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On classification and deformations of Lie-Rinehart superal-
gebras

Quentin Ehret and Abdenacer Makhlouf

Abstract. The purpose of this paper is to study Lie-Rinehart superalgebras over
characteristic zero fields, which are consisting of a supercommutative associative su-
peralgebra A and a Lie superalgebra L that are compatible in a certain way. We
discuss their structure and provide a classification in small dimensions. We de-
scribe all possible pairs defining a Lie-Rinehart superalgebra for dim(A) ≤ 2 and
dim(L) ≤ 4. Moreover, we construct a cohomology complex and develop a theory of
formal deformations based on formal power series and this cohomology.

Introduction

Lie-Rinehart algebras are algebraic analogs of Lie algebroids. They first appeared in
the work of Rinehart ([19]) and Palais ([17]) and have been studied by Huebschmann ([11]
and [12]). A Lie-Rinehart algebra is a pair (A,L), with A an associative K-algebra, K
being a commutative ring, and L a Lie K-algebra. They must be endowed with an action
of A on L, making the latter an A-module, and with a Lie algebra map ρ : L −→ Der(A)
such that L acts on A by derivations. Some authors put the emphasis on L by saying that
L is a K-A Lie-Rinehart algebra. An example comes from Differential Geometry ([20]): if
V is a differential manifold, let A := OV be the algebra of smooth functions on V , and
L := Vect(V ) be the Lie algebra of vector fields on V . Then the pair (A,L) carries a
Lie-Rinehart algebra structure. According to Claude Roger, Lie-Rinehart algebras give
direct methods to deal with the relations between differential operators on manifolds and
the enveloping algebra of the Lie algebra of vector fields of a manifold ([20]). More details
can be found in ([19]).
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Quentin Ehret – Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
E-mail: quentin.ehret@uha.fr
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The notion of Lie-Rinehart superalgebra, which is a generalization of Lie-Rinehart
algebras to the superworld, has been studied for example by Chemla ([8]) and Roger ([20]).
This theory can be used to study superalgebras of differential operators on supermanifolds,
to generalize enveloping superalgebras related to those supermanifolds, and can have some
applications in supersymmetry. Some examples can be found again in [20].

In this paper, we aim to explore and understand the C-Lie-Rinehart superstructures
in low dimensions. We give a classification of all the possible structures on (A,L) when
dim(A) ≤ 2 and dim(L) ≤ 4. We rely heavily on the classification of associative and
Lie superalgebras already existing in the literature ([1], [3] and [10] for the associative
case; [4] and [6] for the Lie case) and on the computer algebra system Mathematica. We
limit ourselves to those low dimensions due to technical and time constraints, even our
program should work in any dimension. However, it appears that the number of possible
structures are growing exponentially as soon as we increase the dimension, so it does
not seem reasonable to give a list of all the possible Lie-Rinehart superalgebras in higher
dimensions.

Another aspect we pursue in this paper is to provide a deformation theory and study
one-parameter formal deformations of Lie-Rinehart superalgebras. In a recent article ([14]),
Mandal and Mishra have developed a theory of deformations of Hom-Lie-Rinehart algebras,
which covers the case of Lie-Rinehart algebras. Our purpose here is to extend this theory
to Lie-Rinehart superalgebras. We construct a suitable deformation complex and show
that formal deformations are controlled by the cohomology obtained with this cochain
complex. The case of Hom-Lie-Rinehart superalgebras will be studied in a forthcoming
paper.

The article is organized as follows. In the first section, we recall the basics about
superalgebras. Then, we give the definition of a Lie-Rinehart superalgebra in a second
section, as well as some examples. The third section is devoted to the classification of Lie-
Rinehart superalgebras, the associative superalgebra’s dimension being less or equal than
2 and the Lie superalgebra’s dimension less or equal than 4. We recall the classification of
associative and Lie superalgebras and then we give all Lie-Rinehart superalgebra structures
on all possible pairs. In Section 4, we construct a deformation cohomology complex and
study formal deformations of Lie-Rinehart superalgebras. We show that the usual results
about formal deformations remain true in this context. For example, we show that the
infinitesimal element of such a deformation is a 2-cocycle of the complex constructed above.
We also give a concrete example of deformation, relying on the classification that we made.

1 Preliminaries

Throughout this paper, we denote the group Z/nZ by Zn, for n ∈ N. If V is a graded
space, the degree of a homogeneous element x ∈ V is denoted by |x|.

Let K be a commutative ring. We summarize in the following the definitions of asso-
ciative and Lie superalgebras, as well as related notions such as superderivations, using
mainly [13] or [21].
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Definition 1.1. Let V be a K-module. It is said to be Z2-graded if it has a decomposition
V = V0 ⊕ V1. The elements of Vi, i ∈ Z2, are called homogeneous. An element v ∈ V is
called even if it belongs to V0 and odd if it belongs to V1. We denote |v| = 0 if v is even
and |v| = 1 if v odd.

Definition 1.2. An associative K-superalgebra is a Z2-graded K-module A = A0 ⊕ A1

endowed with a bilinear map A×A −→ A denoted by juxtaposition such that (ab)c = a(bc)
for all a, b, c ∈ A, and AiAj ⊂ Ai+j, the subscripts being taken modulo 2, i.e. i, j ∈ Z2.

The gradings follow the rule |ab| = |a| + |b| for all a, b homogenous elements. The
associativity of the bilinear map is the usual one, but the commutativity involves the
gradings and is given by ba = (−1)|a||b|ab, for all homogenous elements a, b in A. This
identity is called supercommutativity. We can sum this up by stating that the even
elements commute with every other elements, and the odd ones anticommute with other
odd elements. We then extend the supercommutativity to non-homogeneous elements.

Definition 1.3. Let A and B be two superalgebras. A superalgebra morphism is a
linear map f : A −→ B which satisfies the condition f(ab) = (−1)|f ||a|f(a)f(b), for all
a, b ∈ A. We say that f is even and that the degree |f | of f is 0 if |f(a)| = |a| mod (2)
for all homogeneous elements a ∈ A, and we say that f is odd and that and that the
degree |f | of f is 1 if |f(a)| = (|a| + 1) mod (2). Thus, we always have the relation
|f(a)| = (|f |+ |a|) mod (2).

Definition 1.4. Let A be a superalgebra. A map D : A −→ A is a superderivation
(of degree |D|) of A if D is a Z2-graded linear map and if the super-Leibniz condition is
satisfied:

D(ab) = D(a)b+ (−1)|a||D|aD(b) ∀a, b ∈ A.
We denote by Der(A) the vector superspace of superderivations of A.

Definition 1.5. A Lie superalgebra L is a Z2-graded K-module L = L0

⊕
L1 endowed

with a bracket [·, ·] satisfying, for all homogeneous elements x, y, z ∈ L:

1. |[x, y]| = |x|+ |y|;

2. [x, y] = −(−1)|x||y|[y, x] (super-skewsymmetry);

3. (−1)|x||z|[x, [y, z]] + (−1)|z||y|[z, [x, y]] + (−1)|x||y|[y, [z, x]] = 0 (super-Jacobi).

Remark 1.6. The super-Jacobi identity is equivalent to

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

for all homogeneous element x, y, z ∈ L.

Example 1.7. Der(A) carries a Lie superalgebra structure, with the bracket

[D1, D2] = D1 ◦D2 − (−1)|D1||D2|D2 ◦D1.
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Definition 1.8. Let L1 and L2 be two Lie superalgebras. A Lie superalgebra morphism
is a linear map f : L1 → L2 which satisfies the condition

f ([x, y]L1) = (−1)|f ||x|[f(x), f(y)]L2 , for all x, y ∈ L.

We say that f is even or odd following the same rule as in Definition 1.3.

Definition 1.9. Let V be a Z2-graded vector space and A be a supercommutative super-
algebra. We say that V is a left Z2-graded A-module if there exists a map A×V → V ,
denoted by (a, v) 7→ av, such that |av| = |a|+ |v| and a(bv) = (ab)v, for all v ∈ V , a, b ∈ A.

2 Lie-Rinehart superalgebras

In this section, we focus on Lie-Rinehart superalgebras. We recall the basic definitions
and give some examples, following Roger ([20]) and Chemla ([8]).

Definition 2.1. Let K be an arbitrary field. A Lie-Rinehart superalgebra is a pair
(A,L), where

• L is a Lie superalgebra over K, endowed with a bracket [·, ·];

• A is an associative and supercommutative K-superalgebra,

such that, for all x, y ∈ L and a, b ∈ A:

1. there is an action A× L −→ L, (a, x) 7−→ a · x, making L an A-module;

2. there is an action of L on A by superderivations: L→ Der(A), x→ (ρx : a 7→ ρx(a)),
such that ρ is an even morphism of Lie superalgebras;

3. [x, ay] = ρx(a)y + (−1)|a||x|a[x, y] (compatibility condition);

4. ρax(b) = aρx(b) (A-linearity of ρ).

The maps in 1. and 2. must respect the gradings, i.e.

|ax| = |a|+ |x| and |ρx(a)| = |a|+ |x|.

We sometimes write ρ(x)(a) instead of ρx(a).

Remark 2.2. If A = K, the one dimensional even superalgebra, then any Lie-Rinehart
superalgebra reduces in a certain sense to the ordinary Lie superalgebra over K.

Example 2.3. Let A be a supercommutative unital associative superalgebra and L be
a Lie superalgebra. Then the pair (A,L) can always be endowed with a Lie-Rinehart
superalgebra structure with the trivial action (the neutral element e0 for the multiplication
of A acts by e0 · x = x for x ∈ L, and all the other elements of A act by 0) and the zero
anchor (ρ(x) = 0 ∀x ∈ L) (see Proposition 3.1).
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Example 2.4 (Lie superalgebra of superderivations). Let A be a supercommutative unital
associative superalgebra, and L = Der(A) be its superalgebra of superderivations. Then
one can check that the pair (A,Der(A)) is a Lie-Rinehart superalgebra, with the action
Ay Der(A) being given by (a·δ)(b) = aδ(b) and the trivial anchor being given by ρ(δ) = δ,
for all δ ∈ Der(A), a, b ∈ A.

Example 2.5 (Crossed product). We give now another example of Lie-Rinehart superal-
gebra, following Chemla ([8]). Let g be a Lie superalgebra, with bracket [·, ·], and A a
supercommutative associative superalgebra. We suppose that g is endowed with a Lie
superalgebra morphism σ : g −→ Der(A), x 7−→ (σx : a 7−→ σx(a)) .

