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Certain paracontact metrics satisfying the critical point
equation

Dhriti Sundar Patra

Abstract. The aim of this paper is to study the CPE (Critical Point Equation) on
some paracontact metric manifolds. First, we prove that if a para-Sasakian metric
satisfies the CPE, then it is Einstein with constant scalar curvature -2n(2n+1). Next,
we prove that if (κ, µ)-paracontact metric satisfies the CPE, then it is locally isometric
to the product of a flat (n+ 1)-dimensional manifold and n-dimensional manifold of
negative constant curvature −4.

1 Introduction

In [9], Kaneyuki and Williams introduce a new structure on pseudo-Riemannian ge-
ometry called paracontact structure, as a natural odd-dimensional counterpart to para-
Harmitian structures, just like contact metric structures correspond to the Hermitian one.
The importance of paracontact geometry comes from the theory of para-Kähler manifolds.
A systematic study of paracontact metric manifolds and their subclasses was started by
Zamkovoy [19]. Since then, many authors have investigated paracontact geometry using
various meaningful geometric conditions. We refer the reader to ([2], [5], [6], [11], [12],
[14], [15], [17], [18], [20]) for some related results on paracontact geometry.

On the other hand, in [3] (for details, see Chapter 2), A. Besse studied the Hilbert-
Einstein functional and proved that the critical points of this functional are the Einstein
metrics. The Hilbert-Einstein functional has the following Euler-Lagrange equation

L∗
g(λ) = −(∆gλ)g + Hessgλ− λRicg = Ricg

o, (1)
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for a critical point g, where ∆g, Ricg, Ricg
o and Hessλ are, respectively, the Laplacian,

the Ricci tensor, the traceless Ricci tensor and the Hessian of the smooth function λ on
M . Here L∗

g(λ) is the formal L2-adjoint of the linearized scalar curvature operator Lg(λ).
The Eq. (1) is called the Critical Point Equation (shortly, CPE). The function λ is known
as the potential function. From now, we consider a metric g with a non-trivial potential
function λ as a solution of the CPE and is denoted by (g, λ). Also, we can express the
equation (1) in the form

(Ricg−
r

n− 1
g)λ− Hessgλ =

r

n
g − Ricg . (2)

First, we note that if λ is constant in the equation (2), then λ = 0 and g becomes
Einstein. Further, tracing (2) we deduce ∆gλ = − r

n−1
λ. From this, it follows that λ is an

eigenfunction of the Laplacian. Since the Laplacian has non-positive spectrum, the scalar
curvature must be positive. In [3], A. Besse first conjectured that the solution of the CPE
must be Einstein (known as the CPE conjecture). To my knowledge, many authors study
the CPE satisfying either some curvature conditions or some conditions on the potential
functions of Riemannian manifolds. In [1], Barros and Ribeiro proved that the CPE
conjecture is also true for half conformally flat. Further, in [8], Hwang proved that the
CPE conjecture is valid under certain conditions on the bounds of the potential function
λ. Recently, Nato [13] obtained a necessary and sufficient condition on the norm of the
gradient of the potential function for a CPE metric to be Einstein. Recently, the author
considered the CPE on contact metric manifolds (see [7],[16]) and proved that the CPE
conjecture is true for K-contact manifold. However, the CPE has not yet been considered
on pseudo-Riemannian manifolds, for instance, paracontact metric manifolds. Hence it
deserves special attention to consider the CPE on certain classes of paracontact metric
manifolds. Here we characterize the solution of the CPE on certain classes of paracontact
metric manifolds and prove that the CPE conjecture is true for para-Sasakian manifold.

The paper is structured as follows: in Section 2, a very brief review of paracontact
geometry is given. Next, we consider the CPE on para-Sasakian manifold in Section 3,
and we prove that a if a para-Sasakian metric satisfies the CPE, then it is Einstein with
Einstein constant −2n and has constant scalar curvature. Finally, in Section 4, we consider
the CPE on (κ, µ)-paracontact manifold and prove that if (κ, µ)-paracontact metric satisfies
the CPE, then it is locally isometric to the product of a flat (n+ 1)-dimensional manifold
and n-dimensional manifold of negative constant curvature.

