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Results on K1 of general quadratic groups

Rabeya Basu and Kuntal Chakraborty

Abstract. In the first part of this article, we discuss the relative cases of Quillen–
Suslin’s local-global principle for the general quadratic (Bak’s unitary) groups, and
its applications for the (relative) stable and unstable K1-groups. The second part is
dedicated to the graded version of the local-global principle for the general quadratic
groups and its application to deduce a result for Bass’ nil groups.

1 Introduction

In [7] and [8], the first author has discussed many results in classical K-theory for the
absolute cases, related to the Serre’s problem on projective modules. In this article, follow-
ing the tricks used in [10], we are going to consider some problems for the relative cases; viz
Quillen–Suslin’s local-global principle of the transvection subgroups, K1-stabilization and
the structure of unstable K1-groups of the general quadratic (Bak’s unitary) groups over
associative rings which are finite over the center. For previous results on these problems we
refer to the works of Bak–Basu–Rao–Khanna for the local-global principle (L-G principle)
in [9], [4], [10], Bak–Petrov–Tang for K1-stabilization in [5], and Bak–Harzat–Vavilov for
solvability of unstable K1-groups in [2], [19], [18].

For the linear case, the graded version of L-G principle was studied by Chouinard in
[13], and by Gubeladze in [14], [15]. In [11], the first author and M.K. Singh deduced
an analog for the traditional classical groups. In the second part of the article, we have
deduced an analog for the transvection subgroups of the general quadratic groups over
graded rings. As an application, by using a recent result on Higman linearization due to
V. Kepoeiko (cf. [21], [22]), we could revisit a problem on absence of torsion in Bass’ nil
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group of the general quadratic groups, and its graded analog. We refer to [23], [12], [24],
[25], and [7] for previous results in this direction.

2 Preliminaries

Let us recall some necessary definitions and the key lemmas.

Definition 2.1 (cf. [1]). Let R be an (not necessarily commutative) associative ring with
identity, and with involution − : R → R, a 7→ a. Let λ ∈ C(R) = center of R be an
element with the property λλ = 1. We define additive subgroups of R:

Λmax = {a ∈ R | a = −λa} and Λmin = {a− λa | a ∈ R}.

One checks that Λmax and Λmin are closed under the conjugation operation a 7→ xax
for any x ∈ R. A λ-form parameter on R is an additive subgroup Λ of R such that
Λmin ⊆ Λ ⊆ Λmax, and xΛx ⊆ Λ for all x ∈ R. A pair (R,Λ) is called a form ring.

Remark 2.2. For a from ring (R,Λ), we can extend the involution − : R → R to an
involution − : R[X]→ R[X] by setting X = X.

Lemma 2.3. Let (R,Λ, λ) be a form ring. Then (R[X],Λ[X], λ) is also a form ring with
respect to the involution obtained by extending, as in the previous remark.

Proof. Let us consider the subgroups Λmin(R[X]) and Λmax(R[X]). It can be checked that
Λmin(R[X]) = Λmin(R)[X], and Λmax(R[X]) = Λmax(R)[X]. Hence it follows

Λmin(R[X]) ⊆ Λ[X] ⊆ Λmax(R[X]).

To prove that it is closed under conjugation, let us consider elements a(X) ∈ R[X] and
b(X) ∈ Λ[X]. Using double induction on the degrees of a(X) and b(X), we will show that

a(X)b(X)a(X) ∈ Λ[X].

We first show that the statement is true for deg(b(X)) = 0. Assume b(X) = b ∈ Λ. Hence
we need to prove a(X)ba(X) ∈ Λ[X] for all a(X) ∈ R[X]. Clearly, this is obvious when
deg(a(X)) = 0. For a linear polynomial a(X) = a0 + a1X,

a(X)ba(X) = (a0 + a1X)b(a0 + a1X)

= a0ba0 + (a0ba1 + a1ba0)X + a1ba1X
2

= a0ba0 + (a0 + a1)b(a0 + a1)X − (a0ba0 + a1ba1)X + a1ba1X
2.

Hence the statement is true for deg(b(X)) = 0 and deg(a(X)) = 1. Assume the statement
for deg(b(X)) = 0 is true for all a(X) with deg(a(X)) < m. Suppose deg(a(X)) = m.
Then, a(X) = am−1(X) +amX

m, where am−1(X) is a polynomial of degree at most m− 1,
and am ∈ R. Hence, we have
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a(X)ba(X) =(am−1(X) + amX
m)b(am−1(X) + amX

m)

=am−1(X)bam−1(X) + am−1(X)bamX
m + ambam−1(X)Xm + ambamX

2m.

Now

am−1(X)bam + ambam−1(X) =

= (am−1(X) + am)b(am−1(X) + am)− (am−1(X)bam−1(X) + ambam).

Hence by induction it follows that a(X)ba(X) ∈ Λ[X]. Assume the statement is true
for deg(b(X)) < n. Let b′(X) be a polynomial in Λ[X] of degree n. Then we can write
b′(X) = b′′(X) + bnX

n, where b′′(X) is a polynomial in Λ[X] of degree at most n− 1 and
bn ∈ Λ. Hence by induction

a(X)b′(X)a(X) =a(X)(b′′(X) + bnX
n)a(X)

=a(X)b′′(X)(a(X)) + (a(X)bna(X))Xn ∈ Λ[X].

To define Bak’s unitary group or the general quadratic group, we fix a (non-zero) central
element λ ∈ R with λλ = 1, and then consider the form

ψn =

(
0 In
λIn 0

)
.

Bak’s Unitary or General Quadratic Groups GQ:

GQ(2n,R, λ) = {σ ∈ GL(2n,R) |σψnσ = ψn}.

Elementary Quadratic Matrices:

Let ρ : {1, 2, . . . , n} → {n+ 1, n+ 2, . . . , 2n} be defined by ρ(i) = n+ i. Let eij be the
matrix with 1 in the ij-th position and 0’s elsewhere. For a ∈ R, and 1 ≤ i, j ≤ n, we
define

qεij(a) = I2n + aeij − aeρ(j)ρ(i) for i 6= j,

qrij(a) =

{
I2n + aeiρ(j) − λaejρ(i) for i 6= j
I2n + aeρ(i)j for i = j,

qlij(a) =

{
I2n + aeρ(i)j − λaeρ(j)i for i 6= j
I2n + aeρ(i)j for i = j.
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(Note that for the second and third type of elementary matrices, if i = j, then we get
a = −λa, and hence it forces that a ∈ Λmax(R). One checks that these above matrices
belong to GQ(2n,R,Λ); cf. [1].)

n-th Elementary Quadratic Group EQ(2n,R,Λ): The subgroup generated by
qεij(a), qrij(a)and qlij(a), for a ∈ R and 1 ≤ i, j ≤ n. For uniformity we denote the
elementary generators of EQ(2n,R,Λ) by ηij(∗).