Then, σx is a superderivation of A. We can define a new Lie superalgebra by setting
L := A⊗ g endowed with the bracket

[a⊗ x, b⊗ y] = (−1)|x||b|ab⊗ [x, y] + aσx(b)⊗ y − (−1)(|a|+|x|)(|b|+|y|)bσy(a)⊗ x,

with homogeneous a, b ∈ A and homogeneous x, y ∈ g.
One can check that this formula gives a Lie superalgebra structure on L. We then

extend σ to a A-module morphism on L = A⊗ g, denoted by σ̃ ∈ Der(A), in the following
way: define σ̃(a⊗ x) := aσ(x) = aσx. We define a Lie-Rinehart structure on (A,L), with
a, b, c ∈ A and x, y ∈ g:

1. Action Ay L: A× L −→ L, (a, b⊗ y) 7−→ a · (b⊗ y) = ab⊗ y,

2. Action by (super) derivations: L→ Der(A)a⊗x 7→ ρa⊗x : b 7→ aσx(b)(= σ̃(a⊗x)(b)).

3 Classification in low dimensions

In this section, we fix K = C, the complex field. We describe all Lie-Rinehart super-
structures on a pair (A,L) when dim(A) ≤ 2 and dim(L) ≤ 4. This means, if we are given
a supercommutative associative superalgebra (with unit) A and a Lie superalgebra L, we
give all the pairs action-anchor which are compatible in the sense of Definition 2.1. We
will denote basis elements of A by esi , s = |esi | ∈ {0, 1}, 1 ≤ i ≤ dimAs and basis elements
of L by (f tj ), t = |f tj | ∈ {0, 1}, 1 ≤ j ≤ dimLt. Then we have

A0 =
〈
e0
i

〉
1≤i≤dimA0

, A1 =
〈
e1
i

〉
1≤i≤dimA1

, L0 =
〈
f 0
j

〉
1≤j≤dimL0

, L1 =
〈
f 1
j

〉
1≤j≤dimL1

.

3.1 Classification of associative and Lie superalgebras

We recall the classification of supercommutative associative ([1], [3] and [10] for exam-
ple) and Lie superalgebras ([4] and [6]) in low dimensions.
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3.1.1 Supercommutative associative superalgebras

We list the supercommutative associative superalgebras with unit, of dimension up to 2. A
list of all supercommutative associative superalgebras of dimension up to 4 can be found
in Appendix 5.1. As above, we denote basis elements of A0 by e0

i and those of A1 by
e1
j . The unit is e0

1. We only write the non zero products that have to be completed by
supercommutativity and multilinearity.

• The purely odd superalgebras A0|p always have a zero product.

• dimA = (1|0): there is only one superalgebra A1
1|0, whose product is given by

e0
1e

0
1 = e0

1.

• dimA = (1|1): there is only one superalgebra A1
1|1 with product e1

1e
1
1 = 0.

• dimA = (2|0): there are two pairwise non-isomorphic superalgebras:

A1
2|0 : every non-trivial product is zero;

A2
2|0 : e0

2e
0
2 = e0

2.

3.1.2 Lie superalgebras

We provide in the sequel a list of Lie superalgebras. As above, we denote the basis elements
of L0 by f 0

i and those of L1 by f 1
j . We only write the non zero brackets, the other brackets

are obtained by super-skewsymmetry and bilinearity.

• The purely odd Lie superalgebras L0|q always have a zero bracket.

• dimL = (1|0): there is only one Lie superalgebra L1
1|0, whose bracket is given by

[f 0
1 , f

0
1 ] = 0.

• dimL = (1|1): there are three pairwise non-isomorphic Lie superalgebras:

L1
1|1 : [f 1

1 , f
1
1 ] = f 0

1 ;

L2
1|1 : [f 0

1 , f
1
1 ] = f 1

1 .

L3
1|1 : all brackets are null.

• dimL = (1|2): there are six pairwise non-isomorphic Lie superalgebras:

L1
1|2 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = pf 1

2 (0 < |p| ≤ 1);

L2
1|2 : [f 0

1 , f
1
2 ] = f 1

1 ;

L3
1|2 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = f 1

1 + f 1
2 ;

L4
1|2 : [f 0

1 , f
1
1 ] = pf 1

1 − f 1
2 , [f 0

1 , f
1
2 ] = f 1

1 + pf 1
2 (p ∈ C);

L5
1|2 : [f 1

1 , f
1
1 ] = f 0

1 , [f 1
2 , f

1
2 ] = f 0

1 ;
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L6
1|2 : null bracket.

• dimL = (1|3): there are eight pairwise non-isomorphic Lie superalgebras:

L1
1|3 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = pf 1

2 , [f 0
1 , f

1
3 ] = qf 1

3 (0 < |p| ≤ |q| ≤ 1);

L2
1|3 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
3 ] = f 1

2 ;

L3
1|3 : [f 0

1 , f
1
1 ] = pf 1

1 , [f 0
1 , f

1
2 ] = f 1

2 , [f 0
1 , f

1
3 ] = f 1

2 + f 1
3 ;

L4
1|3 : [f 0

1 , f
1
1 ] = pf 1

1 , [f 0
1 , f

1
2 ] = qf 1

2 − f 1
3 , [f 0

1 , f
1
3 ] = f 1

2 + qf 1
3 , p 6= 0;

L5
1|3 : [f 0

1 , f
1
2 ] = f 1

1 , [f 0
1 , f

1
3 ] = f 1

2 , p, q 6= 0;

L6
1|3 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = f 1

1 + f 1
2 , [f 0

1 , f
1
3 ] = f 1

2 + f 1
3 ;

L7
1|3 : [f 1

1 , f
1
1 ] = f 0

1 , [f 1
2 , f

1
2 ] = f 0

1 , [f 1
3 , f

1
3 ] = f 0

1 ;

L8
1|3 : null bracket.

• dimL = (2|0): there are two pairwise non-isomorphic Lie superalgebras:

L1
2|0 : null bracket;

L2
2|0 : [f 0

1 , f
0
2 ] = f 0

2 .

• dimL = (2|1): there are six pairwise non-isomorphic Lie superalgebras:

L1
2|1 : [f 1

1 , f
1
1 ] = f 0

2 ;

L2
2|1 : [f 0

1 , f
1
1 ] = f 1

1 [f 0
2 , f

1
1 ] = −f 1

1 ;

L3
2|1 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 ;

L4
2|1 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = pf 1

1 , (p 6= 0);

L5
2|1 : [f 0

1 , f
0
2 ] = f 0

2 .

L6
2|1 : null bracket.

• dimL = (2|2): there are eighteen pairwise non-isomorphic Lie superalgebras:

L1
2|2 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = f 1

2 , [f 0
2 , f

1
2 ] = f 1

1 ;

L2
2|2 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = f 1

2 , [f 0
2 , f

1
2 ] = f 1

1 , [f 0
2 , f

1
1 ] = −f 1

2 ;

L3
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = pf 1

1 , [f 0
1 , f

1
2 ] = qf 1

2 , pq 6= 0;

L4
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = pf 1

1 , [f 0
1 , f

1
2 ] = f 1

1 + pf 1
2 , p 6= 0;

L5
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = pf 1

1 − qf 1
2 , [f 0

1 , f
1
2 ] = qf 1

1 + pf 1
2 , q 6= 0;

L6
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = (p+ 1)f 1

1 , [f 0
1 , f

1
2 ] = pf 1

2 , [f 0
2 , f

1
2 ] = f 1

1 , p 6= 0;

L7
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 , [f 0
1 , f

1
2 ] = 1

2
f 1

2 , [f 1
1 , f

1
1 ] = f 0

2 , [f 1
2 , f

1
2 ] = f 0

2 ;
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L8
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 , [f 0
1 , f

1
2 ] = 1

2
f 1

2 , [f 1
1 , f

1
1 ] = f 0

2 ;

L9
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = pf 1

1 , [f 0
1 , f

1
2 ] = (1− p)f 1

2 , [f 1
1 , f

1
2 ] = f 0

2 ;

L10
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 , [f 0
1 , f

1
2 ] = f 1

1 + 1
2
f 1

2 , [f 1
2 , f

1
2 ] = f 0

2 ;

L11
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 − pf 1
2 , [f 0

1 , f
1
2 ] = pf 1

1 + 1
2
f 1

2 , [f 1
1 , f

1
1 ] = f 0

2 and

[f 1
2 , f

1
2 ] = f 0

2 , for p 6= 0;

L12
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = f 1

1 , [f 0
2 , f

1
2 ] = f 1

1 , [f 1
1 , f

1
2 ] = −1

2
f 0

2 , [f 1
2 , f

1
2 ] = f 0

1 ;

L13
2|2 : [f 1

1 , f
1
1 ] = f 0

1 , [f 1
2 , f

1
2 ] = f 0

2 ;

L14
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = f 1

1 , [f 1
1 , f

1
2 ] = f 0

2 ;

L15
2|2 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 , [f 1
1 , f

1
1 ] = f 0

2 ;

L16
2|2 : [f 0

1 , f
1
1 ] = f 1

1 , [f 0
1 , f

1
2 ] = −f 1

2 , [f 1
1 , f

1
2 ] = f 0

2 ;

L17
2|2 : [f 0

1 , f
1
2 ] = f 1

1 , [f 1
2 , f

1
2 ] = f 0

2 ;

L18
2|2 : null bracket.

• dimL = (3|0): there are six pairwise non-isomorphic Lie superalgebras:

L1
3|0 : null bracket;

L2
3|0 : [f 0

1 , f
0
2 ] = f 0

3 ;

L3
3|0 : [f 0

1 , f
0
2 ] = f 0

1 ;

L4
3|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = f 0

2 + f 0
3 ;

L5
3|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = pf 0

3 , p 6= 0;

L6
3|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = −2f 0

1 , [f 0
2 , f

0
3 ] = 2f 0

2 ;

• dimL = (3|1): there are seven pairwise non-isomorphic Lie superalgebras:

L1
3|1 : [f 0

2 , f
0
3 ] = f 0

1 , [f 0
2 , f

1
1 ] = f 1

1

L2
3|1 : [f 0

1 , f
0
3 ] = f 0

1 , [f 0
2 , f

0
3 ] = f 0

1 + f 0
2 , [f 0

3 , f
1
1 ] = qf 1

1 , q 6= 0;

L3
3|1 : [f 0

1 , f
0
3 ] = pf 0

1 − f 0
2 , [f 0

2 , f
0
3 ] = f 0

1 + pf 0
2 , [f 0

3 , f
1
1 ] = qf 1

1 , pq 6= 0;

L4
3|1 : [f 0

2 , f
0
3 ] = f 0

1 , [f 1
1 , f

1
1 ] = f 0

1 ;

L5
3|1 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = pf 0

3 , [f 0
1 , f

1
1 ] = 1

2
f 1

1 , [f 1
1 , f

1
1 ] = f 0

2 , p 6= 0;

L6
3|1 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = f 0

2 + f 0
3 , [f 0

1 , f
1
1 ] = 1

2
f 1

1 , [f 1
1 , f

1
1 ] = f 0

2 .

L7
3|1 : null bracket.

