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On a theorem of J. Shallit concerning Fibonacci partitions

F. V. Weinstein

Abstract. In this note, I prove a claim on determinants of some special tridiagonal
matrices. Together with my result about Fibonacci partitions (https://arxiv.org/
pdf/math/0307150.pdf), this claim allows one to prove one (slightly strengthened)
Shallit’s result (https://arxiv.org/pdf/2007.14930.pdf) about such partitions.

1 Introduction
Let f1 = 1, f2 = 2 and fi = fi−1 + fi−2 for i > 2 be the sequence of Fibonacci numbers.
Observe that the “conventional” definition of Fibonacci numbers is different, see http:

//en.wikipedia.org/wiki/Fibonacci_number.
A Fibonacci partition of a positive integer n is a representation of n as an unordered

sum of distinct Fibonacci numbers, which are referred to as the parts of the Fibonacci
partition.

Let Φh(n) be the quantity (the cardinality of the set) of Fibonacci partitions of n with
h parts. J. Shallit has established the following interesting property of the function Φh(n):
for integers n > 0, d > 2 and i, let rd,i(n) be the quantity of all Fibonacci partitions of n
with number of parts ≡ i mod d. Then, (see [3, Th. 2])

|r3,i(n)− r3,i+1(n)| 6 1.

To prove this inequality, J. Shallit used a technique of automata theory.
Set

Φ(n; t) :=
∑
h>0

Φh(n)th.

In [4], I obtained a formula which expresses Φ(n; t) as determinant of a tridiagonal ma-
trix depending on n. In §2 of this note, I establish Theorem 2.6 on a property of such
determinants.
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In §3, I explain (Theorem 3.1) how the mentioned (see [4]) formula for Φ(n; t) together
with Theorem 2.6 imply not only Shallit’s result, but also the formula(

r3,0(n)− r3,1(n)
)
·
(
r3,0(n)− r3,2(n)

)
·
(
r3,1(n)− r3,2(n)

)
= 0.

2 3–special polynomials
Let d > 2 be an integer number. For any g(t) =

∑
h>0 aht

h ∈ Z[t], define

‖g(t)‖ :=
∑
h>0

ah, Ri(g(t)) :=
∑

h≡i mod d

ah, where i ∈ {0, 1, . . . , d− 1}.

Let Kd[T ] := Z[T ]/(T d − 1). Define a map R(d) : Z[t]→ Kd[T ] by the formula

R(d)(g(t)) := R0(g(t)) +R1(g(t))T + · · ·+Rd−1(g(t))T d−1.

The following Lemma is subject to easy direct verification.

2.1. Lemma. The map R(d) : Z[t]→ Kd[T ] is a homomorphism of Z–algebras.

In this Section, I consider only the case d = 3. For brevity, set K := K3[T ] and
R := R(3).

For any g(t) ∈ Z[t], we obviously have

R
(
(1 + t+ t2) · g(t)

)
= ‖g(t)‖ · ϕ(T ), where ϕ(T ) := 1 + T + T 2. (1)

2.2. Definition. We say that a+ b T + c T 2 ∈ K is a special element if either a = b = c,
or |a− b|+ |a− c|+ |b− c| = 2.

Formula (1) easily implies

2.3. Lemma. An element A[T ] ∈ K is special if and only if

A[T ] · (T − 1) ∈M [T ] :=
{

0,± (T − 1),± T (T − 1),± T 2(T − 1)
}
.

2.4. Corollary. Any product of special elements is a special element.

2.5. Definition. We say that g(t) ∈ Z[t] is a 3–special polynomial if R(g(t)) is a special
element.

In what follows, A = (a1, a2, . . . , am) is either a vector with integer non-negative coor-
dinates if m > 0, or the empty set if m = 0. Let us define a polynomial

∆(A; t) := ∆(a1, . . . , am; t) ∈ Z[t]

by the formulas

∆(∅; t) := 1, ∆(0; t) := 0, ∆(a; t) := t+ t2 + · · ·+ ta for a > 0,
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∆(a1, . . . , am; t) := ∆(a1, . . . , am−1; t) ·∆(am; t)−∆(a1, . . . , am−2; t) · tam+1 if m > 2. (2)

Obviously, for m > 0,

∆ (a1, a2, . . . , am; t) =

∣∣∣∣∣∣∣∣∣
∆(a1; t) ta2+1 0 0 . . . 0

1 ∆(a2; t) ta3+1 0 . . . 0
...

...
. . .

...
0 0 . . . 1 ∆(am−1; t) tam+1

0 0 . . . 0 1 ∆(am; t)

∣∣∣∣∣∣∣∣∣ .
The main result of this note is

2.6. Theorem. For any A = (a1, a2, . . . , am), the polynomial ∆(A; t) is a 3–special one.

The proof uses the following auxiliary claim.

2.7. Lemma. Let ε(A) := (ε(a1), . . . , ε(am)), where ε(a) := a− 3
⌊
a
3

⌋
. Then,

R
(
∆(A; t)

)
= R

(
∆
(
ε(A); t

))
+ k · ϕ(T ), where k = k(A) ∈ Z.

