On a theorem of J. Shallit concerning Fibonacci partitions

F. V. Weinstein

Abstract

In this note, I prove a claim on determinants of some special tridiagonal matrices. Together with my result about Fibonacci partitions (https://arxiv.org/ pdf/math/0307150.pdf), this claim allows one to prove one (slightly strengthened) Shallit's result (https://arxiv.org/pdf/2007.14930.pdf) about such partitions.

1 Introduction

Let $f_{1}=1, f_{2}=2$ and $f_{i}=f_{i-1}+f_{i-2}$ for $i>2$ be the sequence of Fibonacci numbers. Observe that the "conventional" definition of Fibonacci numbers is different, see http: //en.wikipedia.org/wiki/Fibonacci_number.

A Fibonacci partition of a positive integer n is a representation of n as an unordered sum of distinct Fibonacci numbers, which are referred to as the parts of the Fibonacci partition.

Let $\Phi_{h}(n)$ be the quantity (the cardinality of the set) of Fibonacci partitions of n with h parts. J. Shallit has established the following interesting property of the function $\Phi_{h}(n)$: for integers $n>0, d \geqslant 2$ and i, let $r_{d, i}(n)$ be the quantity of all Fibonacci partitions of n with number of parts $\equiv i \bmod d$. Then, (see [3, Th. 2])

$$
\left|r_{3, i}(n)-r_{3, i+1}(n)\right| \leqslant 1
$$

To prove this inequality, J. Shallit used a technique of automata theory.
Set

$$
\Phi(n ; t):=\sum_{h>0} \Phi_{h}(n) t^{h}
$$

In [4], I obtained a formula which expresses $\Phi(n ; t)$ as determinant of a tridiagonal matrix depending on n. In $\S 2$ of this note, I establish Theorem 2.6 on a property of such determinants.

[^0]In $\S 3$, I explain (Theorem 3.1) how the mentioned (see [4]) formula for $\Phi(n ; t)$ together with Theorem 2.6 imply not only Shallit's result, but also the formula

$$
\left(r_{3,0}(n)-r_{3,1}(n)\right) \cdot\left(r_{3,0}(n)-r_{3,2}(n)\right) \cdot\left(r_{3,1}(n)-r_{3,2}(n)\right)=0 .
$$

2 3-special polynomials

Let $d \geqslant 2$ be an integer number. For any $g(t)=\sum_{h \geqslant 0} a_{h} t^{h} \in \mathbb{Z}[t]$, define

$$
\|g(t)\|:=\sum_{h \geqslant 0} a_{h}, \quad R_{i}(g(t)):=\sum_{h \equiv i \bmod d} a_{h}, \text { where } i \in\{0,1, \ldots, d-1\} .
$$

Let $K_{d}[T]:=\mathbb{Z}[T] /\left(T^{d}-1\right)$. Define a map $R^{(d)}: \mathbb{Z}[t] \rightarrow K_{d}[T]$ by the formula

$$
R^{(d)}(g(t)):=R_{0}(g(t))+R_{1}(g(t)) T+\cdots+R_{d-1}(g(t)) T^{d-1} .
$$

The following Lemma is subject to easy direct verification.
2.1. Lemma. The map $R^{(d)}: \mathbb{Z}[t] \rightarrow K_{d}[T]$ is a homomorphism of \mathbb{Z}-algebras.

In this Section, I consider only the case $d=3$. For brevity, set $K:=K_{3}[T]$ and $R:=R^{(3)}$.

For any $g(t) \in \mathbb{Z}[t]$, we obviously have

$$
\begin{equation*}
R\left(\left(1+t+t^{2}\right) \cdot g(t)\right)=\|g(t)\| \cdot \varphi(T), \quad \text { where } \varphi(T):=1+T+T^{2} \tag{1}
\end{equation*}
$$

2.2. Definition. We say that $a+b T+c T^{2} \in K$ is a special element if either $a=b=c$, or $|a-b|+|a-c|+|b-c|=2$.

Formula (1) easily implies
2.3. Lemma. An element $A[T] \in K$ is special if and only if

$$
A[T] \cdot(T-1) \in M[T]:=\left\{0, \pm(T-1), \pm T(T-1), \pm T^{2}(T-1)\right\}
$$

2.4. Corollary. Any product of special elements is a special element.
2.5. Definition. We say that $g(t) \in \mathbb{Z}[t]$ is a 3-special polynomial if $R(g(t))$ is a special element.

