to be large and collecting large terms on the left hand side, we
consider (5). Taking absolute values on both sides of (5), we have∣∣∣∣ αn1

4
√

2
− 2a1 − 2a2

∣∣∣∣ =

∣∣∣∣2a3 +
βn1

4
√

2
− αn2 − βn2

4
√

2

∣∣∣∣ ,
which implies ∣∣∣∣ αn1

4
√

2
− 2a1 − 2a2

∣∣∣∣ < 2a3 +
αn2

4
√

2
+ 0.1 < 1.2 max{2a3 , αn2}.

Dividing both sides by αn1

4
√

2
, we obtain

∣∣∣1− α−n12a24
√

2(2a1−a2 + 1)
∣∣∣ < max

{
(1.2)(4

√
2)

αn1
· 2a3 , (1.2)(4

√
2)αn2−n1

}

≤ max

{
(1.2)(4

√
2)

2a1−1
· 2a3 , (1.2)(4

√
2)αn2−n1

}
.

Hence, we obtain∣∣∣1− α−n12a24
√

2(2a1−a2 + 1)
∣∣∣ < 13.57 max

{
2a3−a1 , αn2−n1

}
. (13)

Put

Γ1 = 1− α−n12a24
√

2(2a1−a2 + 1).

By similar arguments as before we can show that Γ1 6= 0. With the notations of Theo-
rem 2.1, we take

η1 = α, η2 = 2, η3 = 4
√

2(2a1−a2 + 1), b1 = −n1, b2 = a2, b3 = 1, l = 3.
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Since a2 < n1, we take D = n1. As before, we have the same logarithmic heights for η1

and η2. Thus A1 and A2 remain unchanged. Computing the height of η3, we have

h(η3) = h(4
√

2(2a1−a2 + 1))

≤ h(4
√

2) + h(2a1−a2 + 1)

≤ log(4
√

2) + (a1 − a2) log 2 + log 2.

Hence, from (12), we get

h(η3) < 8.23 · 1012(1 + log n1).

So, we take

A3 = 16.46 · 1012(1 + log n1).

Using all these values in Theorem 2.1, we have

log |Γ1| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(16.46 · 1012(1 + log n1)).

Comparing the above inequality with (13) gives

min{(a1 − a3) log 2, (n1 − n2) logα} < 4 · 1025(1 + log n1)2.

Now, we divide this into two sub-cases.
Case 1A: min{(a1 − a3) log 2, (n1 − n2) logα} = (a1 − a3) log 2.
Case 1B: min{(a1 − a3) log 2, (n1 − n2) logα} = (n1 − n2) logα.
Step 3: Assume the first sub-case, that is

min{(a1 − a3) log 2, (n1 − n2) logα} = (a1 − a3) log 2 < 4 · 1025(1 + log n1)2. (14)

In this step, we consider n1, a1, a2 and a3 to be large. By collecting large terms on the left
side, we consider (6), that is∣∣∣∣ αn1

4
√

2
− 2a1 − 2a2 − 2a3

∣∣∣∣ =

∣∣∣∣ βn1

4
√

2
− αn2 − βn2

4
√

2

∣∣∣∣ ,
which implies ∣∣∣∣ αn1

4
√

2
− 2a1 − 2a2 − 2a3

∣∣∣∣ < αn2

4
√

2
+ 0.1 < 0.3αn2 .

Dividing both sides by αn1

4
√

2
, we obtain

∣∣∣1− α−n12a14
√

2(1 + 2a2−a1 + 2a3−a1)
∣∣∣ < 0.3αn2

(
4
√

2

αn1

)
= 1.7αn2−n1 . (15)
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Put

ΓA = 1− α−n12a14
√

2(1 + 2a2−a1 + 2a3−a1).

We can show that ΓA 6= 0. Take

η1 = α, η2 = 2, η3 = 4
√

2(1 + 2a2−a1 + 2a3−a1), b1 = −n1, b2 = a1, b3 = 1.

Computing the logarithmic height of η3, we get

h(η3) = h(4
√

2(1 + 2a2−a1 + 2a3−a1))

≤ h(4
√

2) + h(1 + 2a2−a1 + 2a3−a1)

≤ log(4
√

2) + (a1 − a2) log 2 + (a1 − a3) log 2 + 2 log 2.

Hence, from (12) and (14), we get

h(η3) < 4.1 · 1025(1 + log n1)2.

So, we take

A3 = 8.2 · 1025(1 + log n1)2.

The parameters A1 and A2 remain unchanged as before. Using all these values in Theo-
rem 2.1, we have

log |ΓA| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(8.2 · 1025(1 + log n1)2).