It is clear that the stabilization map takes generators of EQ(2n,R,Λ) to the generators
of EQ(2(n+ 1), R,Λ).

Remark 2.4. Throughout this article we shall assume that all ideals of R are involution-
invariant, i.e., if J is an ideal, then J = J . We also assume that 2n ≥ 6.

Definition 2.5. The relative general quadratic subgroup of GQ(2n,R,Λ) with respect to
the ideal J is defined by the set {α ∈ GQ(2n,R,Λ) | α ≡ I2n (mod J)} and it is denoted
by GQ(2n,R,Λ, J).

Definition 2.6. Let (R,Λ) be a form ring and J ⊂ R be an ideal. The subgroup of
GQ(2n,R,Λ) generated by the matrices of the form ηij(x)ηji(a)ηij(x)−1, where x ∈ R and
a ∈ J , is called the relative elementary subgroup and is denoted by EQ(2n,R,Λ, J).

Notation 2.7. A row (a1, a2, . . . , an) ∈ Rn is said to be unimodular if there exists a vector
(b1, b2, . . . , bn) ∈ Rn such that

∑n
i=1 aibi = 1. The set of all unimodular rows of length n

is denoted by Umn(R). We denote the set of all unimodular rows of length n which are
congruent to e1 = (1, 0, . . . , 0) modulo the ideal J by Umn(R, J). For an ideal J ⊂ R the
extended ideal J ⊗R R[X] of R[X] is denoted by J [X]. We will mostly use localizations
with respect to two types of multiplicatively closed subsets of R, viz. S = {1, s, s2, . . . },
where s ∈ R is a non-nilpotent non-zero divisor; and S = R \ m for some m ∈ Max(R).
By Js[X] and Jm[X] we shall mean the extension of J [X] in Rs[X] and Rm[X] respectively.

Definition 2.8. Let (R,Λ) be a form ring and J ⊂ R be an ideal of R. The excision
ring of R with respect to the ideal J is denoted by R ⊕ J and is defined by the set
{(r, i) | r ∈ R, i ∈ J} with the addition defined by (r, i) + (s, j) = (r + s, i + j), and the
multiplication defined by (r, i)(s, j) = (rs, rj + is + ij). We can extend the involution
− to the ring R ⊕ J by setting (r, i) = (r, i). The element (λ, 0) ∈ R ⊕ J satisfies
(λ, 0)(λ, 0) = (1, 0), where (1, 0) is the identity element of R⊕ J . We can observe that the
additive subgroup (Λ ⊕ J) ∩ Λmax(R ⊕ J) satisfies the properties of (λ, 0)-parameter on
R⊕ J . We fix the notation Γ⊕ J for the subgroup (Λ⊕ J) ∩ Λmax(R⊕ J). Hence we get
the form ring (R⊕ J,Γ⊕ J).

Recall that there is a natural map f : R ⊕ J → R given by f(r, i) = r + i. This
map induces a canonical homomorphism on GQ(2n,R⊕ J,Γ⊕ J). We shall use the same
notation f to denote this map.

The following two key lemmas are proved in [10] for the traditional classical groups.
Proofs are similar for the general quadratic groups.
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Lemma 2.9. For α ∈ EQ(2n,R,Λ, J), there exists a matrix α̃ ∈ EQ(2n,R⊕J,Γ⊕J) such
that f(α̃) = α.

Lemma 2.10. For α ∈ GQ(2n,R,Λ, J), there exists a matrix α̃ ∈ GQ(2n,R ⊕ J,Γ ⊕ J)
such that f(α̃) = α.

3 Relative L-G Principle for the Transvection Subgroups

It is known that any module finite ring (i.e., finite over its center) R can be written as
a direct limit of its finitely generated subrings. Also, G(R, λ) = lim

−→
G(Ri, λi), where the

limit is taken over all finitely generated subring of R. Hence, we can assume that C(R)
is Noetherian. For the rest of this section, we shall consider R to be a module finite ring
with identity.

The local-global principle for the transvection subgroups (absolute cases) of the full
automorphism groups was established in [4] for the traditional classical groups. Then,
in [8] it was generalized for the general quadratic groups. In this section we deduce the
relative L-G principle for the transvection subgroups.

The following results are proved in [10] for traditional classical groups of free modules,
and the steps of the proof for the general quadratic groups are identical. Therefore, we
state these results without proof.

For any column vector v ∈ (R2n)t we consider the row vector ṽ = vtψn.

Definition 3.1. We define a map M : (R2n)t × (R2n)t → M(2n,R) and the inner product
〈 , 〉 as follows:

M(v, w) = v.w̃ − λwṽ, 〈v, w〉 = ṽ.w

Lemma 3.2. Let (R,Λ) be a form ring and v ∈ EQ(2n,R,Λ, J)e1. Let w ∈ J2n be a
column vector such that 〈v, w〉 = 0. Then I2n +M(v, w) ∈ EQ(2n,R,Λ, J).

Theorem 3.3 (Relative L-G principle). Let R be a ring and J ⊂ R be an ideal of R.
Let α(X) ∈ GQ(2n,R[X],Λ[X], J [X]), with α(0) = I2n be such that for every maximal
ideal m ∈ Max(C(R)), we have αm(X) ∈ EQ(2n,Rm[X],Λm[X], Jm[X]). In that case,
α(X) ∈ EQ(2n,R[X],Λ[X], J [X]).

We recall some definitions and fix notations.

Definition 3.4. Let (R,Λ) be a form ring and P be a rightR-module. A map f : P×P → R
is said to be a sesquilinear form if f(pa, qb) = af(p, q)b for all p, q ∈ P and a, b ∈ R. A
map q : P → R/Λ is said to be a quadratic form if q(p) = f(p, p) + Λ, where f is
a sesquilinear form on P . With respect to a sesquilinear form on P , we can define an
associated λ-Hermitian form h : P × P → R by h(p, q) = f(p, q) + λf(q, p). The triplet
(P, h, q) is called a quadratic module.
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Definition 3.5. Let (P, q, h) be a quadratic module and GL(P ) be the full automorphism
group of P . The quadratic module P is said to be non-singular if P is a projectiveR-module
and the associated λ-Hermitian form is non-singular. For a non-singular P , the general
quadratic group of P is defined as follows:

GQ(P,Λ, q, h) = {α ∈ GL(P ) | h(αu, αv) = h(u, v), q(αu) = q(u)}

We will denote by GQ(P,Λ, J) the set {α ∈ GQ(P,Λ) | α ≡ Id (mod JP )}.

