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On a theorem of J. Shallit concerning Fibonacci partitions

F. V. Weinstein

Abstract. In this note, I prove a claim on determinants of some special tridiagonal
matrices. Together with my result about Fibonacci partitions (https://arxiv.org/
pdf/math/0307150.pdf), this claim allows one to prove one (slightly strengthened)
Shallit’s result (https://arxiv.org/pdf/2007.14930.pdf) about such partitions.

1 Introduction

Let fi =1,f; =2 and f; = fi_1 + fi_o for ¢ > 2 be the sequence of Fibonacci numbers.
Observe that the “conventional” definition of Fibonacci numbers is different, see http:
//en.wikipedia.org/wiki/Fibonacci_number.

A Fibonacci partition of a positive integer n is a representation of n as an unordered
sum of distinct Fibonacci numbers, which are referred to as the parts of the Fibonacci
partition.

Let @5 (n) be the quantity (the cardinality of the set) of Fibonacci partitions of n with
h parts. J. Shallit has established the following interesting property of the function ®(n):
for integers n > 0, d > 2 and i, let r4,;(n) be the quantity of all Fibonacci partitions of n
with number of parts =i modd. Then, (see [3, Th. 2])

[r34(n) — r3i41(n)] < 1.

To prove this inequality, J. Shallit used a technique of automata theory.

Set
d(n;t) = Z dy(n)t".
h>0

In [4], T obtained a formula which expresses ®(n;t) as determinant of a tridiagonal ma-
trix depending on n. In §2 of this note, I establish Theorem 2.6 on a property of such
determinants.
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In §3, I explain (Theorem 3.1) how the mentioned (see [4]) formula for ®(n;t) together
with Theorem 2.6 imply not only Shallit’s result, but also the formula

(7’3’0(7?,) — 7’3,1(71)) . (7’3’0(’0) — 7’3,2(71)) . (7“3’1(71) — T’3)2(ﬂ>) = 0.

2 3-special polynomials
Let d > 2 be an integer number. For any g(t) = 3, apt" € Z[t], define

lg(®)]] == Z an, Ri(g(t)) := Z ap, where i € {0,1,...,d—1}.

h>0 h=i mod d
Let K4[T) := Z[T]/(T? - 1). Define a map RY : Z[t] — K4[T] by the formula
R(g(t)) == Ro(g(t)) + Ru(g(t)T + -~ + Rar(g(t)T* .
The following Lemma is subject to easy direct verification.
2.1. Lemma. The map R'Y : Z[t] — K4[T) is a homomorphism of Z—algebras.

In this Section, I consider only the case d = 3. For brevity, set K := K;3[T] and
R:= RO,
For any ¢(t) € Z|[t|, we obviously have

R((l +t 4 t2) -g(t)) = |lg(t)|| - o(T), where o(T):=1+T + T (1)

2.2. Definition. We say that a +bT + ¢T? € K is a special element if either a = b = c,
or la—bl+la—c|+1[b—cl =2

Formula (1) easily implies
2.3. Lemma. An element A[T] € K is special if and only if
AT (T-1)e M[T):={0,+ (T —1),£T(T —1), £ T*(T — 1)} .
2.4. Corollary. Any product of special elements is a special element.

2.5. Definition. We say that g(t) € Z[t] is a 3—special polynomial if R(g(t)) is a special
element.

In what follows, A = (ay,as, ..., a,) is either a vector with integer non-negative coor-
dinates if m > 0, or the empty set if m = 0. Let us define a polynomial

A(A;t) == Alay, ..., am;t) € Z[t]
by the formulas

A(D;t) =1, A(0;t) := 0, Alajt) ==t +t*+---+t* fora>0,
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Alay, ... amt) = Aar, ... am_1;t) - Alam;t) —Aar, ..., apmo; t) -t ifm > 2. (2)

Obviously, for m > 0,

Aay;t)  teett 0 0 . 0
1 A(ag;t) tetl 0 0
A(ay,ag, ... ap;t) = : : :
0 0 oo 1 Alag_q3t)  temtl
0 0 0 1 Aam;t)

