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Transcendental Continued Fractions

Sarra Ahallal, Ali Kacha

Abstract. In the present paper, we give sufficient conditions on the elements of the
continued fractions A and B that will assure us that the continued fraction AB is
a transcendental number. With the same condition, we establish a transcendental
measure of AB.

1 Introduction and preliminaries

The theory of transcendental numbers has a long history. We know since J. Liouville in
1844 that the very rapidly converging sequences of rational numbers provide examples of
transcendental numbers. So, in his famous paper [7] Liouville showed that a real number
admitting very good rational approximation could not be algebraic, and then he explicitly
constructed the first examples of transcendental numbers.

From this sense, the transcendence of the continued fractions having partial quotients
that increase rapidly have been studied by several authors such as P. Bundschuh [1],
A. Durand [2], W. Lianxiang [6], G.Nettler [8], T. Okano [10]. We also note that the
transcendence of some power series with rational coefficients is given by some authors, see
[5], [9].

Let A and B be two continued fractions which are defined by

A = a0 +
1|
|a1

+
1|
|a2

+ · · ·

and

B = b0 +
1|
|b1

+
1|
|b2

+ · · ·,

where (ai > 0, bi > 0 are integers for any i ≥ 1).

MSC 2020: 11A55, 11J81, 11J82
Keywords: Continued fraction, transcendental number, measure of transcendence
Affiliation:

Department of Mathematics, Faculty of Science, Ibn Tofail University, 14 000 Kenitra,
Morocco
E-mail: sarraahallal92@gmail.com, ali.kacha@uit.ac.ma

ar
X

iv
:2

21
2.

08
97

0v
2 

 [
m

at
h.

N
T

] 
 2

5 
D

ec
 2

02
2



252 Sarra Ahallal, Ali Kacha

In [3] we have proved the transcendence of the six numbers A, B, A ± B, and AB±1

if an > bn > aαn−1 where α is a real constant > 7 by using Roth’s approximation theorem.
The algebraic independence of A and B was also proved under a similar method in [4].

We recall that in [1], P. Bundschuh has noted that obviously no transcendence proof of
AB could be established by using Roth’s approximation theorem. Then he gave a theorem
which yields the transcendence of AB by using another method.

In the present paper, the first aim is to improve Bundschuh’s result concerning the
transcendence of AB with a slight hypothesis.

The second main result of this article is to establish a transcendental measure of a
continued fraction AB.

In order to prove the transcendence of continued fraction AB, we will use the result of
Bundshuh which expresses a necessary condition if AB is an algebraic number.

Theorem 1.1 ([11]). Let ξ be a real number, δ a real number > 2, if there exists an infinity
rational numbers p

q
with gcd(p, q) = 1 such that∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qδ
,

then ξ is a transcendental number.

2 Main results

2.1 Transcendence

With the same notations as above for A and B, we put

An = a0 +
1|
|a1

+
1|
|a2

+ · ·+ 1|
|an

=
apn
aqn

,

Bn = b0 +
1|
|b1

+
1|
|b2

+ · ·+ 1|
|bn

=
bpn
bqn

.

The principal result of the transcendence of AB is given in the following theorem.

Theorem 2.1. Let (an), (bn) and A, B be as before and let 1 < α ≤ α′ be real numbers. If
an+1 ≥ bn+1 ≥ aαn, a

α′
n ≥ an+1 for all n ≥ 1 and ln(an) ln(bn) = O(ln(bn+1

bq2n)) then AB is
a transcendental number.

Remark 2.2. 1. We note that under the hypothesis an+1 ≥ bn+1 ≥ aαn with α > 1, the
real numbers A and B are transcendental, see [3].

2. In [8], Nettler presented certain explicit formulae for the algebraic numbersABnn which
converges to AB as n→ +∞, depending on the mth convergents (m = 1, · · ·, n) of A
and B.
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The proof of the Theorem 2.1 is based on some lemmas that express the link between
partial quotients of the mentioned reals continued fractions and the denominators of their
convergents.