Definition 3.6. Let (P, h, q) be a quadratic module over (R,Λ) and J ⊂ R be an ideal of
R. Let u, v ∈ P and a ∈ R be such that f(u, u) ∈ Λ, h(u, v) = 0 and f(v, v) = a (mod Λ).
Then the transvection map σ = σu,v,a : P → P is defined by

σ(x) = x+ uh(v, x)− vλh(u, x)− uλah(u, x).

The set of all transvections of P will be denoted as T(P,Λ). A map σ ∈ T(P,Λ) is said
to be a transvection relative to J if either u or v belongs to the submodule JP . The set
of all transvections relative to the ideal J will be denoted by T(P,Λ, J).

Definition 3.7. Let (P, h, q) be a quadratic module over a form ring (R,Λ) and J ⊂ R
be an ideal of R. Let Q be the quadratic module P ⊥ H(R), where H(R) denotes the
hyperbolic form R ⊥ R∗. Then the transvections which are of the form

q = (p, a, b) 7→ (p− aq, a, b+ h(p, q)),

or,
q = (p, a, b) 7→ (p− bq, a+ h(p, q), b),

where a ∈ R, b ∈ R∗, p, q ∈ P , are called elementary transvections. The set of all el-
ementary transvections is denoted by ET(Q,Λ). An elementary transvection is said to
be elementary transvection relative to J if q ∈ JQ. The subgroup of ET(Q,Λ) gener-
ated by elementary transvections relative to J is denoted by ET(JQ). And we denote
ET(Q,Λ, JQ) by the normal closure of ET(JQ) in ET(Q,Λ). We also use the notation
ET(Q,Λ, J) for the group ET(Q,Λ, JQ).

Notation 3.8. Let P be a finitely generated quadratic R module of rank 2n with a fixed
form 〈 , 〉. Denote by Q the module P ⊥ H(R)and by Q[X] the module (P ⊥ H(R))[X].
We assume that the rank of the quadratic module is 2n ≥ 6.

We shall also assume the following two hypotheses:
(H1) For every maximal ideal m of R, the quadratic module Qm is isomorphic to R2n+2

m

for the standard bilinear form H(Rn+1
m ).

(H2) For every non-nilpotent s ∈ R, if the projective module Ms is a free Rs-module,
then the quadratic module Ms is isomorphic to R2n+2

s for the standard bilinear form
H(Rn+1).
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Lemma 3.9 ([7, Lemma 5.7], [10, Lemma 3.6]). The group

GQ(2n,R[X],Λ[X], (X)) ∩ EQ(2n,R[X],Λ[X], J [X])

is generated by the elements of the form

εηij(Xh(X))ε−1,

where ε ∈ EQ(2n,R,Λ), h(X) ∈ J [X] and ηij(∗) are the elementary generators of the
group EQ(2n,R[X],Λ[X]).

Lemma 3.10 ([10, Corollary 3.8]). If η = η1η2 . . . ηr, where each ηj is an elementary gen-
erator, and h(Y ) ∈ J [Y ], then there are elements ht(X, Y ) ∈ J [X, Y ] such that

ηηpq(X
2rmh(Y ))η−1 =

k∏
t=1

ηptqt(X
mh(X, Y )).

We now recall some standard results:

Lemma 3.11. Let R be a ring and K a finitely presented left (right) R-module, and let L
be any left (right) R-module. Then we have a natural isomorphism:

f : HomR(K,L)[X]→ HomR[X](K[X], L[X]).

Lemma 3.12. Let S be a multiplicatively close subset of a ring R. Let K be a finitely
presented R-module and L be any R-module. Then we have a natural isomorphism

g : S−1(HomR(K,L))→ HomS−1R(S−1K,S−1L).

The following lemma is used frequently (sometimes in a subtle way) in the proof of the
main results.

Lemma 3.13 (cf. [19, Lemma 5.1]). Let A be Noetherian ring and 0 6= s ∈ A. Then there
exists a natural number k such that the homomorphism

G(A, skA, skλ)→ G(As, λs)

induced by the localization homomorphism A→ As is injective.

Now we prove the relative L-G principle by using Lemma 2.9.

Proposition 3.14 (Relative Dilation Principle). Let R be an almost commutative ring (i.e.,
an associative ring which is finite over its center C(R)) and J ⊂ R be an ideal. Let
P and Q be as in 3.8. Let s be a non-nilpotent element of R such that Ps is a free
module. Let σ(X) ∈ GQ(Q[X],Λ[X], J [X]) with σ(0) = Idand suppose additionally that
σs(X) ∈ EQ(2n+2, Rs[X],Λs[X], Js[X]). Then there exists σ̂(X) ∈ ET(Q[X],Λ[X], J [X])
and l > 0 such that σ̂(X) localizes to σ(bX) for some b ∈ (sl) and σ̂(0) = Id.
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Proof. Since elementary transvections can always be lifted, then we may assume that R is
reduced. We will show that there exists l > 0 such that

σ(bX) ∈ ET(Q[X],Λ[X], J [X])

for all b ∈ (sk) and for all k ≥ l.
As σ(0) = Id, by Lemma 3.9, we can write σs(X) =

∏
k γkηikjk(Xλk(X))γ−1k , where

γk ∈ EQ(2n + 2, Rs,Λs), and λk(X) ∈ Js[X]. Hence, by the proof of Lemma 2.9, there
exists σ̃(s,0)(X) ∈ EQ(2n+ 2, (Rs ⊕ Js)[X], (Γs ⊕ Js)[X]) such that

σ̃(s,0)(X) =
∏
k

γ̃kη̃ikjk(0, Xλk(X))γ̃k
−1,

where φs(γ̃k) = γk, (0, Xλk(X)) ∈ (R⊕J)(s,0)[X], the η̃ikjk(∗) are the elementary generators
of EQ(2n+ 2, (Rs⊕ Js)[X], (Γs⊕ Js)[X]) and φ : R⊕ J → R is defined by φ((a, i)) = a+ i
and Γs ⊕ Js = (Γ ⊕ J)s is the localization of Γ ⊕ J with respect to the set {1, s, s2, . . . }.
Hence, for d > 0, we have that

σ̃(s,0)(XT
2d) =

∏
k

γ̃kη̃ikjk((0, XT 2dλk(XT
2d))γ̃−1k ,

for some γk ∈ EQ(2n+ 2, Rs,Λs). Using Lemma 3.10 and standard commutator formulas
(see [1, Lemma 3.16, pg. 43]), we get that σ̃(s,0)(XT

2d) =
∏

t η̃ptqt(Tµt(X)), for some
µt(X) ∈ (R⊕ J)(s,0)[X] with pt = 1 or qt = 1.