In what follows, $A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is either a vector with integer non-negative coordinates if $m>0$, or the empty set if $m=0$. Let us define a polynomial

$$
\Delta(A ; t):=\Delta\left(a_{1}, \ldots, a_{m} ; t\right) \in \mathbb{Z}[t]
$$

by the formulas

$$
\Delta(\emptyset ; t):=1, \quad \Delta(0 ; t):=0, \quad \Delta(a ; t):=t+t^{2}+\cdots+t^{a} \quad \text { for } a>0
$$

$$
\begin{equation*}
\Delta\left(a_{1}, \ldots, a_{m} ; t\right):=\Delta\left(a_{1}, \ldots, a_{m-1} ; t\right) \cdot \Delta\left(a_{m} ; t\right)-\Delta\left(a_{1}, \ldots, a_{m-2} ; t\right) \cdot t^{a_{m}+1} \quad \text { if } m \geqslant 2 \tag{2}
\end{equation*}
$$

Obviously, for $m>0$,

$$
\Delta\left(a_{1}, a_{2}, \ldots, a_{m} ; t\right)=\left|\begin{array}{cccccc}
\Delta\left(a_{1} ; t\right) & t^{a_{2}+1} & 0 & 0 & \ldots & 0 \\
1 & \Delta\left(a_{2} ; t\right) & t^{a_{3}+1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & \Delta\left(a_{m-1} ; t\right) & t^{a_{m}+1} \\
0 & 0 & \ldots & 0 & 1 & \Delta\left(a_{m} ; t\right)
\end{array}\right| .
$$

The main result of this note is
2.6. Theorem. For any $A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, the polynomial $\Delta(A ; t)$ is a 3-special one.

The proof uses the following auxiliary claim.
2.7. Lemma. Let $\varepsilon(A):=\left(\varepsilon\left(a_{1}\right), \ldots, \varepsilon\left(a_{m}\right)\right)$, where $\varepsilon(a):=a-3\left\lfloor\frac{a}{3}\right\rfloor$. Then,

$$
R(\Delta(A ; t))=R(\Delta(\varepsilon(A) ; t))+k \cdot \varphi(T), \quad \text { where } k=k(A) \in \mathbb{Z}
$$

Proof. Let us prove by induction on m. For $m=1$ and $a \geqslant 1$, we have

$$
\Delta(a ; t)=t\left(1+t^{3}+\cdots+t^{3\left\lfloor\frac{a}{3}\right\rfloor}\right)\left(1+t+t^{2}\right)+t^{3\left\lfloor\frac{a}{3}\right\rfloor} \cdot \Delta(\varepsilon(a) ; t)
$$

Applying R to both sides of this equality we obtain

$$
\begin{equation*}
R(\Delta(a ; t))=R(\Delta(\varepsilon(a) ; t))+k \cdot \varphi(T), \quad \text { where } k=1+\left\lfloor\frac{a}{3}\right\rfloor \tag{3}
\end{equation*}
$$

For $m \geqslant 2$, let us apply R to expression (2). The induction hypothesis, Lemma 2.1, formulas (1) and (3), the obvious formula $R\left(t^{a}\right)=T^{\varepsilon(a)}$, and a short computation yield the required result.

Proof of Theorem 2.6. In view of Lemma 2.7, it suffices to assume that $a_{i} \in\{0,1,2\}$ for any $i=1,2, \ldots, m$. Keeping Lemma 2.3 in mind, define

$$
S\left(a_{1}, \ldots, a_{m}\right):=R\left(\Delta\left(a_{1}, \ldots, a_{m} ; t\right)\right) \cdot(T-1) \in K
$$

The expression (2) and formula $\varphi(T) \cdot(T-1)=0$ easily imply the recurrent formula

$$
S\left(a_{1}, \ldots, a_{m}\right)= \begin{cases}-S\left(a_{1}, \ldots, a_{m-2}\right) \cdot T & \text { if } a_{m}=0 \tag{4}\\ S\left(a_{1}, \ldots, a_{m-1}\right) \cdot T+S\left(a_{1}, \ldots, a_{m-2}\right) \cdot(T+1) & \text { if } a_{m}=1 \\ -S\left(a_{1}, \ldots, a_{m-1}\right)-S\left(a_{1}, \ldots, a_{m-2}\right) & \text { if } a_{m}=2\end{cases}
$$

By Lemma 2.3 it remains to show that $S\left(a_{1}, \ldots, a_{m}\right) \in M[T]$.
Let us prove this by induction on m. For $m=1,2$, the claim is directly checked. In particular, $S(0)=0$ and $S(a, 0)=-T(T-1)$.