• dimL = (4|0): there are sixteen pairwise non-isomorphic Lie superalgebras:

L1
4|0 : null bracket;
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L2
4|0 : [f 0

1 , f
0
2 ] = f 0

3 ;

L3
4|0 : [f 0

1 , f
0
2 ] = f 0

1 ;

L4
4|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = f 0

2 + f 0
3 ;

L5
4|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = pf 0

3 , 0 < |p| ≤ 1;

L6
4|0 : [f 0

1 , f
0
2 ] = f 0

1 , [f 0
3 , f

0
4 ] = f 0

3 ;

L7
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = −2f 0

1 , [f 0
2 , f

0
3 ] = 2f 0

2 ;

L8
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = f 0

4 ;

L9
4|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = f 0

3 , [f 0
1 , f

0
4 ] = pf 0

3 , p 6= 0;

L10
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = f 0

4 , [f 0
1 , f

0
4 ] = pf 0

2 − qf 0
3 + f 0

4 , (p, q) ∈ C× × C or

(p, q) = (0, 0);

L11
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = f 0

4 , [f 0
1 , f

0
4 ] = p(f 0

2 + f 0
3 ), p 6= 0;

L12
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = f 0

4 , [f 0
1 , f

0
4 ] = f 0

2 ;

L13
4|0 : [f 0

1 , f
0
2 ] = 1

3
f 0

2 + f 0
3 , [f 0

1 , f
0
3 ] = 1

3
f 0

3 , [f 0
1 , f

0
4 ] = 1

3
f 0

4

L14
4|0 : [f 0

1 , f
0
2 ] = f 0

2 , [f 0
1 , f

0
3 ] = f 0

3 , [f 0
1 , f

0
4 ] = 2f 0

4 , [f 0
2 , f

0
3 ] = f 0

4 ;

L15
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = f 0

2 , [f 0
2 , f

0
3 ] = f 0

4 ;

L16
4|0 : [f 0

1 , f
0
2 ] = f 0

3 , [f 0
1 , f

0
3 ] = −pf 0

2 + f 0
3 , [f 0

1 , f
0
4 ] = f 0

4 , [f 0
2 , f

0
3 ] = f 0

4 , p 6= 0;

3.2 Superderivations of associative superalgebras

If A is a superalgebra, we have given the definition of superderivations of A in Defini-
tion 1.4. Let (A,L) be a Lie-Rinehart superalgebra. As an anchor ρ : L −→ L corresponds
to a family {ρ(x)}x∈L of superderivations of A, it seems quite natural to study and describe
superderivations spaces for all the superalgebras we deal with. We recall that in this case,
Der(A) has a Lie superalgebra structure, the bracket being given by the supercommutator.

For every associative superalgebra listed above, we give the general form of the su-
perderivations D. We describe D with respect to the basis

{
e0

1, e
0
2, . . . , e

0
n, e

1
1, e

1
2, . . . , e

1
p

}
of

the algebra Ak
n|p. We only write the non-zero values. All the parameters are complex and

independent in each column.
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Superalgebra Superderivations of degree 0 Superderivations of degree 1
A1

1|0 0 0

A1
1|1 D(e1

1) = λ1e
1
1 D(e1

1) = λ1e
0
1

A1
1|2 D(e1

1) = λ1e
1
1 + λ2e

1
2, D(e1

2) = λ3e
1
1 + λ4e

1
2 null

D(e1
1) = λ1e

1
1 + λ2e

1
2 + λ3e

1
3

A1
1|3 D(e1

2) = λ4e
1
1 + λ5e

1
2 + λ6e

1
3 null

D(e1
3) = λ7e

1
1 + λ8e

1
2 + λ9e

1
3

A1
2|0 D(e0

2) = λ1e
0
2 null

A2
2|0 null null

A1
2|1 D(e0

2) = λ1e
0
2, D(e1

1) = λ2e
1
1 D(e0

2) = λ1e
1
1, D(e1

1) = λ2e
0
2

A2
2|1 D(e1

1) = λ1e
1
1 D(e1

1) = λ1e
0
2

A1
2|2 D(e1

1) = λ1e
1
1, D(e1

2) = λ2e
1
2 D(e1

1) = λ1e
0
2, D(e1

2) = λ2(e0
1 − e0

2)

A2
2|2 D(e1

1) = λ1e
1
1 + λ2e

1
2, D(e1

2) = λ3e
1
1 + λ4e

1
2 null

A3
2|2

D(e0
2) = λ1e

0
2, D(e1

1) = λ2e
1
1 + λ3e

1
2, D(e0

2) = λ1e
1
2, D(e1

1) = λ2e
0
1 + λ3e

0
2,

D(e1
2) = (λ1 + λ2)e1

2 D(e1
2) = λ2e

0
2

A4
2|2

D(e0
2) = λ1e

0
2, D(e1

1) = λ2e
1
1 + λ3e

1
2, D(e0

2) = λ1e
1
1 + λ2e

1
2, D(e1

1) = λ3e
0
2

D(e1
2) = λ4e

1
1 + λ5e

1
2 D(e1

2) = λ2e
0
2

A5
2|2

D(e0
2) = λ1e

0
2, D(e1

1) = λ2e
1
1 + λ3e

1
2, D(e0

2) = λ1e
1
1 + λ2e

1
2, D(e1

1) = λ2e
0
1 + λ3e

0
2

D(e1
2) = λ4e

1
1 + (λ1 − λ2)e1

2 D(e1
2) = −λ1e

0
1 + λ4e

0
2

A1
3|0 null null

A2
3|0 D(e0

3) = λ1e
0
3 null

A3
3|0 D(e0

3) = λ1e
0
3 null

A4
3|0 D(e0

2) = λ1e
0
2 + λ2e

0
3, D(e0

3) = λ3e
0
2 + λ4e

0
3 null

A1
3|1 D(e1

1) = λ1e
1
1 D(e1

1) = λ1(e0
1 − e0

2 − e0
3)

A2
3|1 D(e0

3) = λ1e
0
3, D(e1

1) = λ2e
1
1 D(e1

1) = λ1(e0
1 − e0

2)

A3
3|1 D(e0

3) = λ1e
0
3, D(e1

1) = λ2e
1
1 D(e0

3) = λ1e
1
1, D(e1

1) = λ2e
0
3

A4
3|1

D(e0
2) = λ1e

0
2 + λ2e

0
3, D(e0

3) = 2λ1e
0
3, D(e0

2) = λ1e
1
1, D(e1

1) = λ2e
0
3D(e1

1) = λ3e
1
1

A5
3|1

D(e0
2) = λ1e

0
2 + λ2e

0
3, D(e0

3) = λ3e
0
2 + λ4e

0
3 D(e0

2) = λ1e
1
1, D(e0

3) = λ2e
1
1,

D(e1
1) = λ5e

1
1 D(e1

1) = λ3e
0
2 + λ4e

0
3

A1
4|0 null null

A2
4|0 D(e0

4) = λ1e
0
4 null

A3
4|0 D(e0

3) = λ1e
0
3, D(e0

4) = λ2e
0
4 null

A4
4|0 D(e0

3) = λ1e
0
3 + λ2e

0
4, D(e0

4) = 2λ1e
0
4 null

A5
4|0

D(e0
2) = λ1e

0
2 + λ2e

0
3 + λ3e

0
4, D(e0

4) = 3λ1e
0
4, null

D(e0
3) = 2λ1e

0
3 + 2λ2e

0
4

A6
4|0 D(e0

3) = λ1e
0
3 + λ2e

0
4, D(e0

4) = λ3e
0
3 + λ4e

0
4 null

A7
4|0 D(e0

2) = λ1e
0
2 + λ2e

0
4, D(e0

4) = λ3e
0
3 + λ24e0

4 null

A8
4|0

D(e0
2) = λ1e

0
2 + λ2e

0
3 + λ3e

0
4, D(e0

3) = 2λ1e
0
3 null

D(e0
4) = λ4e

0
3 + λ5e

0
4

D(e0
2) = λ1e

0
2 + λ2e

0
3 + λ3e

0
4

A9
4|0 D(e0

3) = λ4e
0
2 + λ5e

0
3 + λ6e

0
4 null

D(e0
4) = λ7e

0
2 + λ8e

0
3 + λ9e

0
4

3.3 Classification of Lie-Rinehart superalgebras

We provide in this section a classification of Lie-Rinehart superalgebras in low dimen-
sions, using the following general results and the computer algebra system Mathematica.
We write only non trivial and non zero relations. If (A,L) is a Lie-Rinehart superalgebra,
we denote its dimension by a tuple (n|p,m|q), where n = dimA0, p = dimA1, m = dimL0,
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q = dimL1. We say that an action is trivial if esi · f tj = f tj if i = 1, s = 0, and 0 otherwise.
Using properties of the degrees and basic calculations, we obtain some general results.

Proposition 3.1. If A is a supercommutative associative superalgebra and L a Lie superal-
gebra, then we can always endow the pair (A,L) with a Lie-Rinehart superstructure using
the trivial action and the null anchor.

Proof. If ρ(x)(a) = 0 ∀x ∈ L, ∀a ∈ A, it’s clear that ρ : L −→ Der(A) is an A-linear mor-
phism of Lie superalgebras and that ρ(x) is a superderivation. For y ∈ L, the compatibility
condition is then

[x, ay] = (−1)|a||x|a[x, y],

which is always satisfied, because the action is trivial.

Proposition 3.2. Let (A,L) be a Lie-Rinehart superalgebra. If dim(A,L) = (n|p, 0|0),
(1|0,m|q), or (1|p, 0|q), then the only possible structure is given by the trivial action and
the null anchor.

Proof. 1. (n|p, 0|0) case: immediate;

2. (1|0,m|q) case: if e0
1 is the unit of A, then e0

1 ·x = x ∀x ∈ L and ρ(x)(e0
1) = 0 ∀x ∈ L;

3. (1|p, 0|q) case: L0 = {0}, so the action is trivial. Let 1 ≤ k ≤ q and 1 ≤ l ≤ p. We
have

ρ(f 1
k )(e1

l ) = r1
(k,1)(l,1)e

0
1, r

1
(k,1)(l,1) ∈ C.

Then, using the fourth condition of the Definition 2.1,

0 = ρ(e1
l · f 1

k )(e1
l ) = e1

l ρ(f 1
k )(e1

l ) = e1
1 · r1

(k,1)(l,1)e
0
1 = r1

(k,1)(l,1)e
1
l .

So r1
(k,1)(l,1) = 0 and the anchor vanishes.

There are also some exceptional cases, found by computer calculations, where the only
suitable pair is the trivial action and the zero anchor, given by the following proposition:

Proposition 3.3. For the following Lie-Rinehart superalgebras, the only compatible ac-
tion/anchor pair is the trivial action and the zero anchor:(

A1
1|1,L

12
2|2
)
;
(
A1

1|1,L
6
3|0
)
;
(
A1

2|0,L
1
1|1
)
;
(
A1

2|0,L
2
1|2
)
;
(
A1

2|0,L
7
1|3
)
.

One notices that all supercommutative associative superalgebras in the above list have
a trivial multiplication, i.e. all the products vanishes, except the products involving the
unit. One may conjecture that if the only suitable pair of a Lie-Rinehart superalgebra
(A,L) is the trivial action and the zero anchor, then A must have a trivial multiplication.
This result is to be proven yet.

Proposition 3.4. • If dim(A,L) = (0|p,m|0), the action vanishes;
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• If dim(A,L) = (n|0, 0|q), the anchor vanishes.

• If dim(A,L) = (n|p,m|0) or (A,L) = (n|p, 0|q), the elements of A1 are acting by 0;

• If dim(A,L) = (n|0,m|q), the elements of L1 are acting (via the anchor) by 0.

Now, we list the Lie-Rinehart superalgebras which are not already classified by the
above results. They are arranged in lexicographic order of the tuple (n|p,m|q). For each
tuple, a table gives all the possible pairs, with all compatible actions and anchors. Every
row of a table gives a different Lie-Rinehart superstructure. We give here all the tables
with dim(A) ≤ 2 and dim(L) ≤ 2. The tables with dim(L) > 2 are given in Appendix 5.2.