Since Ps is a free Rs-module, then we have

(P ⊕ J)(s,0)[X,T ] ∼= (R⊕ J)2n(s,0)[X,T ] ∼= (P ⊕ J)(s,0)[X,T ]∗.

Thus using the isomorphism, polynomials in (P ⊕ J)(s,0)[X,T ] can be regarded as linear
forms.

First we consider the case: pt = 1. Let p∗1, p
∗
2, . . . , p

∗
n, p
∗
−1, . . . , p

∗
−n be the standard basis

of (P ⊕ J)(s,0). Let smp∗i ∈ P ⊕ J for some m > 0 and i = ±1,±2, . . . ,±n. Let e∗±i
be the standard basis of (R ⊕ J)2n. Then for qt = ±i, consider the element Tµt(X)e∗±i
as an element in (P ⊕ I)(s,0)[X,T ]∗. As (P ⊕ J)(s,0) is free, by Lemma 3.11, we can say
Tµt(X)e∗±i is a polynomial in T . Again, by Lemma 3.12, there exists k1 > 0 such that
k1 is the maximum power of (s, 0) occurring in the denominator of µt(X)e∗±i. Choose
l1 ≥ max(k,m).

Now consider the case qt = 1. Then, for pt = ±j, Tµt(X)e∗±j ∈ (P ⊕ J)(s,0)[X,T ].
By a similar argument we can consider Tµt(X)e∗±j as a polynomial in T and hence
there exists k2 > 0 such that k2 is maximum power of (s, 0) occurred in µte

∗
±j. Now

choose l2 ≥ max(k2,m). For l ≥ max(l1, l2), under the transformation T 7→ (s, 0)lT ,
σ̃(s,0)((b, 0)XT 2d) is defined over (Q⊕ J)[X,T ], i.e., there exists some element˜̂σ(X,T ) ∈ ET((Q⊕ J)[X,T ])

such that ˜̂σ(s,0)(X,T ) = σ̃(s,0)((b, 0)XT 2d). Replacing T = (1, 0) and using Lemma 3.13,
one gets σ̃((b, 0)X) ∈ ET(Q[X]⊕J [X], (Γ⊕J)[X], 0⊕J [X]). Hence, the result follows by
applying φ.
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Consequence: Relative L-G principle for the transvection subgroups:

Theorem 3.15. Let R be an almost commutative ring and J ⊂ R be an ideal. Let P and
Q be as in 3.8. Let σ(X) ∈ GQ(Q[X],Λ[X], J [X]) with σ(0) = Id.

If σm(X) ∈ EQ(2n + 2, Rm[X],Λm[X], Jm[X]) for all m ∈ Max(C(R)), then we have
σ(X) ∈ ET(Q[X],Λ[X], J [X]).

Proof. Follows by arguing as in the proof of [8, Lemma 3.10], and using Proposition 3.14.

4 Relative Stability for Quadratic K1

The aim of this section is to establish the K1-stability of the relative transvection groups
as an application of Theorem 3.15. For the absolute case we refer to [5] and [8].

Definition 4.1. Let R be an associative ring with identity and J ⊂ R an ideal. Consider the
ring D = {(a, b) ∈ R×R : a− b ∈ J} with addition and multiplication defined component
wise. We call it the double ring relative to the ideal J . For a form ring (R,Λ), one extends
the involution of − : R → R to the ring D, defining − : D → D by (a, b) = (a, b). We fix
the element (λ, λ) and define Λ′ = {(a, b) ∈ Λ× Λ | a− b ∈ J}. Then one can show that
(D,Λ′) is a form ring.

Definition 4.2. Let (R,Λ, λ) and (S,Λ′, λ′) be two form rings. A ring homomorphism
f : R→ S is said to be a morphism of form rings if f(r) = f(r), f(Λ) ⊆ Λ′ and f(λ) = λ′.

Lemma 4.3. Let (R,Λ) be a form ring and J ⊂ R be a two sided ideal. Then the form
rings (D,Λ′) and (R⊕ J,Λ⊕ J) are isomorphic.

Proof. Consider the homomorphisms f : D → R ⊕ J defined by f(a, b) = (a, b − a) and
g : R ⊕ J → D defined by g(a, i) = (a, a + i). It can be checked that both f and g are
form homomorphisms. They are inverses of each other.

Lemma 4.4 ([20, Proposition 3.1]). Let A be a commutative Noetherian ring of (Krull)
dimension d and J ⊂ A be an ideal. Then the ring D is also a commutative ring of
dimension d.

Proof. Clearly DA is a commutative Noetherian ring. We first prove that dimension of
A ⊕ J is d, and the rest follows from Lemma 4.3. Clearly A can be identified with the
sub-ring {(r, 0) | r ∈ A} of A⊕ J . The element (0, i) is integral over A since we have that
(0, i)2− (i, 0)(0, i) = (0, 0). Hence every element of A⊕ J is integral over R, and therefore
dim(A) = dim(A⊕ J).

Recall K1-stability result of Bak–Petrov–Tang (cf. [5]) for general quadratic groups in
the absolute case.
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Theorem 4.5 ([5]). Let R be an almost commutative with dim(C(R)) = d. Consider the
form ring (R,Λ). Then the stabilization map

GQ(2n,R,Λ)

EQ(2n,R,Λ)
→ GQ(2n+ 2, R,Λ)

EQ(2n+ 2, R,Λ)

is an isomorphism for 2n ≥ max(6, 2d+ 4).

We prove the above result in the relative case.

Theorem 4.6. Let R be a form ring which is finitely generated over its center C(R), with
dim(C(R)) = d and let J ⊂ R be a two-sided ideal of R. Then the stabilization map

GQ(2n,R,Λ, J)

EQ(2n,R,Λ, J)
→ GQ(2n+ 2, R,Λ, J)

EQ(2n+ 2, R,Λ, J)

is an isomorphism for 2n ≥ max(6, 2d+ 4).