For $a_{m}=0$, the last expressions and formula (4) imply the theorem by induction for any $m \geqslant 1$. Therefore, assume that $a_{m}=1$ or $a_{m}=2$. From expressions (4) it is not difficult to obtain the expressions

$$
\begin{gathered}
S\left(a_{1}, \ldots, a_{m-1}, 1\right)= \begin{cases}S\left(a_{1}, \ldots, a_{m-2}, 2\right) \cdot T^{2} & \text { if } a_{m-1}=0 \\
-S\left(a_{1}, \ldots, a_{m-2}, 2\right) \cdot(T+1) & \text { if } a_{m-1}=1, \\
S\left(a_{1}, \ldots, a_{m-3}, a_{m-2}+2\right) \cdot T & \text { if } a_{m-1}=2,\end{cases} \\
S\left(a_{1}, \ldots, a_{m-1}, 2\right)= \begin{cases}-S\left(a_{1}, \ldots, a_{m-3}, a_{m-2}+2\right) \cdot T & \text { if } a_{m-1}=0 \\
S\left(a_{1}, \ldots, a_{m-2}, 2\right) \cdot(T+1) & \text { if } a_{m-1}=1, \\
S\left(a_{1}, \ldots, a_{m-3}\right) & \text { if } a_{m-1}=2 .\end{cases}
\end{gathered}
$$

Since

$$
(T-1)(T+1)=-T^{2}(T-1)
$$

these expressions and the induction hypothesis complete the proof.

3 An application to Fibonacci partitions

In $\S 2$ of the article [4], for any positive integer n, a certain sequence is uniquely defined

$$
\begin{equation*}
\alpha(n)=\left\{\alpha_{1}(n), \alpha_{2}(n), \ldots, \alpha_{k(n)}(n)\right\} \tag{5}
\end{equation*}
$$

where $\alpha_{k}(n)$ is a vector with positive integer coordinates for any $k=1,2, \ldots, k(n)$, and it is shown ([4, Th.2.11]) that

$$
\Phi(n ; t)=\Delta\left(\alpha_{1}(n) ; t\right) \cdot \Delta\left(\alpha_{2}(n) ; t\right) \cdot \ldots \cdot \Delta\left(\alpha_{k(n)}(n) ; t\right)
$$

By Theorem 2.6 the polynomial $\Delta\left(\alpha_{k}(n) ; t\right)$ is a 3 -special one for any k. Thus, Lemma 2.1 and Corollary 2.4 imply
3.1. Theorem. For any integer $n>0$, the polynomial $\Phi(n ; t)$ is a 3-special one.
3.2. Remark. Using arguments similar to those in $\S 2$ (where $d=3$ is replaced with $d=2$) and the formula for $\Phi(n ; t)$ one can easily show that $\left|r_{2,0}(n)-r_{2,1}(n)\right| \leqslant 1$ for any positive integer n. It is obvious that this inequality is equivalent to the analytic identity

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1-x^{f_{i}}\right)=1+\sum_{n=1}^{\infty} \chi(n) x^{n}, \quad \text { where } \quad|\chi(n)| \leqslant 1 \tag{6}
\end{equation*}
$$

For other proofs of this identity, see [1],[2] and [4].
In addition to that, an interesting result of Y. Zhao should be mentioned. Namely, Proposition 2 of the article [5] implies the polynomial identity

$$
\prod_{a \leqslant i \leqslant b}\left(1-x^{f_{i}}\right)=1+\sum_{n} \chi_{a, b}(n) x^{n}, \quad \text { where } \quad\left|\chi_{a, b}(n)\right| \leqslant 1,
$$

which is valid for any positive integers $a \leqslant b$.
3.3. Conjecture. For positive integers $a \leqslant b$, let

$$
M(a, b):=\left\{f_{a}, f_{a+1}, \ldots, f_{b}\right\}
$$

For integers $n>0$ and i, let $r_{3, i}^{(a, b)}(n)$ be the quantity of Fibonacci partitions of n with parts from the set $M(a, b)$ and with number of parts $\equiv i \bmod 3$.

Then, $\left|r_{3, i}^{(a, b)}(n)-r_{3, j}^{(a, b)}(n)\right| \leqslant 1$ for any $i, j \in\{0,1,2\}$. Moreover,

$$
\left(r_{3,0}^{(a, b)}(n)-r_{3,1}^{(a, b)}(n)\right) \cdot\left(r_{3,0}^{(a, b)}(n)-r_{3,2}^{(a, b)}(n)\right) \cdot\left(r_{3,1}^{(a, b)}(n)-r_{3,2}^{(a, b)}(n)\right)=0
$$

References

[1] F. Ardila. The coefficients of a Fibonacci power series. Fibonacci Quart. 42(3) (2004), 202-204.
[2] N. Robbins. Fibonacci Partitions. Fibonacci Quart. 34(4) (1996), 306-313.
[3] Jeffrey Shallit. Robbins and Ardila meet Berstel. Information Processing Letters, 167 (2021) 106081.
[4] F. V. Weinstein. Notes on Fibonacci Partitions. Experimental Math. 25(4) (2016) 482-499.
[5] Y. Zhao. The coefficients of a truncated Fibonacci series. Fibonacci Quart. 46/47 (2008/2009), 53-55.

[^0]: MSC 2020: Primary 05A15; Secondary 11B39
 Keywords: Fibonacci partition
 Affiliation: N/A
 E-mail: felix.weinstein46@gmail.com