(1|1, 1|0)-type: The only possible Lie-Rinehart superalgebra is given by the trivial action
and the anchor ρ(f 0

1 )(e1
1) = λe1

1, λ ∈ C.

(1|1, 1|1)-type: (λ ∈ C)

A L Action Anchor

A1
1|1

L1
1|1 e1

1 · f 1
1 = λf 0

1 null

L2
1|1

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 1

1 = λf 0
1 ρ(f 0

1 )(e1
1) = −e1

1, ρ(f 1
1 )(e1

1) = −λe0
1

e1
1 · f 0

1 = λf 1
1 ρ(f 0

1 )(e1
1) = e1

1

L3
1|1

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = λf 1
1 null

(1|1, 2|0)-type: (λ, µ ∈ C)

A L Action Anchor

A1
1|1

L1
2|0 trivial ρ(f 0

1 )(e1
1) = λe1

1, ρ(f 0
2 )(e1

1) = µe1
1

L2
2|0 trivial ρ(f 0

1 )(e1
1) = λe1

1

(2|0, 0|1)-type: The only remarkable pair is (A2
2|0,L

1
0|1), endowed with the null anchor

and the action e0
2 · f 1

1 = f 1
1 .

(2|0, 0|2)-type: Here L = L1
0|2 and the anchor is always null. We list the possible com-

patible actions for each supercommutative associative (2|0)-type superalgebra:

• A = A1
2|0:

1. e0
2 · f 1

2 = λf 1
1 , λ ∈ C;

2. e0
2 · f 1

1 = λf 1
1 + µf 1

2 , e0
2 · f 1

2 = −λ2

µ
f 1

1 − µf 1
2 , (λ, µ) ∈ C× C×.

• A = A2
2|0:

1. e0
2 · f 1

2 = λf 1
1 + f 1

2 , λ ∈ C;

2. e0
2 · f 1

1 = f 1
1 , e0

2 · f 1
2 = λf 1

1 , λ ∈ C;
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3. e0
2 · f 1

2 = f 1
2 ;

4. e0
2 · f 1

1 = f 1
1 , e0

2 · f 1
2 = f 1

2 ;

5. e0
2 · f 1

1 = λf 1
1 + µf 1

2 , e0
2 · f 1

2 = λ−λ2
µ
f 1

1 − (1− µ)f 1
2 , (λ, µ) ∈ C× C×.

(2|0, 1|0)-type: (λ ∈ C)

A L Action Anchor
A1

2|0 L1|0 trivial ρ(f 0
1 )(e0

2) = λe0
2

A2
2|0 L1|0 e0

2 · f 0
1 = f 0

1 null

(2|0, 1|1)-type: (λ ∈ C)

A L Action Anchor

A1
2|0

L2
1|1 trivial ρ(f 0

1 )(e0
2) = λe0

2

L3
1|1 trivial ρ(f 0

1 )(e0
2) = λe0

2

A2
2|0

L1
1|1 & L2

1|1 e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1 null

L3
1|1

e0
2 · f 1

1 = f 1
1

nulle0
2 · f 0

1 = f 0
1

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1

Remark 3.5. We see here that for A = A2
2|0, all the anchors are null. It is a straight-

forward consequence of the fact that the super derivations space of A2
2|0 is {0}.

(2|0, 2|0)-type: (λ ∈ C)

A L Action Anchor

A1
2|0

L1
2|0

trivial ρ(f 0
1 )(e0

2) = λe0
2, ρ(f 0

2 )(e0
2) = µe0

2

e0
2 · f 0

2 = λf 0
1 null

e0
2 · f 0

1 = λf 0
1 + µf 0

2 , e
0
2 · f 0

2 = −λ2

µ
f 0

1 − λf 0
2 , µ 6= 0 null

L2
2|0

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 0

1 = λf 0
2 ρ(f 0

1 )(e0
2) = e0

2

A2
2|0

L1
2|0

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2

null

e0
2 · f 0

2 = λf 0
1

e0
2 · f 0

2 = λf 0
2

e0
2 · f 0

2 = λf 0
1 + f 0

2

e0
2 · f 0

1 = λf 0
1 + µf 0

2 , µ 6= 0

e0
2 · f 0

2 = − (λ−1)λ
µ

f 0
1 + (1− λ)f 0

2

L2
2|0 e0

2 · f 0
1 = f 0

1 , e
0
2 · f 0

2 = f 0
2 null

Remark 3.6. For the non-graded cases, we recover some of the results obtained in [18].

Proposition 3.7. Let (A,L) be a Lie-Rinehart superalgebra, with dim(A) ≤ 2 and L
abelian. Then either the action is trivial, or the anchor is null.

Proof. Since L is abelian, the compatibility condition becomes: ρ(x)(a) · y = 0 for all
x, y ∈ L and a ∈ A.
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• A = A1
(1|0). We have already seen that the only compatible pair is the one with the

trivial action and the null anchor.

• A = A1
(1|1). f a = e0

1, ρ(x)(e0
1) = 0, so the compatibility condition is satisfied. If

a = e1
1, we have two cases, depending on the degree of x.

|x| = 0: it exists λ ∈ C such that ρ(x)(e1
1) = λe1

1. For y ∈ L, we obtain λe1
1 · y = 0. We

then have the following dichotomy: either λ = 0, which means that the anchor
is null, or e1

1 · y = 0, which means that the action is trivial.

|x| = 1: it exists λ ∈ C such that ρ(x)(e1
1) = λe0

1. For y ∈ L, we obtain λe0
1 · y = 0, so

λ = 0 and the anchor is null.

• A = A1
(2|0). We have ρ(x)(e0

1) = 0 for every x ∈ L. Let a = e0
2. We also have two

cases, depending on the degree of x:

|x| = 0: in this case, there exists λ, µ ∈ C such that ρ(x)(e0
2) = λe0

1 +µe0
2. We then have

0 = ρ(x)(e0
2) · y = λy + µe0

2 · y. If µ = 0, we obtain λy = 0, so λ = 0 and the
anchor is null. If µ 6= 0, we have e0

2 · y = −λ
µ
y.

The fourth condition of the Definition 2.1 gives us ρ(e0
2 · x)(e0

2) = e0
2ρ(x)(e0

2), so
−λ2

µ
e0

1 − λe0
2 = λe0

2.

We conclude that λ = 0 and the action is trivial.

|x| = 1: ρ(x)(e0
2) ∈

(
A1

(2|0)

)
1

= {0}, so the anchor is null.

• A = A2
(2|0). The superderivations space is reduced to {0}, so all the anchors are

null.

4 Deformation theory of Lie-Rinehart superalgebras

In this section, we provide a deformation theory of Lie-Rinehart superalgebras. The
following results are strongly inspired by [14], where the authors discussed a deformation
theory of Hom-Lie-Rinehart algebras, including Lie-Rinehart algebras. We also use results
from [22] and [5]. One needs a cohomology complex constructed below and that controls
deformations.

We could deform four different operations: the multiplication of A, the Lie bracket of
L, the action Ay L and the anchor map ρ : L −→ Der(A). Here, we restrict ourselves to
deforming only the bracket of L and the anchor map ρ. It follows that the multiplication
of A and the action Ay L remain undeformed in the following theory.

All the superalgebras are now K-superalgebras, K being a characteristic zero field.
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4.1 Super-multiderivations

Let A be a supercommutative associative K-superalgebra, M an A-module and L an
A-Lie-Rinehart superalgebra with bracket [·, ·] and anchor map ρ. We recall that both
maps are even.

Definition 4.1 (Super-multiderivations space). We define Dern(M,M) as the space of mul-
tilinear maps

f : M×n+1 −→M

such that there exists σf : M⊗n −→ Der(A) (called symbol map),

1. For all i ∈ {1, . . . , n}:

f(x1, · · · , xi, xi+1, · · · , xn+1) = −(−1)|xi||xi+1|f(x1, · · · , xi+1, xi, · · · , xn+1),

2. For all a ∈ A:

f(x1, · · · , xn, axn+1) = (−1)|a|(|f |+|x1|+···+|xn|)af(x1, · · · , xn+1)

+ σf (x1, · · · , xn)(a)(xn+1).

Remark 4.2. With this definition, we can check that the bracket [·, ·] on L belongs to
Der1(L,L), with symbol map given by the anchor ρ.

We define

Der∗(M,M) =
⊕
n≥−1

Dern(M,M), with Der−1(M,M) = M.

Every space Dern(M,M) has a natural Z2-graduation, given by

|D| = j ∈ Z2 ⇐⇒ |D(x1, · · · , xn+1)| −
∑
i

|xi| = j mod 2, for D ∈ Dern(M,M).

We have

Der∗(M,M) =
⊕
n

(Dern(M,M)) =
⊕
n

(Dern0 (M,M)⊕Dern1 (M,M)) .

Next, we provide a bracket on Der∗(M,M). We adapt the formula of the Nijenhuis-
Richardson bracket ([16]) to the super case. As explained in [22], the space of super-
multiderivations Der∗(M,M) is a Z-graded Lie-algebra, but not a bigraded Lie algebra.
For f ∈ Derp(M,M) and g ∈ Derq(M,M), we define

(f ◦ g)(x1, · · · , xp+q+1)

=
∑

τ∈Sh(q+1,p)

ε(τ, x1, · · · , xp+q+1)f
(
g(xτ(1), · · · , xτ(q+1)), xτ(q+2), · · · , xτ(p+q+1)

)
,
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where Sh(q+ 1, p) denotes the set of all permutations τ of {0, 1, · · · , q, · · · p+ q} such that

τ(0) < τ(1) < · · · < τ(q) and τ(q + 1) < · · · < τ(p+ q).

The sign ε(τ, x1, · · · , xp+q+1) is implicitly defined by the permutation τ with respect to the
parity of the homogeneous elements x1, · · · , xp+q+1 ∈ L. For example, if τ = (i, i + 1) is
an elementary transposition, then

ε(τ, x1, · · · , xp+q+1) = sgn(τ)(−1)|xi||xi+1| = −(−1)|xi||xi+1|.

Some computations for τ ∈ S3 can be found in [2]. An explicit expression of ε is given in
[5].

Proposition 4.3 ([22]). For f ∈ Derp(M,M) and g ∈ Derq(M,M), we define a bracket by

[f, g] = f ◦ g − (−1)pqg ◦ f,

with symbol map σ[f,g] = σf ◦ g − (−1)pqσg ◦ f + [σf , σg] and

[σf , σg](x1, · · · , xp+q) =
∑
Sh(p,q)

ε(τ, x1, · · · , xp+q)[σf (xτ(1), · · · , τp), σg(xτ(p+1), · · · , τp+q)].

With this bracket, Der∗(M,M) has a Z-graded Lie algebra structure.

Remark 4.4. The reader should be aware that in [VL15], different conventions are adopted,
but the result remains unchanged.

4.2 Deformation complex

Let (A,L) be a Lie-Rinehart superalgebra. We construct a deformation complex.

Proposition 4.5. There is a one-to-one correspondence between Lie-Rinehart superstruc-
tures on (A,L) and elements m ∈ Der1(L,L) such that [m,m] = 0.