Proof. Consider the stabilization map φ : KQ1,2n → KQ1,2n+2, where

KQ1,2n(R,Λ, J) =
GQ(2n,R,Λ, J)

EQ(2n,R,Λ, J)
.

By [17, 5.3.22], we have following sequences are exact

1 GQ(2n,R,Λ, J) GQ(2n,D,Λ′) GQ(2n,R,Λ) 1,

1 EQ(2n,R,Λ, J) EQ(2n,D,Λ′) EQ(2n,R,Λ) 1,

i p2

i p2

where the map i is induced from the map M2n(J)→M2n(D) given by i(α) = (α, I2n) and
the map p2 is induced from the projection map p2 : D → R given by p2((a, b)) = b. Thus
we have the following commutative diagram:

1 1 1

1 EQ(2n,R,Λ, J) EQ(2n,D,Λ′) EQ(2n,R,Λ) 1

1 GQ(2n,R,Λ, J) GQ(2n,D,Λ′) GQ(2n,R,Λ) 1

1 KQ1,2n(R,Λ, J) KQ1,2n(D,Λ′) KQ1,2n(R,Λ) 1

1 1 1
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Taking limits over n in the lower row, we get an exact sequence

1 KQ1(R,Λ, J) KQ1(D,Λ
′) KQ1(R,Λ) 1,

and for any n, we get a homomorphism of exact sequences:

1 KQ1,2n(R,Λ, J) KQ1,2n(D,Λ′) KQ1,2n+2(R,Λ) 1

1 KQ1(R,Λ, J) KQ1(D,Λ
′) KQ1(R,Λ) 1.

For 2n ≥ 2d+ 4 the right most map is an isomorphism by Theorem 4.5. Since R is finitely
generated over C(R), then it can be checked that D is finitely generated over C(D). Since
C(D) is a double ring of C(R) relative to the ideal C(R) ∩ J , by Lemma 4.4, we get
dim(C(D)) = d. Hence for 2n ≥ 2d+4, the middle homomorphism is also an isomorphism
by Theorem 4.5. Hence it follows that the left most map is an isomorphism.

Now we prove the K1-stability of relative transvection groups as an application of
relative local-global principle of transvection groups. For this we need to recall the following
result of Vaserstein.

Lemma 4.7 ([8, Lemma 4.2]). Let (R,Λ) be a form ring finitely generated over C(R)
with Krull dimension of C(R) = d and J ⊂ R be an two-sided ideal of R. Let P,Q
be as in Notation 3.8. Let the rank of Q be 2n ≥ Max(6, 2d + 2). Then the group of
elementary transvections ET(Q ⊥ H(R), J) acts transitively on the set Um(Q ⊥ H(R), J)
of unimodular elements which are congruent to (0, . . . , 0, 1, 0) modulo J .

Theorem 4.8. Let (R,Λ) be a form ring finitely generated over (C(R)) with Krull dimen-
sion d and let J ⊂ R be a two-sided ideal. Let P,Q be as defined in Notation 3.8 and let
the rank of Q be 2n ≥ max(6, 2d+ 4). Then the stabilization map

i2n : KQ1,2n(Q, J)→ KQ1,2n+2(Q ⊥ H(R), J)

is an isomorphism.

Proof. The surjectivity part follows from Lemma 4.7. In order to prove the injectivity part,
let α ∈ GQ(Q, J) be such that α̃ = α ⊥ Id lies in ET(M ⊥ H(R), J). Let ϕ(X) be the
isotropy between α̃ and Id. Now by similar argument as given in [8, Theorem 4.4], we can
get an isotropy ϕ̃(X) ∈ GQ(Q[X], J [X]) between α and Id. Now, by localizing ϕ̃ at a max-
imal ideal m ∈ Max(C(R)), ϕ̃m(X) becomes (relative) stably elementary. By Theorem 4.6
it follows that ϕ̃m(X) is actually (relative) elementary. Therefore, by the relative L-G prin-
ciple (Theorem 3.15) one gets ϕ̃(X) ∈ ET(Q[X]), J [X]). Hence α = ϕ̃(1) ∈ ET(Q, J).
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5 Structure of Unstable Quadratic K1 Groups; Relative Case

We devote this section to discuss the study of nilpotent property of (relative) unstable
K1-groups. Throughout this section we assume R is a commutative ring with identity, i.e.,
we are considering the trivial involution and n ≥ 3. By SQ(2n,R, λ) we shall denote the
subgroup of GQ(2n,R, λ) with matrices of determinant 1, and analogously for the relative
cases.

Let G be a group. Define Zi inductively by Z0 = G, Z1 = [G,G] and Zi = [G,Gi−1].
The group G is said to be nilpotent if Zr = {e} for some r > 0.

Definition 5.1. A group G is called nilpotent-by-abelian if it has a normal subgroup H
such that H is nilpotent and G/H is abelian.

In [2], A.Bak proved that the unstable K1(R) group of GLn(R) is nilpotent-by-abelian
for n ≥ 3, and hence K1(R) is solvable. Later it was generalized by R. Hazrat for the general
quadratic groups over module finite rings (cf. [18]). In [19] Hazrat–Vavilov revisited this
problem for ordinary classical Chevalley groups (that is, types A, C, and D) and finally
extends it further to the exceptional Chevalley groups (that is, types E, F, and G). A
simpler and shorter proof is given in [4] for the linear, symplectic and orthogonal groups
(absolute cases). In [7], the first author proved this result for the general Hermitian groups
and the same proof also works for the general quadratic groups. The relative cases are
proved in [4] for the traditional classical groups. In this article we prove the result for the
relative general quadratic groups, and consequently we get the result for the module cases
as an application of (relative) L-G principle for the transvection subgroups.

Theorem 5.2. The quotient group SQ(2n,R,Λ, J)/EQ(2n,R,Λ, J) is nilpotent for n ≥ 3.
The class of nilpotency is at most max(1, d+ 2− n) where d = dimR.

Proof. Note that for n ≥ d+ 2, the quotient group

G = SQ(2n,R,Λ, J)/EQ(2n,R,Λ, J)

is abelian and hence nilpotent. So we consider the case n < d + 2. Let us fix a natural
number n. We prove the theorem by induction on d = dimR. Let m = d + 2 − n and
α = [β, γ] for some β ∈ G and γ ∈ Zm−1. Clearly the result is true for d = 0. Let β̃ be
the pre-image of β and γ̃ be the pre-image of γ under the map

SQ(2n,R,Λ, J)→ G.