2 Preliminaries

In this section, we shall collect some fundamental results regarding paracontact metric
manifolds (for more details, see [5],[19]). A (2n+ 1)-dimensional smooth manifold M2n+1

has an almost paracontact structure (ϕ, ξ, η) if it admits a (1, 1)-tensor field ϕ, a vector
field ξ and a 1-form η such that

ϕ2 = I − ηoξ, ϕ(ξ) = 0, ηoϕ = 0, η(ξ) = 1, (3)
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and there exists a distribution

D : p ∈M → Dp ⊂ pM : Dp = Ker(η) = {x ∈ TpM : η(x) = 0},

called paracontact distribution generated by η.
Let X(M) is the Lie algebra of all vector fields on M2n+1. If an almost paracontact

manifold admits a pseudo-Riemannian metric g such that

g(ϕX,ϕY ) = −g(X, Y ) + η(X) η(Y ), X, Y ∈ X(M), (4)

then we say that M has an almost paracontact metric structure (ϕ, ξ, η, g) and g is called
compatible metric. Any compatible metric g with a given almost paracontact structure is
necessary for signature (n + 1, n). The fundamental 2-form Φ of an almost paracontact
metric structure (ϕ, ξ, η, g) defined by

Φ(X, Y ) = g(X,ϕY ), X, Y ∈ X(M).

If Φ = dη, then the manifold M2n+1(ϕ, ξ, η, g) is called a paracontact metric manifold.
On a paracontact metric manifold M2n+1(ϕ, ξ, η, g), we consider a self-adjoint operator
h = 1

2
£ξϕ, where £ξ is the Lie-derivative along ξ. The operator h satisfy [19]:

Trg h = 0, hξ = 0, hϕ = −ϕh.

On a paracontact metric manifold [19]:

∇Xξ = −ϕX + ϕhX, X ∈ X(M), (5)

where ∇ is the operator of covariant differentiation of g. If the vector field ξ is a Killing
(equivalently h = 0) then M is said to be a K-paracontact manifold. Moreover, on any
K-paracontact manifold [19]:

∇Xξ = −ϕX, (6)

R(X, Y )ξ = η(X)Y − η(Y )X, (7)

Qξ = −2n ξ, (8)

for all vector fields X, Y on M , where R is the Riemann curvature tensor of g and Q denotes
the Ricci operator associated with the Ricci tensor given by Ricg(X, Y ) = g(QX, Y ) for
all vector fields X, Y on M .

Moreover, a paracontact metric manifold M2n+1(ϕ, ξ, η, g) is said to be para-Sasakian
if the following integrality condition is satisfied [ϕ, ϕ] = −2 dη⊗ξ, where [ϕ, ϕ] denotes the
Nijenhuis tensor of ϕ. Equivalently, a paracontact metric manifold is said to para-Sasakian
if

(∇Xϕ)Y = −g(X, Y )ξ + η(Y )X,

for all vector fields X, Y on M , see [19]. A para-Sasakian manifold is K-paracontact [4]
but the converse is true only in dimension 3, see [11].
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3 On K-paracontact and para-Sasakian manifolds

In this section, we study the CPE on K-paracontact and para-Sasakian manifolds.
Before entering into our main results we prove the following.

Lemma 3.1. On a K-paracontact manifold M2n+1(ϕ, ξ, η, g), we have

(i) (∇XQ)ξ = QϕX + 2nϕX,

(ii) (∇ξQ)X = QϕX − ϕQX, X ∈ X(M).

Proof. First, taking the covariant derivative of (8) along an arbitrary vector field X on M
and then using the result (6) we have the first one. Further, since ξ is Killing, we have
£ξ Ricg = 0. This implies (£ξQ)X = 0 for any vector field X on M . From which it follows

0 = £ξ(QX)−Q(£ξX)

= ∇ξQX −∇QXξ −Q(∇ξX) +Q(∇Xξ)

= (∇ξQ)X −∇QXξ +Q(∇Xξ),

for any vector field X on M . Using (6) the last equation gives the second result. This
completes the proof.