The main tool of this Theorem is the following necessary condition for algebricity of
AB due to Bundschuh.

Lemma 2.3. Let A, B as before, but such that AB is an algebraic number and that the
sequence (bqn)n satisfies

ln(bqn+1) = O(bqn ln(bqn)) (1)

as n → +∞. Then there exists an effectively computable number γ0 > 0, depending only
on A and B such that the inequality

max(|A− β|, |B − δ|) ≤ exp(−γ0 ln(H1) ln(H2)) (2)

has at most finitely many solutions (β, δ,H1, H2) ∈ Q2 × N2 with h(β) ≤ H1, h(δ) ≤ H2,
and H1, H2 ≥ 4, h(θ) denotes the height of an algebraic number θ.

Lemma 2.4. 1. Let α > 1 be a real number. If an ≥ aαn−1 for all n ≥ 2, then we have

aqn < 2a
α
α−1
n .

2. Let α > 1 be a real number. If an ≥ bn ≥ aαn−1 for all n ≥ 2, then there exists a real
constant C1 > 0 such that

aqn >
bqn > C1

aqαn−1. (3)

Remark 2.5. The same result as (1) of Lemma 2.4 is also obtained for bqn and bn.

Proof of Lemma 2.4. 1. See [3].

2. We can easily show that

bqn = bn
bqn−1 + bqn−2

> bn
bqn−1 ≥ aαn−1

bqn−1

>
n−1∏
i=1

aαi . (4)

On the other hand, one has

aqn−1 < (an−1 + 1)aqn−2 <
n−1∏
i=1

(
1 +

1

ai

) n∏
i=1

ai,

which becomes
n−1∏
i=1

aαi >
a qαn−1

n−1∏
i=1

(
1 +

1

ai

)−α
. (5)
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Combining (4) and (5) gives

bqn >
aqαn−1

n−1∏
i=1

(
1 +

1

ai

)−α
> C2

aqαn−1

where C2 = C2(A,α) > 0. We notice that the left side of the inequality (3) can be
proved in a similar way.

Proof of Theorem 2.1. First, let us justify that the hypothesis (1) of Lemma 2.3 is verified.
According to Lemma 2.4, for any ε > 0, we have

bqn+1 < b
α
α−1

+ε

n+1 < b
α.α′
α−1

+εα′

n

for any sufficiently large n. Which yields

ln(bqn+1) < (
α.α′

α− 1
+ εα′) ln(bn)

< (
α.α′

α− 1
+ εα′) ln(bqn)

< (
α.α′

α− 1
+ εα′) ln(bqn)bqn.

So, the relationship (1) is verified, it suffices to make ε tend to 0.
We will show that under the hypothesis of Theorem 2.1 the relationship (2) is satisfied

by the infinite numbers:

(
apn
aqn

,
bpn
bqn

, H1 = aqn = h(An) , H2 = bqn = h(Bn)) ∈ Q2 × N2.

By part 2 of Lemma 2.4 we have bqn <
a qn, so

max(| A− An |, | B −Bn |) <
1

bqn+1
bqn

<
1

bn+1
bq2n

(6)

for all n ≥ 1.
On the other hand, the result 1 of Lemma 2.3 implies that

ln(aqn). ln(bqn) < (
α

α− 1
)2 ln(an). ln(bn). (7)

Namely, the hypothesis of Theorem 2.7

ln(an). ln(bn) = O(ln(bn+1
bq2n)),

shows that there exists a real constant C2 > 0, such that

ln(an). ln(bn) < C2 ln(bn+1
bq2n) (8)
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for all sufficiently large n. Combining (7) and (8), we get

ln(aqn). ln(bqn) < C3 ln(bn+1
bq2n), C3 = (

α

α− 1
)2C2 (9)

for any n sufficiently large.
Due to inequality (9), the relationship (6) becomes

max(| A− An |, | B −Bn |) < exp(− 1

C3

ln(aqn) ln(bqn))

< exp(− 1

C3

ln(h(An)) ln(h(Bn)))

for infinitely many n. This shows that the conclusion of Lemma 2.3 fails, hence AB is a
transcendental number.