Consider the double ring (D,Λ′) as defined in 4.1. By [17, 5.3.22], we have the following
exact sequences:

1 SQ(2n,R, J,Λ) SQ(2n,D,Λ′) SQ(2n,R,Λ) 1

1 EQ(2n,R, J,Λ) EQ(2n,D,Λ′) EQ(2n,R,Λ) 1

i p2

i p2
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where the map i is induced from the map M2n(J) → M2n(D) given by i(α) = (α, I2n)
and p2 is induced from the projection map p2 : D → R given by p2((a, b)) = b. Now, in
the group H = SQ(2n,D,Λ′)/EQ(2n,D,Λ′) we have i(γ̃) ∈ Hm. Since dim(R) = dim(D)

(by Lemma 4.4), by the result of the absolute cases, we get [i(β̃), i(γ̃)] ∈ EQ(2n,D,Λ′).

It can be checked that i([β̃, γ̃]) = [i(β̃), i(γ̃)] and the image of this element under p2
is identity. Hence by the above diagram one gets [β̃, γ̃] ∈ EQ(2n,R, J), consequently

[β, γ] is trivial in G. Next, consider the pre-images β1 of β̃ and γ1 of γ̃ under the map
SQ(2n,R ⊕ J,Γ ⊕ J) → SQ(2n,R,Λ, J). Now by the result of absolute cases we get
[β1, γ1] ∈ EQ(2n,R⊕J,Γ⊕J). It can also be checked that the same commutator [β1, γ1] is

in EQ(2n,R⊕J,Γ⊕J, 0⊕J). By projecting R⊕J onto R, one gets [β̃, γ̃] ∈ EQ(2n,R, J,Λ),
and hence α = {1} in G.

Corollary 5.3. Let (R,Λ) be a commutative form ring and J ⊂ R be an ideal of R. Then
the quotient group GQ(2n,R,Λ, J)/ET(2n,R,Λ, J) is nilpotent-by-abelian for n ≥ 3.

Corollary 5.4. Let (R,Λ) be a commutative form ring and J ⊂ R be an ideal of R. Consider
the notation as in 3.8. Let d = dim(R) and t = the local rank of Q. The quotient group
T(Q, J)/ET(Q, J) is nilpotent of class at most max(1, d+ 3− t/2).

Proof. The proof is same as [4, Theorem 4.1].

6 Bass’ Nil Group NKQ1(R)

The group NK1(R) = ker(K1(R[X]) → K1(R)); X = 0 is called the Bass’ nil-group of
R. This is the subgroup consisting of elements [α(X)] ∈ K1(R[X]) such that [α(0)] = [I],
and hence K1(R[X]) ∼= NK1(R) ⊕ K1(R). The aim of the next sections is to study some
properties of Bass nil-groups NK1 for the general quadratic groups or Bak’s unitary groups.

In this section we recall some basic definitions and properties of the representatives of
NKQ1(R). We represent any element of M2n(R) as a matrix(

a b
c d

)
,where a, b, c, d ∈ Mn(R).

For a matrix as above, we call
(
a b

)
the upper half of α. Let (R, λ,Λ) be a form ring. By

setting Λ = {a | a ∈ Λ} we get another form ring (R, λ,Λ). We can extend the involution
of R to Mn(R) by setting (aij)

∗ = (aji). For details, see [21], [22].

Definition 6.1. Let (R, λ,Λ) be a form ring. A matrix α = (aij) ∈ Mn(R) is said to be
Λ-Hermitian if α = −λα∗ and all the diagonal entries of α are contained in Λ. A matrix
β ∈ Mn(R) is said to be Λ-Hermitian if β = −λβ∗ and all the diagonal entries of β are
contained in Λ.

Remark 6.2. A matrix α ∈ Mn(R) is Λ-Hermitian if and only if α∗ is Λ-Hermitian.
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Lemma 6.3 ([21, Example 2]). Let β ∈ GLn(R) be a Λ-Hermitian matrix. Then the matrix
α∗βα is Λ-Hermitian for every α ∈ GLn(R).

Definition 6.4. Let α =

(
a b
c d

)
∈ M2n(R) be a matrix. Then α is said to be a Λ-quadratic

matrix if one of the following equivalent conditions holds:

1. α ∈ GQ(2n,R,Λ) and the diagonal entries of the matrices a∗c, b∗d are in Λ,

2. a∗d+ λc∗b = In and the matrices a∗c, b∗d are Λ-Hermitian,

3. α ∈ GQ(2n,R,Λ) and the diagonal entries of the matrices ab∗, cd∗ are in Λ,

4. ad∗ + λbc∗ = In and the matrices ab∗, cd∗ are Λ-Hermitian.

Lemma 6.5. Let α =

(
a 0
0 d

)
∈ M2n(R). Then α ∈ GQλ(2n,R,Λ) if and only if we have

a ∈ GLn(R) and d = (a∗)−1.

Proof. Let α ∈ GQλ(2n,R,Λ). In view of condition 2. of Definition 6.4, we have, a∗d = In.
Hence a is invertible and d = (a∗)−1. The converse holds by condition 2. of Definition 6.4.

Definition 6.6. Let α ∈ GLn(R) be a matrix. A matrix of the form

(
α 0
0 (α∗)−1

)
is denoted

by H(α) and is said to be hyperbolic.

Remark 6.7. In a similar way we can show that a matrix of the form T12(β) :=

(
In β
0 In

)
is a Λ-quadratic matrix if and only if β is Λ-Hermitian. Similarly, a matrix of the form

T21(γ) :=

(
In 0
γ In

)
is a Λ-quadratic matrix if and only if γ is Λ-Hermitian.

Likewise, in the quadratic case we can define the notion of Λ-elementary quadratic
groups in the following way:

Definition 6.8. The Λ-elementary quadratic group is denoted by EQλ(2n,R,Λ) and de-
fined to be the group generated by the 2n× 2n matrices of the following forms:

• H(α), here α ∈ En(R),

• T12(β), where β is Λ-Hermitian, and

• T21(γ), where γ is Λ-Hermitian.