Lemma 3.2. Let M2n+1(ϕ, ξ, η, g) be a K-paracontact manifold. If (g, λ) is a non-constant
solution of the CPE, then we have

(Qϕ+ ϕQ)X = −4nϕX, X ∈ X(M). (9)

Proof. First, we note that (1) implies 4gλ = − rλ
2n

. Thus, equation (1) can be exhibited as

∇XDλ = (λ+ 1)QX + fX, (10)

for all vector fields X on M ; where f = −r( λ
2n

+ 1
2n+1

). Using this in the well-known
expression of the curvature tensor R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ], we obtain

R(X, Y )Dλ = (Xλ)QY − (Y λ)QX + (λ+ 1){(∇XQ)Y − (∇YQ)X}
+ (Xf)Y − (Y f)X, (11)

for all vector fields X, Y on M . Now, substituting X by ξ in (11) and using the Lemma
3.1 we can compute

R(ξ, Y )Dλ =(ξλ)QY + 2n(Y λ)ξ − (λ+ 1){ϕQY + 2nϕY }
+ (ξf)Y − (Y f)ξ, (12)

for any vector fields Y on M . On the other hand, we obtain from (6) that

g(R(X, Y )ξ, Z) = g(∇Xϕ)Y, Z)− g(∇Y ϕ)X,Z),
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for all vector fields X, Y on M . Applying Bianchis’s first identity and the last equation
we achieve R(ξ,X)Y = (∇ϕX)Y for all vector fields X, Y on M . Making use of this in
the scalar product of (12) with an arbitrary vector field X on M provides

g((∇Y ϕ)X,Dλ) =(λ+ 1){g(QϕY,X) + 2ng(ϕY,X)} − (ξλ)g(QY,X)

− (ξf)g(X, Y )− {2n(Y λ)− (Y f)}η(X). (13)

Taking into account of (3), (6) and putting X = ϕX, Y = ϕY in (13) yields

g((∇ϕY ϕ)ϕX,Dλ) =(λ+ 1){2ng(Y, ϕX)− g(QϕY,X}
− (ξλ)g(QϕY, ϕX) + (ξf){g(X, Y )− η(X)η(Y )}, (14)

Now, adding (13) with (14) and using (3), (8) and the well-known formula (see [19])

(∇ϕXϕ)ϕY − (∇Xϕ)Y = 2g(X, Y )ξ − η(Y )(X − hX + η(X)ξ),

one can compute

2ξ(λ− f) g(X, Y ) =Y {(2n+ 1)λ− f} η(X)

+ ξ(λ− f) η(X)η(Y )− (λ+ 1) g(QϕY + ϕQY,X)

+ 4n(λ+ 1) g(ϕX, Y )− (ξλ) {g(QϕY, ϕX)− g(QY,X)}.

Anti-symmetrizing the foregoing equation yields

Y {(2n+ 1)λ− f}η(X)−X{(2n+ 1)λ− f}η(Y )

+ 8n(λ+ 1) g(ϕX, Y ) + 2(λ+ 1) g(QϕX + ϕQX, Y ) = 0. (15)

At this point, we replace X by ϕX and Y by ϕY in (15) to achieve

(λ+ 1)
{
g(QϕX, Y ) + g(ϕQX, Y ) + 4n g(ϕX, Y ))

}
= 0.

Since λ is non-constant in the interior of M , the last equation gives us the required result.

Thus, from the last Lemma, one can easily conclude the following result.

Theorem 3.3. Let M2n+1(ϕ, ξ, η, g) be a K-paracontact manifold and the Ricci operator
Q commutes with paracontact structure ϕ. If (g, λ) is a non-constant solution of the
CPE, then g is Einstein with Einstein constant −2n and has constant scalar curvature
−2n(2n+ 1).

Proof. By hypothesis, the Ricci operator Q commutes with paracontact structure ϕ, i.e.,
Qϕ = ϕQ. Applying this in (9) and then substituting X by ϕX, and using (3) gives
that QX = −2nX for any vector fields X. This shows that M is Einstein with Einstein
constant −2n. This completes that proof.
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On para-Sasakian manifold, the Ricci operator satisfies (see [19], Lemma 3.15):

QX − ϕQϕX = −2n η(X)ξ, (16)

for all vector fields X on M . Operating (16) by ϕ and using (3) we see that the Ricci
operator Q commutes with paracontact structure ϕ. Hence, from Theorem 3.3, we can
deduce the following result.

Theorem 3.4. Let M2n+1(ϕ, ξ, η, g) be a para-Sasakian manifold. If (g, λ) is a non-constant
solution of the CPE, then g is Einstein with Einstein constant −2n and has constant scalar
curvature −2n(2n+ 1).