Comparing the above inequality with (15) gives

(n1 − n2) logα < 2 · 1038(1 + log n1)3.

Step 4: Now, we consider the second sub-case, that is

min{(a1 − a3) log 2, (n1 − n2) logα} = (n1 − n2) logα < 4 · 1025(1 + log n1)2. (16)

Equation (7) implies ∣∣∣∣αn2(1 + αn1−n2)

4
√

2
− 2a2(2a1−a2 + 1)

∣∣∣∣ < 1.1 · 2a3 .

Dividing both sides by 2a2(2a1−a2 + 1), we obtain∣∣∣∣αn22−a2
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)
− 1

∣∣∣∣ < 1.1 · 2a3−a1 . (17)

Take

ΓB = αn22−a2
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)
− 1,
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with η1 = α, η2 = 2, η3 = (1+αn1−n2 )

4
√

2(2a1−a2+1)
, b1 = n2, b2 = −a2, b3 = 1. Since a2 < n2 < n1,

D = n1. The height of η3 is calculated as

h(η3) = h

(
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)

)
≤ h(1 + αn1−n2) + h(4

√
2(2a1−a2 + 1))

≤ (n1 − n2)h(α) + h(4
√

2) + (a1 − a2)h(2) + 2 log 2

= (n1 − n2)
logα

2
+ log(4

√
2) + (a1 − a2) log 2 + 2 log 2.

Hence, from (12) and (16), we get

h(η3) < 2.1 · 1025(1 + log n1)2.

So, we take

A3 = 4.2 · 1025(1 + log n1)2.

Applying Theorem 2.1, we have

log |ΓB| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(4.2 · 1025(1 + log n1)2).

Comparing the above inequality with (17) gives

(a1 − a3) log 2 < 9.96 · 1037(1 + log n1)3.

Step 5: Now, we consider case 2, that is

min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα < 8.22 · 1012(1 + log n1). (18)

Equation (8) implies ∣∣∣∣αn2(1 + αn1−n2)

4
√

2
− 2a1

∣∣∣∣ < 2.2 · 2a2 .

Dividing both sides by 2a1 , we obtain∣∣∣∣αn22−a1
(1 + αn1−n2)

4
√

2
− 1

∣∣∣∣ < 2.2 · 2a2−a1 . (19)

Put

Γ2 = αn22−a1
(1 + αn1−n2)

4
√

2
− 1.

We can show that Γ2 6= 0. With the notations of Theorem 2.1, we take

η1 = α, η2 = 2, η3 =
(1 + αn1−n2)

4
√

2
, b1 = n2, b2 = −a1, b3 = 1.
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Since a2 < n2 < n1, D = n1. Computing the logarithmic height of η3, we get

h(η3) = h

(
1 + αn1−n2

4
√

2

)
≤ h(1 + αn1−n2) + h(4

√
2)

≤ (n1 − n2)h(α) + h(4
√

2) + log 2

= (n1 − n2)
logα

2
+ log(4

√
2) + log 2.

Hence, from (18), we obtain

h(η3) < 4.12 · 1012(1 + log n1).

So, we take

A3 = 8.24 · 1012(1 + log n1).

The value of A1 and A2 remain same as before. Applying Theorem 2.1, we have

log |Γ2| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(8.24 · 1012(1 + log n1)).

Comparing the above inequality with (19) gives

(a1 − a2) log 2 < 2 · 1025(1 + log n1)2. (20)

Step 6: We apply Theorem 2.1 once more to obtain an upper bound for (a1−a3) log 2.
The derivation is similar to case 1B. By the similar derivation as in step 4, we obtain∣∣∣∣αn22−a2

(1 + αn1−n2)

4
√

2(2a1−a2 + 1)
− 1

∣∣∣∣ < 1.1 · 2a3−a1 . (21)

We estimate the height of η3 as

h(η3) = h

(
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)

)
≤ (n1 − n2)h(α) + h(4

√
2) + (a1 − a2)h(2) + 2 log 2

= (n1 − n2)
logα

2
+ log(4

√
2) + (a1 − a2) log 2 + 2 log 2.

Hence, from (18) and (20), we get

h(η3) < 2.1 · 1025(1 + log n1)2.

So, we take

A3 = 4.2 · 1025(1 + log n1)2.
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Applying Theorem 2.1, we have

log |ΓB| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(4.2 · 1025(1 + log n1)2).

Comparing the above inequality with (21) gives

(a1 − a3) log 2 < 9.96 · 1037(1 + log n1)3.