Lemma 6.9. Let A =

(
α β
0 δ

)
∈ M2n(R). Then A ∈ GQλ(2n,R,Λ) if and only if we have

α ∈ GLn(R), δ = (α∗)−1 and α−1β is Λ-Hermitian. In this case

A ≡ H(α) (mod EQλ(2n,R,Λ)).
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Proof. Let A ∈ GQλ(2n,R,Λ). Then, by condition 4. of Definition 6.4, we have that
αδ∗ = In and αβ∗ is Λ-Hermitian. Hence α is invertible and δ = (α∗)−1. For α−1β, we get

(α−1β)∗ = β∗(α−1)∗ = α−1(αβ∗)(α−1)∗,

which is Λ-Hermitian by Lemma 6.3. Hence α−1β is Λ-Hermitian. Conversely, condition
on A fulfills condition 4. of Definition 6.4. Hence A is Λ-quadratic. Now , since α−1β
is Λ-Hermitian, T12(−α−1β) ∈ EQλ(2n,R,Λ), and AT12(α

−1β) = H(α). Thus A ≡ H(α)
(mod EQλ(2n,R,Λ)).

Arguing similarly one gets the following:

Lemma 6.10. Let B =

(
α 0
γ δ

)
∈ M2n(R). Then B ∈ GQλ(2n,R,Λ) if and only if

α ∈ GLn(R), δ = (α∗)−1 and γ is Λ-Hermitian. In this case

B ≡ H(α) (mod EQλ(2n,R,Λ)).

Lemma 6.11. Let α =

(
a b
c d

)
∈ GQλ(2n,R,Λ). If a ∈ GLn(R) then

α ≡ H(a) (mod EQλ(2n,R,Λ)).

Proof. By same argument as given in Lemma 6.9, we have a−1b is Λ-Hermitian. Hence

T12(−a−1b) ∈ EQλ(2n,R,Λ), and consequently αT12(−a−1b) =

(
a 0
c d′

)
∈ GQλ(2n,R,Λ)

for some d′ ∈ GLn(R). Hence by Lemma 6.10, we get

αT12(−a−1b) ≡ H(a) (mod EQλ(2n,R,Λ)).

Hence α ≡ H(a) (mod EQλ(2n,R,Λ)).

Definition 6.12. Consider the embedding:

GQλ(2n,R,Λ)→ GQλ(2n+ 2, R,Λ),

We use the following notation:

GQλ(R,Λ) =
∞
∪
n=1

GQλ(2n,R,Λ),

EQλ(R,Λ) =
∞
∪
n=1

EQλ(2n,R,Λ).

In view of quadratic analog of Whitehead Lemma, we have that the group EQλ(R,Λ)
coincides with the commutator of GQλ(R,Λ). Therefore, the group

KQ1
λ(R,Λ) :=

GQλ(R,Λ)

EQλ(R,Λ)

is well-defined. The class of a matrix α ∈ GQλ(R,Λ) in the group KQ1
λ(R,Λ) is denoted

by [α]. In this way we obtain a K1-functor KQ1
λ acting from the category of form rings

to the category of abelian groups.
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Definition 6.13. In the quadratic case, the kernel of the group homomorphism

KQ1
λ(R[X],Λ[X])→ KQ1

λ(R,Λ)

induced from the form ring homomorphism (R[X],Λ[X]) → (R,Λ);X 7→ 0 is denoted by
NKQ1

λ(R,Λ).

Remark 6.14. Since the class of Λ-quadratic groups is a subclass of the class of quadratic
groups, the local-global principle holds for Λ-quadratic groups. We use this fact throughout
the next section.

7 Absence of torsion in NKQ1
λ(R, λ)

In [23], J. Stienstra showed that NK1(R) is a W(R)-module, where W(R) is the ring
of big Witt vectors (cf. [12] and [25]). Consequently, in ([24], §3), C. Weibel observed that
if k is a unit in a commutative local ring R, then SK1(R[X]) has no k-torsion. Note that
if R is a commutative local ring, then SK1(R[X]) coincides with NK1(R); indeed, if R is
a local ring, then SLn(R) = En(R) for all n > 0. Therefore, we may replace α(X) by
α(X)α(0)−1 and assume that [α(0)] = [I]. In [6], the first author extended Weibel’s result
for arbitrary associative rings. In this section we prove the analog result for λ-unitary Bass
nil-groups, viz. NK1GQλ(R, λ), where (R, λ) is the form ring as introduced by A. Bak in
[1]. The main ingredient for our proof is an analog of Higman linearization (for a subclass
of Bak’s unitary group) due to V. Kopeiko; cf. [21]. For the general linear groups, Higman
linearization (cf. [6]) allows us to show that NK1(R) has a unipotent representative. The
same result is not true in general for the unitary nil-groups. Kopeiko’s results in [21],
[22] give a complete description of the elements of NK1GQλ(R, λ) which have (unitary)
unipotent representatives.

Definition 7.1. For an associative unital ring R we consider the truncated polynomial ring

Rt =
R[X]

(X t+1)
.

Lemma 7.2 (cf. [6], Lemma 4.1). Let P (X) ∈ R[X] be any polynomial. Then the following
identity holds in the ring Rt:

(1 +XrP (X)) = (1 +XrP (0))(1 +Xr+1Q(X)),

where r > 0 and Q(X) ∈ R[X], with deg(Q(X)) < t− r.

Proof. Let us write P (X) = a0 + a1X + · · ·+ atX
t. Then we can express the polynomial

P (X) as P (X) = P (0) +XP ′(X) for some P ′(X) ∈ R[X]. Now, in Rt

(1 +XrP (X))(1 +XrP (0))−1 = (1 +XrP (0) +Xr+1P ′(X))(1 +XrP (0))−1

= 1 +Xr+1P ′(X)(1−XrP (0) +X2r(P (0))2 − · · · )
= 1 +Xr+1Q(X),

where Q(X) ∈ R[X] with deg(Q(X)) < t− r. Hence the lemma follows.
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Remark 7.3. Iterating the above process we can write, for any polynomial P (X) ∈ R[X],

(1 +XP (X)) = Πt
i=1(1 + aiX

i)

in Rt, for some ai ∈ R. By ascending induction, it follows that the ai’s are uniquely
determined.

Lemma 7.4. Let R be an associative ring, and k ∈ Z such that kR = R. Let P (X) be a
polynomial in R[X]. Assume P (0) lies in the center of R. Then, if

(1 +XrP (X))k
r

= 1

for some r ≥ 0, we have that

(1 +XrP (X)) = (1 +Xr+1Q(X))

in the ring Rt, for some Q(X) ∈ R[X] with deg(Q(X)) < t− r.
The following result is due to V. Kopeiko, cf. [21]. This is an analog of Higman

linearization for this special case.