Remark 3.5. There are some partial answers to the CPE Conjecture. For example, La-
fontaine proved that the CPE conjecture is true under conformally flat assumption with
KerL∗

g(λ) 6= 0. Further, Barros and Ribeiro [1] proved that the CPE conjecture is also
true for half conformally flat. Therefore, in this section we prove the CPE conjecture in a
subclass paracontact metric manifolds, for instance, para-Sasakian manifolds.

4 On (κ, µ)-paracontact manifolds

In [6], Cappelletti-Montano et al introduce the notion of nullity conditions in paracon-
tact geometry. According to them a (κ, µ)-paracontact manifold is a paracontact metric
manifold M2n+1(ϕ, ξ, η, g) whose curvature tensor satisfies

R(X, Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (17)

for all vector fields X, Y on M and for some real numbers (κ, µ). The class of (κ, µ)-
paracontact metric manifold contains para-Sasakian manifolds. Since then, many geome-
ters have studied (κ, µ)-paracontact manifold and obtained various important properties
of these manifolds (see, for instance, [10]). On (κ, µ)-paracontact manifold the following
formulas are valid (e.g., [6]):

h2 = (κ+ 1)ϕ2, (18)

Qξ = 2nκξ. (19)

First of all, we recall a lemma for our main proof.

Lemma 4.1. (See [6]) Let M2n+1(ϕ, ξ, η, g) be a (κ, µ)-paracontact manifold with κ > −1,
then the Ricci operator Q of M can be expressed as

QX =[2(1− n) + nµ]X + [2(n− 1) + µ]hX

+ [2(n− 1) + n(2κ− µ)]η(X)ξ, (20)

for any vector field X on M . In this case, the scalar curvature of M is 2n(2(1−n)+κ+nµ).
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Now, we prove a lemma for later use.

Lemma 4.2. On a (κ, µ)-paracontact manifold M2n+1(ϕ, ξ, η, g) with κ > −1, we have

(∇ξQ)X = µ(2(n− 1) + µ)hϕX, (21)

for any vector field X in M .

Proof. Replacing Y by ξ in (17) and using ϕ2 = I − η ⊗ ξ, we can easily deduce that

R(X, ξ)ξ = κ{X − η(X)ξ}+ µhX, (22)

for any vector field X in M . Recalling a formula on paracontact metric manifold [19]:

(∇ξh)X = −ϕX + ϕh2X − ϕR(X, ξ)ξ, (23)

for any vector field X in M . By virtue of (3), (18), (22) and ϕh = −hϕ, the Eq. (23)
yields

(∇ξh)X = −µϕhX, (24)

for any vector field X in M . Covariant derivative of (20) along ξ, we have

(∇ξQ)X +Q(∇ξX) ={2(1− n) + nµ}∇ξX + {2(n− 1) + µ}{(∇ξh)X

+h(∇ξX)}+ {2(n− 1) + n(2κ− µ)}g(∇ξX, ξ)ξ, (25)

for any vector field X on M . Next, putting X = ∇ξX in (20), we get

Q(∇ξX) ={2(1− n) + nµ}∇ξX + {2(n− 1) + µ}h(∇ξX)

+ {2(n− 1) + n(2κ− µ)}g(∇ξX, ξ)ξ.

Using this and (24) in (25) we get the required result.

Lemma 4.3. Let M2n+1(ϕ, ξ, η, g) be a (κ, µ)-paracontact manifold with κ > −1. If (g, λ)
is a non-constant solution of the CPE, then we have

κ(2− µ) = µ(n+ 1). (26)

Proof. First, differentiating (19) along an arbitrary vector field X on M and using (5) it
follows that

(∇XQ)ξ = Q(ϕ− ϕh)X − 2nκ (ϕ− ϕh)X. (27)

Thus, the scalar product of (11) with ξ and making use of (19), (27) gives that

g(R(X, Y )Dλ, ξ) =2nκ [(Xλ)η(Y )− (Y λ)η(X)] + (λ+ 1) g(QϕX + ϕQX, Y )

− (λ+ 1) g(QϕhX + hϕQX, Y ) + 4nκ (λ+ 1) g(ϕX, Y )

+ (Xf)η(Y )− (Y f)η(X). (28)
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Replacing X by ϕX, Y by ϕY in (28) and noting that R(ϕX,ϕY )ξ = 0 (follows from
(17)), we obtain

(λ+ 1) [QϕX + ϕQX − ϕQhX − hQϕX − 4nκϕX] = 0,

for any vector field X on M . Since λ is non-constant in the interior M , the foregoing
equation provides

QϕX + ϕQX + ϕQhX + hQϕX − 4nκϕX = 0, (29)

for any vector field X on M . Now, substituting X by ϕX in the relation (20) gives that

QϕX = [2(1− n) + nµ]ϕX + [2(n− 1) + µ]hϕX.