We summarize our results obtained so far in the following table.

Upper bound of Case 1A Case 1B Case 2
(a1 − a2) log 2 8.22 · 1012(1 + log n1) 8.22 · 1012(1 + log n1) 2 · 1025(1 + log n1)2

(a1 − a3) log 2 4 · 1025(1 + log n1)2 9.96 · 1037(1 + log n1)3 9.96 · 1037(1 + log n1)3

(n1 − n2) logα 2 · 1038(1 + log n1)3 4 · 1025(1 + log n1)2 8.22 · 1012(1 + log n1)

Step 7: Lastly, we consider (9), that is

αn1

4
√

2
+
αn2

4
√

2
− 2a1 − 2a2 − 2a3 =

βn1

4
√

2
+

βn2

4
√

2
.

Taking absolute values on both sides, we have∣∣∣∣αn1(1 + αn2−n1)

4
√

2
− 2a1(1 + 2a2−a1 + 2a3−a1)

∣∣∣∣ < 0.1.

Dividing both sides by αn1 (1+αn2−n1 )

4
√

2
gives∣∣∣∣∣1− α−n12a1

4
√

2(1 + 2a2−a1 + 2a3−a1)

(1 + αn2−n1)

∣∣∣∣∣ < 0.6 · α−n1 . (22)

Put

Γ3 =

∣∣∣∣∣1− α−n12a1
4
√

2(1 + 2a2−a1 + 2a3−a1)

(1 + αn2−n1)

∣∣∣∣∣ .
Using similar arguments as before we can show that Γ3 6= 0. With the notations of Theo-
rem 2.1, we take

η1 = α, η2 = 2, η3 =
4
√

2(1 + 2a2−a1 + 2a3−a1)

(1 + αn2−n1)
, b1 = −n1, b2 = a1, b3 = 1.

Since a1 < n1, D = n1. Computing the logarithmic height of η3, we get

h(η3) = h

(
4
√

2(1 + 2a2−a1 + 2a3−a1)

(1 + αn2−n1)

)
≤ h(4

√
2(1 + 2a2−a1 + 2a3−a1)) + h(1 + αn2−n1)

≤ h(4
√

2) + (a1 − a2)h(2) + (a1 − a3)h(2) + (n1 − n2)h(α) + 3 log 2

= log(4
√

2) + (a1 − a2) log 2 + (a1 − a3) log 2 + (n1 − n2)
logα

2
+ 3 log 2.
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Hence, we get

h(η3) < 9.97 · 1037(1 + log n1)3.

So, we take

A3 = 19.95 · 1037(1 + log n1)3.

Applying Theorem 2.1, we have

log |Γ3| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n1)(logα)(2 log 2)(19.95 · 1037(1 + log n1)3).

Comparing the above inequality with (22) gives

n1 logα < 4.73 · 1050(1 + log n1)4.

With the notation of Lemma 2.3, we take r = 4, L = n and H = 4.73·1050

logα
. Applying the

lemma, we have

n1 < 24

(
4.73 · 1050

logα

)(
log

(
4.73 · 1050

logα

))4

< 7.9 · 1059.

The bound on n1 is too large. So, in the next subsection, we reduce this bound using
Lemma 2.2.

3.2 Bound Reduction

To reduce the bound on n1, we use the following steps.
Step 1: Put

Λ = n1 logα− a1 log 2− log
(

4
√

2
)
.

The inequality (10) can be written as∣∣∣∣ αn1

4
√

2
2−a1 − 1

∣∣∣∣ = |eΛ − 1| < 43.72 max
{

2a2−a1 , αn2−n1
}
.

Observe that Λ 6= 0 as eΛ − 1 = Γ 6= 0. Assuming min {a1 − a2, n1 − n2} ≥ 7, the right-
hand side in the above inequality is at most 1

2
. The inequality |ez − 1| < y for real values

of z and y implies z < 2y. Thus, we get

|Λ| < 87.44 max
{

2a2−a1 , αn2−n1
}
,

which implies that∣∣∣n1 logα− a1 log 2− log
(

4
√

2
)∣∣∣ < 87.44 max

{
2a2−a1 , αn2−n1

}
.
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Dividing both sides by log 2 gives∣∣∣∣∣n1

(
logα

log 2

)
− a1 +

log
(
1/4
√

2
)

log 2

∣∣∣∣∣ < max

{
87.44

log 2
· 2a2−a1 , 87.44

log 2
αn2−n1

}
< max

{
127 · 2−(a1−a2), 127α−(n1−n2)

}
.