Proof. Let us prove by induction on m. For m = 1 and a > 1, we have

∆(a; t) = t
(

1 + t3 + · · ·+ t3b
a
3c
)

(1 + t+ t2) + t3b
a
3c ·∆

(
ε(a); t

)
.

Applying R to both sides of this equality we obtain

R
(
∆(a; t)

)
= R

(
∆
(
ε(a); t

))
+ k · ϕ(T ), where k = 1 +

⌊a
3

⌋
. (3)

For m > 2, let us apply R to expression (2). The induction hypothesis, Lemma 2.1,

formulas (1) and (3), the obvious formula R(ta) = T ε(a), and a short computation yield
the required result. �

Proof of Theorem 2.6. In view of Lemma 2.7, it suffices to assume that ai ∈ {0, 1, 2} for
any i = 1, 2, . . . ,m. Keeping Lemma 2.3 in mind, define

S(a1, . . . , am) := R
(
∆(a1, . . . , am; t)

)
· (T − 1) ∈ K.

The expression (2) and formula ϕ(T ) · (T − 1) = 0 easily imply the recurrent formula

S(a1, . . . , am) =


−S(a1, . . . , am−2) · T if am = 0,

S(a1, . . . , am−1) · T + S(a1, . . . , am−2) · (T + 1) if am = 1,

−S(a1, . . . , am−1)− S(a1, . . . , am−2) if am = 2.

(4)

By Lemma 2.3 it remains to show that S(a1, . . . , am) ∈M [T ].
Let us prove this by induction on m. For m = 1, 2, the claim is directly checked. In

particular, S(0) = 0 and S(a, 0) = −T (T − 1).
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For am = 0, the last expressions and formula (4) imply the theorem by induction for
any m > 1. Therefore, assume that am = 1 or am = 2. From expressions (4) it is not
difficult to obtain the expressions

S(a1, . . . , am−1, 1) =


S(a1, . . . , am−2, 2) · T 2 if am−1 = 0,

−S(a1, . . . , am−2, 2) · (T + 1) if am−1 = 1,

S(a1, . . . , am−3, am−2 + 2) · T if am−1 = 2,

S(a1, . . . , am−1, 2) =


−S(a1, . . . , am−3, am−2 + 2) · T if am−1 = 0,

S(a1, . . . , am−2, 2) · (T + 1) if am−1 = 1,

S(a1, . . . , am−3) if am−1 = 2.

Since
(T − 1)(T + 1) = −T 2(T − 1),

these expressions and the induction hypothesis complete the proof. �

3 An application to Fibonacci partitions
In §2 of the article [4], for any positive integer n, a certain sequence is uniquely defined

α(n) =
{
α1(n), α2(n), . . . , αk(n)(n)

}
(5)

where αk(n) is a vector with positive integer coordinates for any k = 1, 2, . . . , k(n), and it
is shown ([4, Th.2.11]) that

Φ(n; t) = ∆
(
α1(n); t

)
·∆
(
α2(n); t

)
· . . . ·∆

(
αk(n)(n); t

)
.

By Theorem 2.6 the polynomial ∆
(
αk(n); t

)
is a 3–special one for any k. Thus, Lemma 2.1

and Corollary 2.4 imply

3.1. Theorem. For any integer n > 0, the polynomial Φ(n; t) is a 3–special one.

3.2. Remark. Using arguments similar to those in §2 (where d = 3 is replaced with d = 2)
and the formula for Φ(n; t) one can easily show that |r2,0(n)− r2,1(n)| 6 1 for any positive
integer n. It is obvious that this inequality is equivalent to the analytic identity

∞∏
i=1

(1− xfi) = 1 +
∞∑
n=1

χ(n)xn, where |χ(n)| 6 1. (6)

For other proofs of this identity, see [1],[2] and [4].
In addition to that, an interesting result of Y. Zhao should be mentioned. Namely,

Proposition 2 of the article [5] implies the polynomial identity∏
a6i6b

(1− xfi) = 1 +
∑
n

χa,b(n)xn, where |χa,b(n)| 6 1,

which is valid for any positive integers a 6 b.
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3.3. Conjecture. For positive integers a 6 b, let

M(a, b) := {fa, fa+1, . . . , fb}.

For integers n > 0 and i, let r
(a,b)
3,i (n) be the quantity of Fibonacci partitions of n with parts

from the set M(a, b) and with number of parts ≡ i mod 3.

Then,
∣∣∣r(a,b)3,i (n)− r(a,b)3,j (n)

∣∣∣ 6 1 for any i, j ∈ {0, 1, 2}. Moreover,(
r
(a,b)
3,0 (n)− r(a,b)3,1 (n)

)
·
(
r
(a,b)
3,0 (n)− r(a,b)3,2 (n)

)
·
(
r
(a,b)
3,1 (n)− r(a,b)3,2 (n)

)
= 0.
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