Proof. Let (A,L, [·, ·], ρ) be a Lie-Rinehart superalgebra. We set m := [·, ·], with symbol
map σm := ρ. We have m ∈ Der1(L,L). The super-Jacobi identity for x1, x2, x3 ∈ L is

[x1, [x2, x3]]− [[x1, x2], x3]− (−1)|x1||x2|[x2, [x1, x3]] = 0.

Since |m| = 1, we have [m,m](x1, x2, x3) = 2m ◦m(x1, x2, x3). Or, by using computa-
tions on S3 done in [2] for the signs, we get

m ◦m(x1, x2, x3)

= m (m(x1, x2), x3)− (−1)|x2||x3|m (m(x1, x3), x2) + (−1)|x1||x2|+|x1||x3|m (m(x2, x3), x1)

= [[x1, x2], x3] + (−1)|x1||x2|[x2, [x1, x3]]− [x1, [x2, x3]]

= 0.

Conversly, let m ∈ Der1(L,L) such that [m,m] = 0. By setting [·, ·] := m and ρ := σm, we
obtain a Lie-Rinehart superstructure on (A,L).
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Hence, we can identify Lie-Rinehart superstructures on (A,L) and the corresponding
element m ∈ Der1(L,L). We set

Cn
def (L,L) := Dern−1(L,L) and C∗def (L,L) :=

⊕
n≥0

Cn
def (L,L),

which we endow with an operator

δ : Cn
def (L,L) −→ Cn+1

def (L,L), D 7−→ [m,D],

with an explicit formula given by

(δD)(x1, · · · , xn+1)

=
(
m ◦D − (−1)n−1D ◦m

)
(x1, · · · , xn+1)

=
∑

τ∈Sh(n,1)

ε(τ, x1, · · · , xn+1)m
(
D(xτ(1), · · · , xτ(n)), xτ(n+1)

)
− (−1)n−1

∑
τ∈Sh(2,n−1)

ε(τ, x1, · · · , xn+1)D
(
m(xτ(1), xτ(2)), xτ(3), · · · , xτ(n+1)

)
=

n+1∑
i=1

εim (D(x1, · · · , x̂i, · · · , xn+1), xi)

− (−1)n−1
∑

1≤i<j≤n

εjiD (m(xi, xj), x1, · · · , x̂i, · · · , x̂j, · · · , xn+1) ,

where εi and εji denote the signs associated to the permutations with respect to the parity
of the homogeneous elements x1, · · · , xn+1 ∈ L and D ∈ Der∗(L,L).

Proposition 4.6. The operator δ is a differential, i.e. δ2 = 0.

Proof. Let D ∈ Cn
def (L,L). We have

δ2(D) = [m, [m,D]] = [[m,m], D] + (−1)|m||m|[m, [m,D]] = 0− [m, [m,D]].

Then [m, [m,D]] = −[m, [m,D]], so [m, [m,D]] = 0.

This enables us to define a cohomology complex, which will be used next in the de-
formation theory of Lie-Rinehart superalgebras. Therefore we call it deformation co-
homology. For p, q ∈ Z, we have the usual definitions of p-cocycles and q-coboundaries,
denoted respectively by Zp

def (L) and Bq
def (L). Finally we set Hp

def (L) := Zp
def (L)/Bp

def (L)
to be the p-th cohomology group. We have

Z1
def (L) = ker(δ1)

=
{
D ∈ Der0(L), D ([x, y]) = [D(x), y]− (−1)|x||y| [D(y), x] ∀x, y ∈ L

}
,
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and Z2
def (L) = ker(δ2) is the set consisting of D ∈ Der1(L) which satisfies the condition:

[D(x, y), z] − (−1)|y||z| [D(x, z), y] + (−1)|x||y|+|x||z| [D(y, z), x]

= −D ([x, y], z) + (−1)|y||z|D ([x, z], y) + (−1)|x||y|+|x||z|D ([y, z], x) ,

for all x, y, z ∈ L.

4.3 Formal deformations

In this section, we discuss deformation theory of Lie-Rinehart superalgebras and show
that the deformations are controlled by the cohomology defined above. Notice that in
the sequel, we aim to deform the Lie bracket and the anchor while we keep fixed the
multiplication of the associative superalgebra and its action. We denote by K[[t]] (resp.
L[[t]]) the formal power series ring in t with coefficients in K (resp. the formal space in t
with coefficients in the vector superspace L).

Definition 4.7. Let (A,L, [·, ·], ρ) be a Lie-Rinehart superalgebra over a field K of char-
acteristic zero, and let m ∈ Der1(L,L) be the corresponding element obtained by Propo-
sition 4.5. A deformation of the Lie-Rinehart superalgebra is given by a K[[t]]-bilinear
map

mt : L× L −→ L[[t]], mt(x, y) =
∑
i≥0

timi(x, y),

such that m0 = m and mi ∈ Der1(L,L) with symbol map denoted by σmi
for i ≥ 1,

satisfying [mt,mt] = 0, the bracket being the Z-graded bracket on Der∗(L[[t]], L[[t]]).

Remark 4.8. The map mt defined on L × L can be extended to a map on L[[t]] × L[[t]]
using the K[[t]]-bilinearity.

We check that mt is a 1-degree super-multiderivation of L[[t]], with symbol map given
by σmt =

∑
i t
iσmi

. As a consequence, mt gives rise to a Lie-Rinehart superstructure on
(A[[t]], L[[t]]), with bracket [·, ·]t := mt and anchor ρt := σmt .

Remark 4.9. The first non-zero element mi of the deformation is called the infinitesimal
of the deformation.

Since mt satisfies [mt,mt] = 0, we have

mt(x1,mt(x2, x3)) = mt(mt(x1, x2), x3) + (−1)|x1||x2|mt(x2,mt(x1, x3)). (1)

This equation is called deformation equation and is equivalent to an infinite system by
identifying the coefficients of t.

Theorem 4.10. Let mt be a deformation of a Lie-Rinehart superalgebra (A,L). Then
the infinitesimal of the deformation m1 is a 2-cocycle with respect to the deformation
cohomology.
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Proof. By taking the coefficients of t in Equation (1), we obtain

m1(x1,m(x2, x3))−m1(m(x1, x2), x3)− (−1)|x1||x2|m1(x2,m(x1, x3))

+m(x1,m1(x2, x3))−m(m1(x1, x2), x3)− (−1)|x1||x2|m(x2,m1(x1, x3)) = 0.

Using [2] for the signs, we get

[m,m1](x1, x2, x3) = m(m1(x1, x2), x3)− (−1)|x2||x3|m(m1(x1, x3), x2)

+ (−1)|x1||x2|+|x1||x3|m(m1(x2, x3), x1) +m1(m(x1, x2), x3)

− (−1)|x2||x3|m1(m(x2, x3), x1) + (−1)|x1||x2|+|x1||x3|m1(m(x2, x3), x1)

= m(m1(x1, x2), x3) + (−1)|x1||x2|m(x2,m1(x1, x3))

−m(, x1,m1(x2, x3)) +m1(m(x1, x2), x3)

+ (−1)|x1||x2|m1(x2,m(x1, x3))−m1(x1,m(x2, x3))

= 0.

4.4 Equivalence of deformations

Let (A,L, [·, ·], ρ) be a Lie-Rinehart superalgebra and m the associated element of
Der(L,L). Let mt and m′t be two deformations of m.

Definition 4.11. We say that mt and m′t are equivalent if there exists an even formal
automorphism Φt of L[[t]], that can be written Φt = id+

∑
i≥1 t

iφi, with φi : L −→ L even
K-linear maps, such that Φt ◦m′t(x, y) = mt(Φt(x),Φt(y)). We write mt ∼ m′t.

Definition 4.12. A deformation is said to be trivial if it is equivalent to the deformation
given by m0

t =
∑
tim0

i , with m0
0 = m and m0

i = 0 for i ≥ 1.

We recall that we have a short exact sequence

0 −→ B2
def (L) −→ Z2

def (L)
π−→ H2

def (L) −→ 0.

We denote µ = π(µ) for µ ∈ Z2
def (L).

Theorem 4.13. For a deformation mt of m, the cohomology class of the infinitesimal
element m1 is determined by the equivalence class of mt.

Remark 4.14. In other words, we have mt ∼ m′t =⇒ m1 = m′1.

Proof. Let mt and m′t be two equivalent deformations of m and Φt the associated formal
automorphism. By definition, we have Φt ◦ m′t(x, y) = mt(Φt(x),Φt(y)), that can be
rewritten

∑
k,i t

k+1φk(m
′
i(x, y)) =

∑
j,p,q t

j+p+qmj (φp(x), φq(y)) . By identifying coefficients
of t, we obtain

m1(x, y)−m′1(x, y) = φ1(m(x, y))−m(φ1(x), y)−m(x, φ1(y)).

Since δ(φ1) = m(φ1(x), y) + m(x, φ1(y)) − φ1(m(x, y)), we have m′1 −m1 = δ(φ1). It
follows that m′1 = m1 + δ(φ1), so m1 = m′1 ∈ H2

def (L).



86 Quentin Ehret and Abdenacer Makhlouf

Definition 4.15. A Lie-Rinehart superalgebra is said to be rigid if every deformation is
trivial.

Theorem 4.16. Any non-trivial deformation of m ∈ Der1(L,L) is equivalent to a defor-
mation whose infinitesimal is not a coboundary.

Remark 4.17. That can be reformulated as if all the elements mi are coboundaries, then
mt ∼ m0

t .

Proof. Suppose m1 is a coboundary: ∃φ ∈ C1
def = Der0(L,L) such that m1 = δ(φ). We

show that m1 = 0. We set Φt = id + tφ and define m′t := Φt ◦mt ◦ Φ−1
t . Then we have

mt ∼ m′t, that is ∑
j

tjmj((Φt(x),Φt(y)) = Φt

(∑
i

tim′i(x, y)

)
,

which is equivalent to∑
j,k,l

tj+k+lmj (φk(x), φl(y)) =
∑
i,p

ti+pφp(m
′
i(x, y)).

By identifying the coefficients of t, we get

m′1(x, y)−m1(x, y) = φ(m(x, y))−m′(φ(x), y)−m′(x, φ(y)) = −δ(φ).

Then, we have m′1−m1 = −δ(φ) = −m1, so m′1 = 0. By repeating the argument, we show
that if mi ∈ B2, then mi = 0.

Corollary 4.18. If H2
def (L) = 0, any deformation is equivalent to a trivial deformation.

Proof. If H2
def (L) = 0, the infinitesimal is a coboundary. According to the theorem, the

deformation is equivalent to a trivial deformation.

4.5 Obstructions

Let (A,L, [·, ·], ρ) be a Lie-Rinehart superalgebra, m the associated element of Der(L,L)
and N ∈ N, N ≥ 1. We say that mt is a deformation of m of order N or N -order
deformation if

mt =
N∑
k=0

tkmk, mk ∈ Der1(L,L) and [mt,mt] = 0.

Here we aim to extend a N -order deformation mt to a (N + 1)-order deformation, i.e. find
mN+1 ∈ Der1(L,L) such that m′t = mt + tN+1mN+1 is a deformation of m.