On the other hand, by acting h on the previous equation and making use of (18) implies
that

hQϕX = [2(1− n) + nµ]hϕX + (κ+ 1)[2(n− 1) + µ]ϕX.

Also, operating ϕ on (20) gives

ϕQX = [2(1− n) + nµ]ϕX + [2(n− 1) + µ]ϕhX.

Taking hX instead of X and using (18), the last equation reduces to

ϕQhX = [2(1− n) + nµ]ϕhX + (κ+ 1)[2(n− 1) + µ]ϕX.

With the help of the last four equations in (29) and using (18) we obtain the required
result. Hence the proof.

Theorem 4.4. Let M2n+1(ϕ, ξ, η, g) be a (κ, µ)-paracontact manifold κ > −1. If (g, λ) is
a non-constant solution of the CPE, then M is locally isometric to the product of a flat
(n + 1)-dimensional manifold and n-dimensional manifold of negative constant curvature
−4.

Proof. Taking into account of (19) and (22) and substituting ξ instead of X in (28) we
obtain

(2n+ 1)κ{Dλ− (ξλ)ξ}+ µhDλ− (ξf)ξ +Df = 0. (30)

Contracting (11) over X with respect to an orthonormal basis {ei}, we have

λ
{ 2n+1∑

i=1

g((∇eiQ)Y, ei)− g((∇YQ)ei, ei)
}
− r (Y λ)− 2n (Y f) = 0. (31)
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As the scalar curvature r = 2n{2(1 − n) + κ + nµ} (from Lemma 4.1) is constant, using
the formula divQ = 1

2
dr (follows from contraction of Bianchi’s second identity) one can

compute

2n+1∑
i=1

g((∇eiQ)Y, ei)− g((∇YQ)ei, ei) = (divQ)Y − Y (TrgQ)

=
1

2
(Y r)− (Y r) = −1

2
(Y r) = 0.

Using this in (31) yields

r Dλ+ 2nDf = 0. (32)

Combining this with (30), we get

2n(2n+ 1)κ{Dλ− (ξλ)ξ}+ 2nµhDλ− 2n (ξf)ξ − r Dλ = 0. (33)

From (10) and (19), we have

∇ξDλ = [2nκ(λ+ 1) + f ]ξ. (34)

Now, taking covariant derivative of (33) along ξ and using (21), (24), (34), we obtain

{2n(2n+ 1)κ− r}{2nκ(λ+ 1) + f}ξ − 2n(2n+ 1)κ ξ(ξλ)ξ

+ 2nµ2 hϕDλ− 2n ξ(ξf)ξ = 0. (35)

Next, operating (35) by ϕ and using (3) we have µ2hDλ = 0. By the action of h and using
(18), (3) gives

(κ+ 1)µ2 (Dλ− (ξλ)ξ) = 0.

As κ > −1, we have either (i) µ = 0, or (ii) µ 6= 0.

• Case (i): In this case, it follows from (26) that κ = 0. Hence R(X, Y )ξ = 0 for
any vector field X, Y on M , and therefore, M2n+1 is the product of a flat (n + 1)-
dimensional manifold and n-dimensional manifold of negative constant curvature −4
(see [20],Theorem 3.3).

• Case (ii): This case yields Dλ = (ξλ)ξ. Differentiating this along an arbitrary
vector field X together with (5) entails that ∇XDλ = X(ξλ)ξ − (ξλ)(ϕX − ϕhX).
Since g(∇XDλ, Y ) = g(∇YDλ,X), the foregoing equation shows

X(ξλ)η(Y )− Y (ξλ)η(X) + (ξλ) dη(X, Y ) = 0.

Since dη is non-zero for a paracontact metric structure, replacing X by ϕX and Y
by ϕY in previous result, we get ξλ = 0. Hence Dλ = 0, and therefore, λ is constant,
which is a contradiction. This completes the proof.
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