We let

u = n1, τ =

(
logα

log 2

)
, v = a1, µ =

log
(
1/4
√

2
)

log 2
, with

(A,B,w) = (127, 2, (a1 − a2)) or (127, α, (n1 − n2)).

Choose M = 7.9 · 1059. We find q126 exceeds 6M with ε = ‖µq126‖ −M‖τq126‖ = 0.5. By
virtue of Lemma 2.2, we get a1 − a2 ≤ 214 or n1 − n2 ≤ 84. Now, we divide this into two
cases.

Case 1: a1 − a2 ≤ 214
Case 2: n1 − n2 ≤ 84
Step 2: First, we consider case 1. Let

Λ1 = −n1 logα + a2 log 2 + log
(

4
√

2(1 + 2a1−a2)
)
.

The inequality (13) can be written as∣∣eΛ1 − 1
∣∣ = |Γ1| < 13.57 max

{
2a3−a1 , αn2−n1

}
.

Assuming min {a1 − a3, n1 − n2} ≥ 5, the right-hand side in the above inequality at most
1
2
. Thus, we get∣∣∣n1 logα− a2 log 2 + log

(
1/(4
√

2(1 + 2a1−a2))
)∣∣∣ < 27.14 max

{
2a3−a1 , αn2−n1

}
.

Dividing both sides by log 2 gives∣∣∣∣∣n1

(
logα

log 2

)
− a2 +

log
(
1/(4
√

2(1 + 2a1−a2))
)

log 2

∣∣∣∣∣ < max

{
27.52

log 2
· 2a3−a1 , 27.52

log 2
αn2−n1

}
< max

{
40 · 2−(a1−a3), 40α−(n1−n2)

}
.

Let

u = n1, τ =

(
logα

log 2

)
, v = a2, µ =

log
(
1/(4
√

2(1 + 2a1−a2))
)

log 2
,

with (A,B,w) = (40, 2, (a1 − a3)) or (40, α, (n1 − n2)). With the same M , we find q124

exceeds 6M with ε > 0.00179287. By virtue of Lemma 2.2 for (a1 − a2) ≤ 214, we get
a1 − a3 ≤ 218 or n1 − n2 ≤ 86.
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Again, we divide case 1 into two sub-cases.
Case 1A: a1 − a3 ≤ 218
Case 1B: n1 − n2 ≤ 86
Step 3: We consider 1A. Put

ΛA = −n1 logα + a1 log 2 + log
(

4
√

2(1 + 2a2−a1 + 2a3−a1)
)
.

Then, inequality (15) can be written as∣∣eΛA − 1
∣∣ = |ΓA| < 1.7αn2−n1 .

Assuming (n1 − n2) ≥ 1, we get∣∣∣n1 logα− a1 log 2 + log
(

1/(4
√

2(1 + 2a2−a1 + 2a3−a1))
)∣∣∣ < 3.4αn2−n1 ,

which implies∣∣∣∣∣n1

(
logα

log 2

)
− a1 +

log
(
1/(4
√

2(1 + 2a2−a1 + 2a3−a1))
)

log 2

∣∣∣∣∣ < 3.4

log 2
αn2−n1

< 5α−(n1−n2).

Let

u = n1, τ =

(
logα

log 2

)
, v = a1, µ =

log
(
1/(4
√

2(1 + 2a2−a1 + 2a3−a1))
)

log 2
,

with (A,B,w) = (5, α, (n1 − n2)). With the same M , we estimate ε > 0.0000354843.
Applying Lemma 2.2 for (a1 − a2) ≤ 214 and (a1 − a3) ≤ 218, we get n1 − n2 ≤ 87.

Step 4: We consider the case 1B. Put

ΛB = n2 logα− a2 log 2 + log
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)
.

The inequality (17) can be written as∣∣eΛB − 1
∣∣ = |ΓB| < 1.1 · 2a3−a1 .

Assuming (a1 − a3) ≥ 2, we get∣∣∣∣n2 logα− a2 log 2 + log
(1 + αn1−n2)

4
√

2(2a1−a2 + 1)

∣∣∣∣ < 2.2 · 2−(a1−a3),

which implies∣∣∣∣∣n2

(
logα

log 2

)
− a2 +

log
(
(1 + αn1−n2)/(4

√
2(2a1−a2 + 1))

)
log 2

∣∣∣∣∣ < 2.2

log 2
· 2a3−a1

< 3.1 · 2−(a1−a3).
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Let

u = n2, τ =

(
logα

log 2

)
, v = a2, µ =

log
(
(1 + αn1−n2)/(4

√
2(2a1−a2 + 1))

)
log 2

,

with (A,B,w) = (3.1, 2, (a1 − a3)). With the same M we find ε > 0.0000119685. Applying
Lemma 2.2 for (a1 − a2) ≤ 214 and (n1 − n2) ≤ 86, we get a1 − a3 ≤ 222.