The condition on mN+1 is expressed by the following deformation equation

δmN+1(a, b, c) =
∑
i+j=N
i,j>0

mi(a,mj(b, c))−mi(mj(a, b), c)− (−1)|a||b|mi(b,mj(a, c)).
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Definition 4.19. We set, for a, b, c ∈ L,

θN(a, b, c) =
∑
i+j=N
i,j>0

mi(a,mj(b, c))−mi(mj(a, b), c)− (−1)|a||b|mi(b,mj(a, c)).

It’s immediate that θN ∈ C3
def (L,L) = Der2(L,L). The map θN is called the obstruction

cochain of the N -order deformation mt.

Lemma 4.20.

θN = −1

2

∑
i+j=N
i,j>0

[mi,mj].

Corollary 4.21. The map θN is a 3-cocycle.

Proof. Using graded Jacobi, we have

δ(θN) = [m, θN ] = −1

2

∑
i+j=N
i,j>0

[m, [mi,mj]] = −1

2

∑
i+j=N
i,j>0

[[m,mi],mj] +
1

2

∑
i+j=N
i,j>0

[mi, [m,mj]] .

Since [m, θN ] = 0 if and only if
∑

i+j=N
i,j>0

[[m,mi],mj] =
∑

i+j=N
i,j>0

[mi, [m,mj]], it follows

that
∑

i+j=N
i,j>0

[mj, [m,mi]] =
∑

i+j=N
i,j>0

[mi, [m,mj]].

Theorem 4.22. Let mt be a N-order deformation of m. Then mt extends to a (N+1)-order
deformation if and only if θN is a 3-coboundary.

Proof. (⇒) Suppose that m′t is a (N + 1)-order deformation of m. Then m′t satisfies the
graded Jacobi identity, that is for a, b, c ∈ L:

m′t(a,m
′
t(b, c))−m′t(m′t(a, b), c)− (−1)|a||b|m′t(b,m

′
t(a, c)) = 0.

By expanding and collecting the coefficients of tN+1, we have∑
i+j=N+1

i,j≥0

mi(a,mj(b, c))−mi(mj(a, b), c)− (−1)|a||b|mi(b,mj(a, c)) = 0,

which is equivalent to −[m,mN+1] + θN(a, b, c) = 0. As a consequence,

θN(a, b, c) = δ(mN+1).

(⇐) Suppose θN is a coboundary: it exists ϕ ∈ C2
def (L) such that θN = δϕ = [m,ϕ]. We

need to show that m′t = mt + tN+1ϕ is a (N + 1)-order deformation of m. We write∑
i+j=N+1

i,j>0

mi(a,mj(b, c))−mi(mj(a, b), c)− (−1)|a||b|mi(b,mj(a, c)) = [m,ϕ],
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and it follows that∑
i+j=N+1

i,j≥0

mi(a,mj(b, c))−mi(mj(a, b), c)− (−1)|a||b|mi(b,mj(a, c)) = [m,ϕ] = 0.

With this equality and with the fact that mt already satisfies the super-Jacobi iden-
tity, we deduce that m′t is a (N + 1)-order deformation of m.

Corollary 4.23. If H3
def (L) = 0, any N-order deformation extends to a (N + 1)-order

deformation.

4.6 Rigid (1|1, 1|1)-type Lie-Rinehart superalgebra

In order to provide an example of a rigid Lie-Rinehart superalgebra, consider the pair(
A1

1|1,L
1
1|1

)
(product on A1

1|1 : e1
1e

1
1 = 0; bracket on L1

1|1 : [f 1
1 , f

1
1 ] = f 0

1 ), endowed with

the null anchor and the action given by e1
1 · f 1

1 = λf 0
1 , λ ∈ C. Using Proposition 4.5, the

bracket [·, ·] corresponds to m ∈ Der1(L), with symbol map σm = ρ. We will show that
(A,L) endowed with this Lie-Rinehart superstructure is rigid.

Lemma 4.24. Let (A,L) being endowed with the structure above and let D ∈ Dern(L). If
D = 0, then σD(X)(a) = 0 for all X ∈ L×n and all a ∈ A.

Now we aim to compute explicitly elements of Z2
def (L). We set the general form of a

2-cochain (D, σD):
D(f 0

1 , f
0
1 ) = 0,

D(f 0
1 , f

1
1 ) = γ0f

0
1 + γ1f

1
1 ,

D(f 1
1 , f

1
1 ) = θ0f

0
1 + θ1f

1
1 ,


σD(f 0

1 )(e0
1) = σD(f 1

1 )(e0
1) = 0,

σD(f 0
1 )(e1

1) = p0e
0
1 + p1e

1
1,

σD(f 1
1 )(e1

1) = q0e
0
1 + q1e

1
1.

All the parameters belong to C. The following result gives us conditions on these param-
eters for (D, σD) to belong to Z2

def (L).

Lemma 4.25. Let (A,L) be a Lie-Rinehart superalgebra endowed with the above structure
and let (D, σD) ∈ Z2

def (L). Then
D(f 0

1 , f
0
1 ) = 0,

D(f 0
1 , f

1
1 ) = γf 0

1 ,

D(f 1
1 , f

1
1 ) = θf 0

1 − γf 1
1 ,


σD(f 0

1 )(e0
1) = σD(f 1

1 )(e0
1) = 0,

σD(f 0
1 )(e1

1) = 0,

σD(f 1
1 )(e1

1) = q0e
0
1 + q1e

1
1.

Proof. Suppose (D, σD) ∈ Z2
def (L). Then δ(D) = [m,D] = 0. Evaluating this equation on

the basis elements f 0
1 , f

1
1 of L, we find

[m,D](f 1
1 , f

0
1 , f

1
1 ) = −2γ1f

0
1 and [m,D](f 1

1 , f
1
1 , f

1
1 ) = (γ0 + θ1)f 0

1 + γ1f
1
1 ,
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all other possible combinations being zero. Now if u = u0f
0
1 + u1f

1
1 , v = v0f

0
1 + v1f

1
1 and

w = w0f
0
1 + w1f

1
1 , we have

[m,D](u, v, w) = −2u1v0w1γ1f
0
1 + u1v1w1

(
(γ0 + θ1)f 0

1 + γ1f
1
1

)
= 0.

Setting t0 := −2u1v0w1 and t1 := u1v1w1, we get{
t0γ1 + t1(γ0 + θ1) = 0

t1γ1 = 0.

As a consequence, γ1 = 0 and γ0 = −θ1. One gets the expression in the Lemma by setting
γ0 =: γ and θ0 =: θ.

Then, we know by Lemma 4.24 that σ[m,D](z)(a) = 0 for any z ∈ L and a ∈ A. In this
case σ[m,D] = ρ ◦D + σD ◦m+ [ρ, σD] = σD ◦m, because ρ = 0. Therefore, we have

σ[m,D](f
0
1 , f

0
1 ) = 0

σ[m,D](f
0
1 , f

1
1 ) = 0

σ[m,D](f
1
1 , f

1
1 )(e1

1) = σD(f 0
1 )(e1

1) = p0e
0
1 + p1e

1
1.

Since σ[m,D] = 0, we obtain p0 = p1 = 0.

For ∆ ∈ C1
def (L), we have σ∆ = 0. We aim to describe B2

def (L). We write for
λ0, λ1, µ0, µ1 ∈ C: {

∆(f 0
1 ) = λ0f

0
1 + λ1f

1
1 ,

∆(f 1
1 ) = µ0f

0
1 + µ1f

1
1 .

Then we have:

[m,∆](f 0
1 , f

0
1 ) = 0,

[m,∆](f 0
1 , f

1
1 ) = λ2x,

[m,∆](f 1
1 , f

1
1 ) = (2µ1 − λ0)f 0

1 − λ1f
1
1 .

Proposition 4.26. If (A,L) is endowed with the above structure, then B2
def (L) = Z2

def (L),
that is, H2

def (L) = {0}. Thus, (A,L) is rigid.

Proof. Let D ∈ Z2
def (L), given by the Lemma 4.25. We need to find ∆ ∈ C1

def (L) such
that

[m,∆] = D and σ[m,∆] = σD.

If we set {
∆(f 0

1 ) = λ0f
0
1 + γf 1

1

∆(f 1
1 ) = µ0f

0
1 + θ+λ0

2
f 1

1 ,

for arbitrary λ0 and µ0, we have [m,∆] = D. Because σ∆ = 0, we have σ[m,∆] = ρ ◦ ∆.
But both those terms are zero, so this last equation is verified.
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5 Appendix

5.1 Supercommutative associative superalgebras

We list supercommutative associative superalgebras with unit. We denote basis ele-
ments of A0 by e0

i and those of A1 by e1
j . The unit is e0

1.

• The purely odd superalgebras A0|p always have a zero product.

• dimA = (1|0): there is only one unital supercommutative associative superalgebra
A1

1|0, with product e0
1e

0
1 = e0

1.

• dimA = (1|1): there is only one unital supercommutative associative superalgebra
A1

1|1 with product e1
1e

1
1 = 0.

• dimA = (1|p), p ≥ 2: we have (A1)2 = {0} ([3]).

• dimA = (2|0): there are two pairwise non-isomorphic unital supercommutative as-
sociative superalgebras:

A1
2|0 : every non-trivial product is zero;

A2
2|0 : e0

2e
0
2 = e0

2.

• dimA = (2|1): there are two pairwise non-isomorphic unital supercommutative as-
sociative superalgebras:

A1
2|1 : every non-trivial product is zero;

A2
2|1 : e0

2e
0
2 = e0

2, e
0
2e

1
1 = e1

1.

• dimA = (2|2): there are five pairwise non-isomorphic unital supercommutative as-
sociative superalgebras:

A1
2|2 : e0

2e
0
2 = e0

2, e
0
2e

1
1 = e1

1;

A2
2|2 : e0

2e
0
2 = e0

2;

A3
2|2 : e0

2e
1
1 = e1

2;

A4
2|2 : every non-trivial product is zero;

A5
2|2 : e1

1e
1
2 = e0

2.

• dimA = (3|0): there are four pairwise non-isomorphic unital supercommutative
associative superalgebras:
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A1
3|0 : e0

2e
0
2 = e0

2, e
0
2e

0
3 = e0

3, e
0
3e

0
3 = e0

3;

A2
3|0 : e0

2e
0
2 = e0

2, e
0
2e

0
3 = e0

3;

A3
3|0 : e0

2e
0
2 = e0

2;

A4
3|0 : every non-trivial product is zero;

• dimA = (3|1): there are five pairwise non-isomorphic unital supercommutative as-
sociative superalgebras:

A1
3|1 : e0

2e
0
2 = e0

2, e
0
3e

0
3 = e0

3;

A2
3|1 : e0

2e
0
2 = e0

2, e
0
2e

0
3 = e0

3;

A3
3|1 : e0

2e
0
2 = e0

2;

A4
3|1 : e0

2e
0
2 = e0

3;

A5
3|1 : every non-trivial product is zero;

• dimA = (4|0): there are nine pairwise non-isomorphic unital supercommutative
associative superalgebras:

A1
4|0 : e0

2e
0
2 = e0

2, e
0
3e

0
3 = e0

3, e
0
4e

0
4 = e0

4;

A2
4|0 : e0

2e
0
2 = e0

2, e
0
3e

0
3 = e0

3;

A3
4|0 : e0

2e
0
2 = e0

2 e
0
2e

0
3 = e0

3;

A4
4|0 : e0

2e
0
2 = e0

2, e
0
2e

0
3 = e0

3, e
0
2e

0
4 = e0

4, e
0
3e

0
3 = e0

4;

A5
4|0 : e0

2e
0
2 = e0

3, e
0
2e

0
3 = e0

4;

A6
4|0 : e0

2e
0
2 = e0

2, e
0
2e

0
3 = e0

3, e
0
2e

0
4 = e0

4;

A7
4|0 : e0

2e
0
3 = e0

4;

A8
4|0 : e0

3e
0
3 = e0

3;

A9
4|0 : every non-trivial product is zero.