Example 2.6. Let


a0 = b0 = 0, a1 = b1 = 3, δ a real number > 0,

an+1 = bn+1 = a1+δn , n ≥ 1.

α = α′ = 1 + δ.

We verify that the hypothesis ln(an) ln(bn) = O(ln(bn+1
bq2n)) of Theorem 2.1 is satisfied.

We have
ln(an) ln(bn) = (1 + δ)2n−2 × (ln a1)

2,

and for all n ≥ 2, we get

bn+1
bq2n ≥ bn+1b

2
n

≥ a
(1+δ)n

1 ×
(
a
(1+δ)n−1

1

)2
≥
(
a1
)(1+δ)n+(1+δ)2n−2

≥
(
a1
)(1+δ)2n−2

.

It follows that
ln(an). ln(bn)

ln(bn+1
bq2n)

≤ ln(a1) = ln 3.

By applying Theorem 2.1, we deduce that AA is a transcendental number.

2.2 The transcendental measure of a continued fraction AB

In this subsection, we give the second main result of this article. We keep the same
notations as in the first subsection.

Theorem 2.7. Let P ∈ Z[X] {0} be a polynomial of degree d ≥ 2, and height H ≥ a
d+1/2
2 .

Let k be a real number ≥ 1 and α = 2d+ 1 such that

aαn ≤ bn+1 ≤ an+1 ≤ akαn for all n ≥ 1.

Then, we have ∣∣P (AB)
∣∣ > 1

2
(Hd(d+ 1))−2kd(d+1).
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Remark 2.8. We note that the continued fraction AB defined in Theorem 2.7 is a tran-
scendental number.

For the proof of Theorem 2.7 further Lemma is needed.

Lemma 2.9. Let k be a real number > 1. The hypothesis an ≤ akαn−1 for all n ≥ 2 implies
that

aqn < 2 aq
kα2

α−1

n−1 .

Proof. By the same method as in Lemma 2.4 we prove Lemma 2.9.

Proof of Theorem 2.7. We have assumed that the two numbers A and B are larger than
1, so An < 1 and Bn < 1 for all n ≥ 1. Put

P (X) =
d∑

k=0

ekX
k, ek ∈ Z.

In order to obtain a transcendental measure of AB, we must minus | P (AB) | by a positive
function of H and d.

From equality
P (ABnn ) = P (AB) + P (ABnn )− P (AB),

we get

| P (ABnn ) |≤| P (AB) | + | P (ABnn )− P (AB) | .

Therefore,

| P (AB) |≥| P (ABnn ) | − | P (ABnn )− P (AB) | . (10)

Firstly, we have

P (ABnn ) =
d∑

k=0

ek
(apn)kBn

(aqn)kBn

=
1

aqdBnn

d∑
k=0

ek(
apn)kBn(aqn)(d−k)Bn .

Notice that
d∑

k=0

ek(
apn)kBn(aqn)(d−k)Bn 6= 0,

because, if we assume that

d∑
k=0

ek(
apn)kBn(aqn)(d−k)Bn = (aqn)(d−k)Bn .P (ABnn = 0,
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then we would have
P (AB) = limn→+∞P (ABnn ) = 0

which contradicts the transcendence of AB. It follows that

| P (ABnn ) |≥ 1
aqdBnn

>
1
aqdn

. (11)

On the other hand, according to Roll’s theorem applied to P in the interval [AB, ABnn ]
or [ABnn , AB], there exists a real number E ∈]AB;ABnn [ or ]ABnn , AB[ such that:

| P (AB)− P (ABnn ) |=| AB − ABnn || P ′(E) |, with 0 < E < 1. (12)