Proposition 7.5. Let (R, λ) be a form ring. Then, every element of the group NKQ1
λ(R,Λ)

has a representative of the form

[a; b, c]n =

(
Ir − aX bX
−cXn Ir + a∗X + · · ·+ (a∗)nXn

)
∈ GQλ(2r, R[X],Λ[X])

for some positive integers r and n, where a, b, c ∈ Mr(R) satisfy the following conditions:

1. the matrices b and ab are Hermitian and also ab = ba∗,

2. the matrices c and ca are Hermitian and also ca = a∗c,

3. bc = an+1and cb = (a∗)n+1.

Corollary 7.6. Let R be an associative ring. Let [α] ∈ NKQ1
λ(R,Λ) have the representation

[a; b, c]n for some a, b, c ∈ Mn(R) according to Proposition 7.5. Then, if it is true that
(Ir − aX) ∈ GLr(R), we have [α] = [H(Ir − aX)] in NKQ1

λ(R,Λ).

Proof. By Lemma 6.11, we have [a; b, c]n ≡ H(Ir−aX) (mod EQλ(2r, R[X],Λ[X])). Hence
[α] = [H(Ir − aX)] in NKQ1

λ(R,Λ).

Theorem 7.7. Let (R,Λ) be a form ring, where R is an associative ring with 1 and k is
an invertible integer, i.e., kR = R. Let

[α(X)] =

[(
A(X) B(X)
C(X) D(X)

)]
∈ NKQ1

λ(R,Λ)

with A(X) ∈ GLr(R[X]) for some r ∈ N. Then [α(X)] has no k-torsion.
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Proof. By Theorem 7.5, [α(X)] = [[a; b, c]n] for some a, b, c ∈ Ms(R) and for some natural
numbers n and s. Note that in Step 1 of the Proposition 7.5, the invertibility of the top
left corner of the matrix α is not changed during the linearization process. The same is
true for the remaining steps of the Proposition 7.5, and so, since the top left corner matrix
is A(X) ∈ GLr(R[X]), we get (Is − aX) ∈ GLs(R[X]). Using Corollary 7.6, one gets
[α(X)] = [H(Is − aX)]. Now let [α] have k-torsion, which implies that also [H(Ir − aX)]
has k-torsion. Since (Ir − aX) is invertible, it follows that a is nilpotent. Let t be such
that at+1 = 0. Since [(Ir − aX)]k = [I] in NKQλ

1(R[X],Λ[X]), by arguing as in [7], we get
[Ir − aX] = [I] in NKQλ

1(R[X],Λ[X]). This completes the proof.

8 Graded Analog

We recall the well-known “Swan–Weibel homotopy trick”, which is the main in-
gredient to handle the graded case. Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be a graded ring. An
element a ∈ R is denoted by a = a0 + a1 + a2 + · · · , where ai ∈ Ri for each i, and all but
finitely many ai’s are zero. Let R+ = R1 ⊕ R2 ⊕ · · · . A graded structure of R induces a
graded structure on Mn(R) (the ring of n× n matrices with entries in R).

Definition 8.1. Let a ∈ R0 be a fixed element. We fix an element b = b0 + b1 + · · · in R
and define a ring homomorphism ε : R→ R[X] as follows:

ε(b) = ε(b0 + b1 + · · · ) = b0 + b1X + b2X
2 + · · ·+ biX

i + · · · .

Then we evaluate the polynomial ε(b)(X) at X = a and denote the image by b+(a) i.e.,

b+(a) = ε(b)(a). Note that
(
b+(x)

)+
(y) = b+(xy). Observe, b0 = b+(0). We shall use this

fact frequently.

The above ring homomorphism ε induces a group homomorphism from GL(n,R) to
GL(n,R[X]) of rank n for every n ≥ 1, i.e., for α ∈ GL(n,R) we get a map

ε : GL(n,R)→ GL(n,R[X]), defined by

α = α0 ⊕ α1 ⊕ α2 ⊕ · · · 7→ α0 ⊕ α1X ⊕ α2X
2 · · · ,

where αi ∈ M(n,Ri). As above, for a ∈ R0, we define α+(a) as α+(a) = ε(α)(a).
The graded dilation lemma and graded local-global principle are proved in [11] for

linear, symplectic and orthogonal groups. Arguing in similar manner one gets:

Theorem 8.2. (Graded Local-Global Principle) Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be
an almost commutative graded ring with identity 1. Let α ∈ GQ(2n,R,Λ) be such that
α ≡ I2n (mod R+). If αm ∈ EQ(2n,Rm,Λm), for every maximal ideal m ∈ Max(C(R0)),
then α ∈ EQ(2n,R,Λ).

Moreover, the L-G principle for the elementary subgroups and their normality property
are equivalent.
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Theorem 8.3. Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be an almost commutative graded ring with
identity 1. Then the following assertions are equivalent for 2n ≥ 6:

1. EQ(2n,R,Λ) is a normal subgroup of GQ(2n,R,Λ).

2. If α ∈ GQ(2n,R,Λ) with α+(0) = I2n, and αm ∈ EQ(2n,Rm,Λm) for every maximal
ideal m ∈ Max(C(R0)), then α ∈ EQ(2n,R,Λ).

As an application of Theorem 8.2 and the Theorem 7.7, we obtain the following:

Theorem 8.4. Let R = R0 ⊕ R1 ⊕ . . . be an almost commutative graded ring with 1. Let
N = N0+N1+ · · ·+Nr ∈ Mr(R) be a nilpotent matrix, and let I denote the identity matrix.
Let k ∈ Z be a unit in R0. If [(I +N)]k = [I] in NKQλ

1(R,Λ), then [I +N ] = [I +N0].

Proof. Consider the ring homomorphism f : R→ R[X] defined by

f(a0 + a1 + . . . ) = a0 + a1X + . . . .

Then

[(I +N)k] = [I]⇒ f([I +N ]k) = [f(I +N)]k = [I]

⇒ [(I +N0 +N1X + · · ·+NrX
r)]k = [I].

Let m be a maximal ideal in C(R0). By Theorem 7.7, we have

[(I +N0 +N1X + · · ·+NrX
r)] = [I]

in NKQλ
1(Rm,Λm). Hence by using the local-global principle we conclude

[(I +N)] = [I +N0]

in NK1GQλ(R,Λ), as required.
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