5.2 Lie-Rinehart superalgebras with dim(L) > 2

(2|0, 0|3) and (2|0, 0|4)-type: We already know that the anchor vanishes. There are too
many suitable actions to be listed here (90 just for the pair (A2

2|0,L
1
0|3), for example).

(2|0, 3|0)-type, (2|0, 3|1)-type and (2|0, 4|0)-type: no results to mention here.
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A L Action Anchor

A1
1|1

L1
1|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

e1
1 · f 0

1 = µf 1
2 ρ(f 0

1 )(e1
1) = pe1

1

L2
1|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 null

L3
1|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

A1
1|1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

L4
1|2

triviale ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µ(f 1
1 − if 1

2 ) ρ(f 0
1 )(e1

1) = (p− i)e1
1

e1
1 · f 0

1 = µ(f 1
1 + if 1

2 ) ρ(f 0
1 )(e1

1) = (p+ i)e1
1

L5
1|2 e1

1 · f 1
1 = µf 0

1 , e
1
1f

1
2 = γf 0

1 null

L6
1|2

trivial ρ(f 1
1 )(e1

1) = λe0
1

e1
1 · f 1

1 = λf 0
1 , e

1
1 · f 1

2 = µf 0
1 null

e1
1 · f 0

1 = λf 1
1 + µf 1

2 null

Table 1: (1|1, 1|2)-type, (λ, µ, γ ∈ C)
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A L Action Anchor

A1
1|1

L1
1|3

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

e1
1 · f 0

1 = µf 1
2 ρ(f 0

1 )(e1
1) = pe1

1

e1
1 · f 0

1 = µf 1
3 ρ(f 0

1 )(e1
1) = qe1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L2
1|3 e1

1 · f 0
1 = µf 1

2 null

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L3
1|3 e1

1 · f 0
1 = µf 1

1 ρ(f 0
1 )(e1

1) = pe1
1

e1
1 · f 0

1 = µf 1
2 ρ(f 0

1 )(e1
1) = e1

1

L4
1|3 trivial ρ(f 0

1 )(e1
1) = λe1

1

L4
1|3

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = pe1

1

e1
1 · f 0

1 = γ(f 1
2 − if 1

3 ) ρ(f 0
1 )(e1

1) = (q − i)e1
1

e1
1 · f 0

1 = γ(f 1
2 + if 1

3 ) ρ(f 0
1 )(e1

1) = (q + i)e1
1

L5
1|3

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 null

L6
1|3

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

L7
1|3 e1

1 · f 1
1 = µf 0

1 , e
1
1 · f 1

2 = γf 0
1 , e

1
1 · f 1

3 = λf 0
1 null

L8
1|3

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 1

1 = λf 0
1 , e

1
1 · f 1

2 = µf 0
1 null

e1
1 · f 1

3 = γf 0
1

e1
1 · f 0

1 = λf 1
1 + µf 1

2 + γf 1
3 null

Table 2: (1|1, 1|3)-type, (λ, µ, γ ∈ C)

A L Action Anchor

A1
1|1

L1
2|1

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 1

1 = λf 0
1 + µf 0

2 null

L2
2|1

trivial ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

e1
1 · f 0

1 = λf 1
1 , e

1
1 · f 0

2 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1, ρ(f 0
2 )(e1

1) = −e1
1

L3
2|1 trivial ρ(f 0

1 )(e1
1) = λe1

1

L4
2|1

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = pe1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L5
2|1 e1

1 · f 0
1 = µf 1

1 null

e1
1 · f 1

1 = µf 0
2 ρ(f 0

1 )(e1
1) = e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

L6
2|1 e1

1 · f 1
1 = λf 0

1 + µf 0
2 null

e1
1 · f 0

1 = λf 1
1 , e

1
1 · f 0

2 = µf 1
1 null

Table 3: (1|1, 2|1)-type, (λ, µ ∈ C)
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A L Action Anchor

A1
1|1

L1
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

e1
1 · f 0

1 = λf 1
1 , e

1
1 · f 0

2 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

e1
1 · f 0

1 = λ(−if 1
1 + f 1

2 ) ρ(f 0
1 )(e1

1) = e1
1, ρ(f 0

2 )(e1
1) = ie1

1

L2
2|2 e1

1 · f 0
1 = λ(if 1

1 + f 1
2 ), e1

1 · f 0
2 = µ(if 1

1 + f 1
2 ) ρ(f 0

1 )(e1
1) = e1

1, ρ(f 0
2 )(e1

1) = −ie1
1

e1
1 · f 0

1 = λ(f 1
1 − if 1

2 ), e1
1 · f 0

2 = µ(f 1
1 − if 1

2 ) ρ(f 0
1 )(e1

1) = e1
1, ρ(f 0

2 )(e1
1) = −ie1

1

e1
1 · f 0

1 = λ(f 1
1 + if 1

2 ), e1
1 · f 0

2 = µ(f 1
1 + if 1

2 ) ρ(f 0
1 )(e1

1) = e1
1, ρ(f 0

2 )(e1
1) = ie1

1

L3
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = λf 1
2 ρ(f 0

1 )(e1
1) = qe1

1

e1
1 · f 0

1 = λf 1
1 ρ(f 0

1 )(e1
1) = pe1

1

L4
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = λf 1
1 ρ(f 0

1 )(e1
1) = pe1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = λ(f 1
1 − if 1

2 ) ρ(f 0
1 )(e1

1) = (p− iq)e1
1

L5
2|2 e1

1 · f 0
1 = λ(f 1

1 + if 1
2 ) ρ(f 0

1 )(e1
1) = (p+ iq)e1

1

e1
1 · f 0

1 = λ(if 1
1 + f 1

2 ) ρ(f 0
1 )(e1

1) = (p− iq)e1
1

e1
1 · f 0

1 = λ(−if 1
1 + f 1

2 ) ρ(f 0
1 )(e1

1) = (p+ iq)e1
1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L6
2|2 e1

1 · f 0
1 = λf 1

2 , e
1
1 · f 0

2 = −λf 1
1 ρ(f 0

1 )(e1
1) = pe1

1

e1
1 · f 0

1 = λf 1
1 ρ(f 0

1 )(e1
1) = (1 + p)e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L7
2|2 e1

1 · f 0
1 = λ(f 1

1 − if 1
2 ), e1

1 · f 1
1 = 2λf 0

2 ρ(f 0
1 )(e1

1) = 1
2
e1

1e1
1 · f 1

2 = ±2iλf 0
2

L8
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
2 ρ(f 0

1 )(e1
1) = 1

2
e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L9
2|2 e1

1 · f 0
1 = λf 1

2 , e
1
1 · f 1

1 = 1
p
f 0

2 ρ(f 0
1 )(e1

1) = (1− p)e1
1

e1
1 · f 0

1 = (1− p)λf 1
1 , e

1
1 · f 1

2 = λf 0
2 ρ(f 0

1 )(e1
1) = pe1

1

A1
1|1

L10
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = µf 1
1 ρ(f 0

1 )(e1
1) = 1

2
e1

1

trivial ρ(f 0
1 )(e1

1) = λe1
1

L11
2|2 e1

1 · f 0
1 = λ(−if 1

1 + f 1
2 ), e1

1 · f 1
1 = 2λ

i+2p
f 0

2 ρ(f 0
1 )(e1

1) = 1+2ip
2
e1

1e1
1 · f 1

2 = 2iλ
i+2p

f 0
2

L11
2|2

e1
1 · f 1

1 = 2λ
2p−if

0
2 , e

1
1 · f 0

1 = λ(if 1
1 + f 1

2 )
ρ(f 0

1 )(e1
1) = −2ip−1

2
e1

1e1
1 · f 1

2 = 2iλ
2p−if

0
2

L13
2|2 e1

1 · f 1
1 = λf 0

1 + µf 0
2 , e

1
1 · f 1

2 = γf 0
1 + θf 0

2 null

L14
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 1

2 = λf 0
2 ρ(f 0

1 )(e1
1) = e1

1

e1
1 · f 0

1 = λf 1
2 null

e1
1 · f 1

1 = λf 0
2

trivial ρ(f 0
1 )(e1

1) = e1
1

L15
2|2 e1

1 · f 0
2 = λf 1

2 ρ(f 0
1 )(e1

1) = e1
1

e1
1 · f 1

2 = λf 0
2 null

trivial ρ(f 0
1 )(e1

1) = λe1
1

e1
1 · f 0

1 = λf 1
2 , e

1
1 · f 0

2 = µf 1
2 ρ(f 0

1 )(e1
1) = −e1

1, ρ(f 1
1 )(e1

1) = µe0
1L16

2|2 e1
1 · f 1

1 = λf 0
2 − µf 0

1

e1
1 · f 0

1 = λf 1
1 , e

1
1 · f 0

2 = µf 1
1 ρ(f 0

1 )(e1
1) = e1

1, ρ(f 1
1 )(e1

1) = µe0
1e1

1 · f 1
1 = µf 0

1 − λf 0
2

trivial ρ(f 0
1 )(e1

1) = λe1
1

L17
2|2 e1

1 · f 0
1 = λf 1

1 , e
1
1 · f 0

2 = µf 1
1 null

e1
1 · f 1

2 = µf 0
1 − λf 0

2

L18
2|2

trivial ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

too many compatible actions to be listed null

Table 4: (1|1, 2|2)-type, (λ, µ, γ, θ ∈ C)
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A L Action Anchor

A1
1|1

L1
3|0 trivial

ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

ρ(f 0
3 )(e1

1) = γe1
1

L2
3|0 trivial ρ(f 0

1 )(e1
1) = λe1

1, ρ(f 0
2 )(e1

1) = µe1
1

L3
3|0 trivial ρ(f 0

2 )(e1
1) = λe1

1, ρ(f 0
3 )(e1

1) = µe1
1

L4
3|0 trivial ρ(f 0

1 )(e1
1) = λe1

1

L5
3|0 trivial ρ(f 0

1 )(e1
1) = λe1

1

Table 5: (1|1, 3|0)-type, (λ, µ ∈ C)