From this, we obtain

| P ′(E) |≤
d∑

k=1

k | ek | ≤ H
d(d+ 1)

2
, (13)

and the relationship (12) becomes

| P (AB)− P (ABnn ) |≤ 1

2
Hd(d+ 1) | AB − ABnn | . (14)

We notice that the function f(x, y) = xy is continuously differentiable on every compact
subset K of [0, 1]× [0, 1]. Then by the mean value theorem to f, it follows the existence of
a real constant C1 = C(A,B) > 0 depending only on A and B such that

| AB − ABnn |≤ C1 max(| A− An |, | B −Bn |) < C1 | B −Bn |<
C1

bn+1

,

for sufficiently large n. Therefore, one has

| P (AB)− P (ABnn ) |< C1H
d(d+ 1)

2

1

bn+1

<
C1Hd(d+ 1)

2aαn
,

for sufficiently large n.
Using relationships (11) and (14), (10) becomes

| P (AB) | >
1
aqdn
− C1Hd(d+ 1)

2aαn
>

1

and
− C1Hd(d+ 1)

2aαn
· (15)

Now, we look for an integer n from which the quantities
1

adn
and

C1Hd(d+ 1)

2aαn
are of the

same order. So, in order to satisfy | P (AB) |> 1/(2adn), it is sufficient to have

1

adn
− C1Hd(d+ 1)

2aαn
>

1

2adn
·
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Which is equivalent to the following inequality

1

2adn
>
C1Hd(d+ 1)

2aαn

that is
aαn > C1Hd(d+ 1)adn.

For this, it is sufficient that n verifies

a
α
2
n > C1 and a

α
2
n > Hd(d+ 1)adn. (16)

The first part of Relationship (16) is easy to achieve. Therefore, the second inequality is
equivalent to

a
α
2
−d

n > Hd(d+ 1).

Let n1 be the smallest integer ≥ 2 such that

a
α
2
−d

n1−1 ≤ Hd(d+ 1) < a
α
2
−d

n1 · (17)

The integer n1 exists because we have assumed that Hd(d + 1) > H ≥ a
α/2
2 and the

sequence (aαn)n is increasing and tends to +∞. Then, we have

| P (AB) |> 1

2adn1

·

Since, an1 ≤ akαn1−1, then we obtain

| P (AB) |> 1

2an1−1
kdα
·

On the other hand, the left-hand side of (17) implies that

| P (AB) |> 1

2(HD(d+ 1))
kdα
α/2−d

·

Finally, since α = 2d+ 1, we conclude that

| P (AB) |> 1

2
(HD(d+ 1))−2kd(2d+1)·

Which achieves the proof of Theorem 2.7.

Example 2.10. Let 
a0 = b0 = 0, a1 = b1 = 2,

an+1 = bn+1 = a5n, n ≥ 2,

α = α′ = 5, k = 1.

In the same way, as in Example 2.6, we prove that AA is a transcendental number.
Let P ∈ Z[X] \ {0} be a quadratic polynomial of height H ≥ a

5/2
2 = 225/2. By applying

Theorem 2.7, a transcendental measure of AA is given by

| P (AA) |> 1

2
(6H)−10.
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réductible à des irrationnelles algébriques. C. R. Mat. Acad. Sci. Paris 18 (1844) 883–855.

[8] Nettler J.: Transcendental continued fractions. J. Numb. Th. 13 (1981) 456–462.

[9] Nyblom M.A.: A Theorem on transcendence of infinite series II. J. Numb. Th. 91 (2001) 71–80.

[10] Okano T.: A note on the transcendental continued fractions. Tokyo J. Math. 10 (1) (1987)
151–156.

[11] Roth K.F.: Rational approximations to algebraic numbers. Math. 2 (1955) 1–20.

Received: October 19, 2021
Accepted for publication: February 21, 2022
Communicated by: Attila Bérczes