The main result of this note is
2.6. Theorem. For any A = (a1,as,...,a,), the polynomial A(A;t) is a 3—special one.
The proof uses the following auxiliary claim.
2.7. Lemma. Let e(A) = (e(ar),...,e(an)), where e(a) :==a —3|%|. Then,
R(A(A;t)) = R (A(e(A);t)) + k- o(T), where k = k(A) € Z.
Proof. Let us prove by induction on m. For m =1 and a > 1, we have
Ala;t) =t (1 F 4 t?’L%J) (14t + )+ 251 A(e(a); ).
Applying R to both sides of this equality we obtain

R(A(a;t)) = R(A(e(a);t)) + k- o(T), where k =1+ L%J (3)

For m > 2, let us apply R to expression (2). The induction hypothesis, Lemma 2.1,

formulas (1) and (3), the obvious formula R(t*) = T and a short computation yield
the required result. 0

Proof of Theorem 2.6. In view of Lemma 2.7, it suffices to assume that a; € {0, 1,2} for
any 1 = 1,2,...,m. Keeping Lemma 2.3 in mind, define

S(ar,...,am) = R(Aar,...,an;t)) - (T —1) € K.

The expression (2) and formula ¢(7") - (T'— 1) = 0 easily imply the recurrent formula

=S(ay,...,am—2)-T if a,, =0,
S(al,...,am)z S(al,...,am_l)-T+S(a1,...,am_2)-(T+1) ifamzl, (4)
—=S(a1,...,am—1) —S(a1,...,am—2) if a,, = 2.

By Lemma 2.3 it remains to show that S(ay,...,a,) € M[T].
Let us prove this by induction on m. For m = 1,2, the claim is directly checked. In
particular, S(0) =0 and S(a,0) = =T7(T —1).
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For a,, = 0, the last expressions and formula (4) imply the theorem by induction for
any m > 1. Therefore, assume that a,, = 1 or a,, = 2. From expressions (4) it is not
difficult to obtain the expressions

S((ll,...,am_g,Q)'Tz if Am—1 :0,

S(al,...,am_l,l)z —S(al,...,am_g,Q)-(T—l—l) ifam_lzl,
S(al, ey 3, Qp—2 + 2) T if Am—-1 = 2,

—S(al, ey A3, Qm—2 + 2) T if Am—1 = 0,
S(ay, ... am-1,2) =< S(ay,...,an_2,2) - (T +1) if a,,_1 =1,

S(al, c. ,Clmfg) if Am—1 = 2.
Since
(T —1)(T+1)=-T*T - 1),
these expressions and the induction hypothesis complete the proof. 0

3 An application to Fibonacci partitions

In §2 of the article [4], for any positive integer n, a certain sequence is uniquely defined

a(n) = {ai(n), as(n),. .., axm(n)} (5)

where ay(n) is a vector with positive integer coordinates for any k = 1,2,...,k(n), and it
is shown ([4, Th.2.11}) that

®(n;t) = Alar(n);t) - Alaa(n);t) ... - Alaw(n); t).

By Theorem 2.6 the polynomial A(ay(n);t) is a 3-special one for any k. Thus, Lemma 2.1
and Corollary 2.4 imply

3.1. Theorem. For any integer n > 0, the polynomial ®(n;t) is a 3—-special one.

3.2. Remark. Using arguments similar to those in §2 (where d = 3 is replaced with d = 2)
and the formula for ®(n;t) one can easily show that |ryo(n) —r21(n)| < 1 for any positive
integer n. It is obvious that this inequality is equivalent to the analytic identity

H(l —aly =1+ Zx(n)x", where |x(n)| < 1. (6)

=1

For other proofs of this identity, see [1],[2] and [4].
In addition to that, an interesting result of Y. Zhao should be mentioned. Namely,
Proposition 2 of the article [5] implies the polynomial identity

H (1—zf)y=1+ meb(n)x”, where  |xap(n)| < 1,

a<i<b

which is valid for any positive integers a < b.
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3.3. Conjecture. For positive integers a < b, let

M<a7b) = {faafa—f—h o -afb}'

For integersn > 0 and i, let réfli’b)(n) be the quantity of Fibonacci partitions of n with parts

from the set M(a,b) and with number of parts = i mod 3.
Then, réﬁl{b)(n) - réil]?b) (n)‘ <1 for any i,j € {0,1,2}. Moreover,

a,b a,b a,b a,b a,b a,b
(5" ) =52 m)) - (5 ) = P m)) - (155 ) = 5 ()) =0,
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