A L Action Anchor
trivial ρ(f 0

2 )(e1
1) = λe1

1, ρ(f 0
3 )(e1

1) = µe1
1

A1
1|1

L1
3|1 e1

1 · f 0
2 = λf 1

1 ρ(f 0
2 )(e1

1) = e1
1e1

1 · f 0
3 = µf 1

1

L2
3|1

trivial ρ(f 0
3 )(e1

1) = µe1
1

e1
1 · f 0

3 = λf 1
1 ρ(f 0

3 )(e1
1) = qe1

1

L3
3|1

trivial ρ(f 0
3 )(e1

1) = µe1
1

e1
1 · f 0

3 = λf 1
1 ρ(f 0

3 )(e1
1) = qe1

1

L4
3|1

trivial ρ(f 0
2 )(e1

1) = λe1
1, ρ(f 0

3 )(e1
1) = µe1

1

e1
1 · f 1

1 = λf 0
1 null

L5
3|1 trivial ρ(f 0

1 )(e1
1) = µe1

1

L6
3|1 trivial ρ(f 0

1 )(e1
1) = µe1

1

L7
3|1

trivial
ρ(f 0

1 )(e1
1) = λe1

1, ρ(f 0
2 )(e1

1) = µe1
1

ρ(f 0
3 )(e1

1) = γe1
1

e1
1 · f 1

1 = λf 0
1 + µf 0

2 + γf 0
3 null

e1
1 · f 1

1 = λf 0
1 , e

1
1 · f 0

2 = µf 0
2 null

e1
1 · f 0

3 = γf 1
1

Table 6: (1|1, 3|1)-type, (λ, µ, γ ∈ C)
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A L Action Anchor

A1
1|1

L1
4|0 trivial

ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

ρ(f 0
3 )(e1

1) = γe1
1, ρ(f 0

4 )(e1
1) = θe1

1

L2
4|0 trivial

ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

2 )(e1
1) = µe1

1

ρ(f 0
4 )(e1

1) = γe1
1

L3
4|0 trivial

ρ(f 0
2 )(e1

1) = λe1
1, ρ(f 0

3 )(e1
1) = µe1

1

ρ(f 0
4 )(e1

1) = γe1
1

L4
4|0 trivial ρ(f 0

1 )(e1
1) = λe1

1, ρ(f 0
4 )(e1

1) = µe1
1

L5
4|0 trivial

ρ(f 0
1 )(e1

1) = λe1
1, ρ(f 0

3 )(e1
1) = µe1

1

ρ(f 0
4 )(e1

1) = γe1
1

L6
4|0 trivial ρ(f 0

2 )(e1
1) = λe1

1, ρ(f 0
4 )(e1

1) = µe1
1

L7
4|0 trivial ρ(f 0

4 )(e1
1) = λe1

1

L8
4|0 trivial ρ(f 0

1 )(e1
1) = λe1

1, ρ(f 0
2 )(e1

1) = µe1
1

Lk4|0 trivial ρ(f 0
1 )(e1

1) = λe1
19 ≤ k ≤ 16

Table 7: (1|1, 4|0)-type, (λ, µ, γ, θ ∈ C)

A L Action Anchor

A1
2|0

L1
1|2 trivial ρ(f 0

1 )(e0
2) = λe0

2

L2
1|2

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 1

2 = λf 1
1 null

L3
1|2 & L4

1|2 trivial ρ(f 0
1 )(e0

2) = λe0
2

L6
1|2

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 1

2 = λf 1
1 null

e0
2 · f 1

1 = −λf 1
1 + µf 1

2 , µ 6= 0
null

e0
2 · f 1

2 = −λ2

µ
f 1

1 + µf 1
2

A2
2|0

Lk1|2 e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1 , null

1 ≤ k ≤ 5 e0
2 · f 1

2 = f 1
2

L6
1|2

e0
2 · f 1

1 = (1− λ)f 1
1 + µf 1

2 , µ 6= 0

null

e0
2 · f 1

2 = λ(λ−1)
µ

f 1
1 + µf 1

2

e0
2 · f 1

2 = λf 1
1 + f 1

2

e0
2 · f 1

1 = f 1
1 , e

0
2 · f 1

2 = λf 1
1

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

2 = f 1
2

e0
2 · f 1

1 = f 1
1 , e

0
2 · f 1

2 = λf 1
1

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1 ,

e0
2 · f 1

2 = f 1
2

Table 8: (2|0, 1|2)-type, (λ, µ ∈ C)
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A L Action Anchor

A1
2|0

Lk1|3 trivial ρ(f 0
1 )(e0

2) = λe0
2k ∈ {1, 3, 4, 6}

L2
1|3

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 1

3 = λf 1
2 null

e0
2 · f 1

3 = λf 1
1 ρ(f 0

1 )(e0
2) = e0

2

L5
1|3

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 1

3 = λf 1
1 null

L8
1|3

trivial ρ(f 0
1 )(e0

2) = λe0
2

too many compatible actions to be listed null

A2
2|0

Lk1|3 e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1 null

1 ≤ k ≤ 7 e0
2 · f 1

2 = f 1
2 , e

0
2 · f 1

3 = f 1
3

L8
1|3 too many compatible actions to be listed null

Table 9: (2|0, 1|3)-type, (λ ∈ C)
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A L Action Anchor

A1
2|0

L1
2|1

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 0

1 = λf 0
2 null

L2
2|1

trivial ρ(f 0
1 )(e0

2) = λe0
2, ρ(f 0

2 )(e0
2) = λe0

2

e0
2 · f 0

1 = λ(f 0
1 − f 0

2 ), e0
2 · f 0

2 = λ(f 0
1 + f 0

2 ) null
Lk2|1 trivial ρ(f 0

1 )(e0
2) = λe0

2

3 ≤ k ≤ 5 e0
2 · f 0

1 = λf 0
2 ρ(f 0

1 )(e0
2) = e0

2

L6
2|1

trivial ρ(f 0
1 )(e0

2) = λe0
2, ρ(f 0

2 )(e0
2) = λe0

2

e0
2 · f 0

1 = λf 0
2 null

e0
2 · f 0

1 = −λf 0
1 + µf 0

2 , µ 6= 0
null

e0
2 · f 0

2 = −λ2

µ
f 0

1 + λf 0
2

A2
2|0

L1
2|1

e0
2 · f 0

1 = f 0
1 + λf 0

2

null
e0

2 · f 0
1 = λf 0

2

e0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

1 = f 1
1

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

1 = f 1
1

L2
2|1

e0
2 · f 0

1 = (1− λ)(f 0
1 + f 0

2 )

null

e0
2 · f 0

2 = λ(f 0
1 + f 0

2 )
e0

2 · f 0
1 = f 0

1 + f 0
2

e0
2 · f 0

1 = (1− λ)f 0
1 − λf 0

2 ,
e0

2 · f 0
2 = −(1− λ)f 0

1 + λf 0
2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = ±f 0
2 , e

0
2 · f 1

1 = f 1
1

L3
2|1 & L4

2|1 e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

1 = f 1
1 null

L5
2|1

e0
2 · f 1

1 = f 1
1

nulle0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

1 = f 1
1

L6
2|1 e0

2 · f 0
1 = (1− λ)f 0

1 + µf 0
2 , µ 6= 0 null

e0
2 · f 0

2 = λ(λ−1)
µ

f 0
1 + λf 0

2

L6
2|1

e0
2 · f 0

1 = f 0
1 + λf 0

2

null
e0

2 · f 0
1 = f 0

1 + λf 0
2 , e

0
2 · f 1

1 = f 1
1

e0
2 · f 0

1 = f 0
1 + λf 0

2

e0
2 · f 0

2 = λf 0
1 + f 0

2 , e
0
2 · f 1

1 = f 1
1

e0
2 · f 0

2 = λf 0
1

e0
2 · f 1

1 = f 1
1

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

1 = f 1
1

Table 10: (2|0, 2|1)-type, (λ, µ ∈ C)
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A L Action Anchor

A1
2|0

L1
2|2

trivial ρ(f 0
1 )(e0

2) = λe0
2, ρ(f 0

2 )(e0
2) = λe0

2

e0
2 · f 0

1 = λf 0
2 , e

0
2 · f 1

2 = λf 1
1 null

L2
2|2 trivial ρ(f 0

1 )(e0
2) = λe0

2, ρ(f 0
2 )(e0

2) = λe0
2

Lk2|2 trivial ρ(f 0
1 )(e0

2) = λe0
2

3 ≤ k ≤ 15,
e0

2 · f 0
1 = λf 0

2 ρ(f 0
1 )(e0

2) = e0
2k /∈ {6, 12, 13}

L6
2|2

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 0

1 = λf 0
2 , e

0
2 · f 1

2 = λ
p
f 1

1 ρ(f 0
1 )(e0

2) = e0
2

L16
2|2

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 0

1 = λf 0
2 , null

L17
2|2

trivial ρ(f 0
1 )(e0

2) = λe0
2

e0
2 · f 0

1 = λf 0
2 , e

0
2 · f 1

2 = µf 1
1 null

L18
2|2

trivial ρ(f 0
1 )(e0

2) = λe0
2, ρ(f 0

2 )(e0
2) = µe0

2

e0
2 · f 0

1 = λf 0
2 , e

0
2 · f 1

2 = µf 1
1

null
(µ, θ 6= 0) 99K

e0
2 · f 0

1 = −λf 0
2 + µf 0

2 , e
0
2 · f 0

2 = −λ2

µ
f 0

1 + λf 0
2

e0
2 · f 1

1 = −γf 1
1 + θf 1

2 , e
0
2 · f 1

2 = −γ2

θ
f 1

1 + γf 1
2

e0
2 · f 0

2 = λf 0
1 , e

0
2 · f 1

2 = µf 1
1

(µ 6= 0) 99K e0
2 · f 1

1 = −λf 1
1 + µf 1

2 , e
0
2 · f 1

2 = −λ2

µ
f 1

1 + µf 1
2

(µ 6= 0) 99K e0
2 · f 0

1 = −λf 0
1 + µf 0

2 , e
0
2 · f 0

2 = −λ2

µ
f 0

1 + µf 0
2

A2
2|0

Lk2|2 e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 , null1 ≤ k ≤ 17

e0
2 · f 1

1 = f 1
1 , e

0
2 · f 1

2 = f 1
2k /∈ {2, 13, 15}

A2
2|0

L2
2|2

e0
2 · f 0

1 = 1
2
f 0

1 − i
2
f 0

2 , e
0
2 · f 0

2 = i
2
f 0

1 + 1
2
f 0

2

null
e0

2 · f 1
1 = 1

2
f 1

1 + i
2
f 1

2 , e
0
2 · f 1

2 = − i
2
f 1

2 + 1
2
f 1

2

e0
2 · f 0

1 = 1
2
f 0

1 + i
2
f 0

2 , e
0
2 · f 0

2 = − i
2
f 0

1 + 1
2
f 0

2

e0
2 · f 1

1 = 1
2
f 1

1 − i
2
f 1

2 , e
0
2 · f 1

2 = i
2
f 1

2 + 1
2
f 1

2

L13
2|2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 ,

null
e0

2 · f 1
1 = f 1

1 , e
0
2 · f 1

2 = f 1
2

e0
2 · f 0

2 = f 0
2 , e

0
2 · f 1

2 = f 1
2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 1

1 = f 1
1

L15
2|2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2 ,

null
e0

2 · f 1
1 = f 1

1 , e
0
2 · f 1

2 = f 1
2

e0
2 · f 1

2 = f 1
2

e0
2 · f 0

1 = f 0
1 , e

0
2 · f 0

2 = f 0
2

e0
2 · f 1

1 = f 1
1

L18
2|2 too many compatible actions to be listed null

Table 11: (2|0, 2|2)-type, (λ, µ, γ, θ ∈ C)