Step 5: Now, consider case 2. Take

Λ2 = n2 logα− a1 log 2 + log
(1 + αn1−n2)

4
√

2
.

The inequality (19) can be written as∣∣eΛ2 − 1
∣∣ = |Γ2| < 2.2 · 2a2−a1 .

Assuming (a1 − a2) ≥ 3, we get∣∣∣∣n2 logα− a1 log 2 + log
(1 + αn1−n2)

4
√

2

∣∣∣∣ < 4.4 · 2−(a1−a2).

Dividing both sides by log 2 gives∣∣∣∣∣n2

(
logα

log 2

)
− a1 +

log
(
(1 + αn1−n2)/4

√
2
)

log 2

∣∣∣∣∣ < 4.4

log 2
· 2−(a1−a2)

< 6.3 · 2−(a1−a2).

Let

u = n2, τ =

(
logα

log 2

)
, v = a1, µ =

log
(
(1 + αn1−n2)/4

√
2
)

log 2
,

with (A,B,w) = (6.3, 2, (a1 − a2)). We calculate ε > 0.00225968. Applying Lemma 2.2 for
(n1 − n2) ≤ 84, we get a1 − a2 ≤ 215.

Step 6: We continue case 2. We have that a1 − a2 ≤ 215 and n1 − n2 ≤ 84. Applying
similar steps as in case 1B, we obtain a1 − a3 ≤ 222. We summarize our results obtained
so far in the following table.

Upper bound of Case 1A Case 1B Case 2
(a1 − a2) 214 214 215
(a1 − a3) 218 222 222
(n1 − n2) 87 86 84

Step 7: Now, under the assumption that n1 − n2 ≤ 87, a1 − a2 ≤ 215, a1 − a3 ≤ 222,
put

Λ3 = −n1 logα + a1 log 2 + log
4
√

2(1 + 2a2−a1 + 2a3−a1)

(1 + αn2−n1)
.
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The inequality (22) can be written as∣∣eΛ3 − 1
∣∣ = |Γ3| < 0.6α−n1 .

which implies that∣∣∣∣n1 logα− a1 log 2 + log
(1 + αn2−n1)

4
√

2(1 + 2a2−a1 + 2a3−a1)

∣∣∣∣ < 1.2α−n1 .

Dividing both sides by log 2 gives∣∣∣∣∣n1

(
logα

log 2

)
− a1 +

log
(
(1 + αn2−n1)/(4

√
2(1 + 2a2−a1 + 2a3−a1))

)
log 2

∣∣∣∣∣ < 1.2

log 2
α−n1

< 1.7α−n1 .

Let

u = n1, τ =

(
logα

log 2

)
, v = a1, µ =

log
(
(1 + αn2−n1)/(4

√
2(1 + 2a2−a1 + 2a3−a1))

)
log 2

,

with (A,B,w) = (1.7, α, n1). With the same M , we find ε > 0.00001. Applying Lemma 2.2
for n1−n2 ≤ 87, a1−a2 ≤ 215 and a1−a3 ≤ 222, we get n1 ≤ 86, which is a contradiction.
Hence, the theorem is proved.

As a consequence of Theorem 1.1 we obtain the following corollaries.

Theorem 3.1. All non-negative integer solutions (n1, n2, a1, a2) of the equation

Bn1 +Bn2 = 2a1 + 2a2 ,

with n1 ≥ n2 ≥ 0 and a1 ≥ a2 ≥ 0 are given by

(n1, n2, a1, a2) ∈ {(1, 1, 0, 0), (2, 0, 2, 1), (2, 2, 3, 2), (3, 1, 5, 2)}.

Theorem 3.2. All non-negative integer solutions (n1, n2, a1) of the equation

Bn1 +Bn2 = 2a1 ,

with n1 ≥ n2 ≥ 0 and a1 ≥ 0 are given by

(n1, n2, a1) ∈ {(1, 1, 0), (1, 1, 1)}.
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[6] Dujella A. and Pethő A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math.
Oxford Ser. 49 (3) (1998) 291–306.

[7] Gúzman Sánchez S. and Luca F.: Linear combinations of factorials and s-units in a binary
recurrence sequence. Ann. Math. du Qué. 38 (2) (2014) 169–188.
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