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Dynamic behavior of a railway track under a moving wheel
load modelled as a sinusoidal pulse

Nouzha Lamdouar, Chakir Tajani and Mohammed Touati

Abstract. The aim of this paper is to evaluate the train/track induced loads on
the substructure by modelling the wheel, at each instant, as a moving sinusoidal
pulse applied in a very short period of time. This assumption has the advantage of
being more realistic as it reduces the impact of time on the load definition. To that
end, mass, stiffness, and dumping matrices of an elementary section of track will be
determined. As a result, the equations of motion of a section of track subjected to
a sinusoidal pulse and a rectangular pulse respectively is concluded. Two numerical
methods of resolution of that equation, depending on the nature of the dumping
matrix, will be presented. The computation results will be compared in order to
conclude about the relevance of that load model. This approach is used in order to
assess the nature and the value of the loads received by the substructure.

1 Introduction

Various theoretical and experimental researches have been performed in order to assess
train/track induced loads on the substructure. Mohammed Touati and al. [1] determined
the loads induced by a non-linear 3D multi-body modelled train on the track with taking
into account wheel/rail contact properties and track irregularities. Yang Xinwen and al. [2]
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concluded, through a vehicle-track-subgrade coupling dynamic theory and finite element
method, about the train/track induced loads on each layer of the substructure. As an
experimental study, Al Shaer and al. [3] presented the dynamic behavior of a portion of
ballasted railway track subjected to cyclic loads in substitution of a moving wheelset. In
conclusion, the dynamics behavior of the substructure is widely studied in the literature
([4], [5], [6], [7], [8]) based on the train/track coupling model.
Actually, even if modelling a wheel load as a rectangular pulse is a common assumption,
real measurements don’t show the same shape. In fact, ONCF (Moroccan railway network
manager) has many tools that record wheel pulse like GOTCHA. This system shows that
the shape of the load has never been rectangular, but it’s more likely compared to a
sinusoidal pulse. Then, this paper deals with evaluating train/track induced loads on
the substructure by proposing a new approach when it comes to modelling the shape
of the wheel impact. Indeed, it’s common to consider a moving load as a rectangular
impulse applied on the nodes of a mesh structure in each period of time depending on
signal sampling. This paper shows that assuming the wheel load as a sinusoidal pulse may
reduce the impact of the period of time of its application and, consequently, minimize the
loads induced on the substructure oversized by the common assumption. In that matter,
a finite element model of the track will be presented and the numerical results will be
compared.

2 Track elementary section modeling

2.1 Determination of mass, stiffness et dumping matrices

Let’s assume a portion of ballasted track composed of two elements of rail considered as
a continuous Euler-Bernoulli beam, fixed to two sleepers by a couples of springs/dampers
representing the railpads. The ballast is modelled as a couples of springs/dampers under
each sleeper (Figure 1).

The displacement vector is written as:

U = [u1, θ1, u2, θ2, u3, θ3, uT1, uT2]

The effective mass and the stiffness matrices of an element of rail [9], are given by:

Mr = (ρrArL/420)


156 22L 54 −13L 0 0
22L 4L2 13L −3L2 0 0
54 13L 312 0 54 −13L
−13L −3L2 0 8L2 13L −3L2

0 0 54 13L 156 −22L
0 0 −13L −3L2 −22L 4L2



Kr =
(
ErIr/L

3
)


12 6L −12 6L 0 0
6L 4L2 −6L 2L2 0 0
−12 −6L 24 0 −12 6L
6L 2L2 0 8L2 −6L 2L2

0 0 −12 −6L 12 −6L
0 0 6L 2L2 −6L 4L2


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Figure 1: Elementary track modelling

where ρr is the density of the rail, Ar is the surface of the rail section, Er is Young modulus,
and Ir is the rail moment of inertia. The dumping matrix of the rail is obtained as a linear
combination of mass and stiffness matrices by assuming that the displacements u1 and u3
are completely dumped by the effect of railpads.
Therefore, the dumping matrix is written as:

C∗
r = a0 ·M∗

r + a1 ·K∗
r

where,

M∗
r = (ρrArL/420)


4L2 13L −3L2 0
13L 312 0 −13L
−3L2 0 8L2 −3L2

0 13L −3L2 4L2



K∗
r =

(
ErIr/L

3
)

4L2 −6L 2L2 0
−6L 24 0 6L
2L2 0 8L2 2L2

0 6L 2L2 4L2


a0 and a1 are concluded from the equation:[

a0
a1

]
=
(
2ω1ω2/

(
ω2
2 − ω2

1

)) [ ω2 −ω1

−1/ω2 1/ω1

] [
ζ1
ζ2

]
where ωi

2, (i = 1, 2) are the eigenvalues associated to the vibration of the rail described
by the matrices Mr

∗ and Kr
∗, and ζi, (i = 1, 2) are the dumping ratios according to the

first and second modes.
In one hand, the equation of motion of the rail is written as:

MrÜ
∗ + CrU̇

∗ +KrU
∗ = F (1)
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Symbol Quantity Value
ρr Rail density (kg/m3) 7850
Ar Rail section surface (cm²) 76.70
Er Young modulus of the rail (GPa) 210
Ir Rail moment of inertia (cm4) 3038.6
mT Sleeper mass (kg) 90.84
ks Railpad stiffness (MN/m) 90
cs Railpad damping (kN.s/m) 30
kb Ballast stiffness (MN/m) 25.5
cb Ballast damping (kN.s/m) 40
ζ Rail dumping ratio 5%

Table 1: Track properties

where Cr is the transformation of the matrix C∗
r in the base U∗, and U∗ is defined by:

U∗ = [u1, θ1, u2, θ2, u3, θ3]

F is given by:

F =


−ks (u1 − uT1)− cs (u̇1 − u̇T1)

0
0
0

−ks (u3 − uT3)− cs (u̇3 − u̇T3)
0


In the other hand, the equations of motion of the sleepers are written as:{

mT üT1 = ks (u1 − uT1) + cs (u̇1 − u̇T1)− kbuT1 − cbu̇T1

mT üT2 = ks (u3 − uT2) + cs (u̇3 − u̇T2)− kbuT2 − cbu̇T2
(2)

From (1) and (2), we may conclude about the equation of motion of the track elementary
section as it’s modelled. It’s written as:

MÜ + CU̇ +KU = 0

where M , C and K are the mass, dumping, and the stiffness of the track elementary section
respectively.

2.2 Numerical application

Let’s assume a track elementary section characterized by the data given in table 1 (we
can refer to ([10], [11], [12]).

The figure 2 illustrates the evolution of natural frequencies according to vibration
modes. It shows that:
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Figure 2: Natural frequencies of an elementary track section

• The frequencies of the 1st and 2nd modes correspond to a movement in phase between
rail and sleepers. It’s equal to 81.62 Hz;

• The frequency of the 3rd mode corresponds to a movement in opposition of phase
between rail and sleepers. It’s equal to 381.1 Hz.

3 Track response to a rectangular and a sinusoidal pulses

3.1 Description of the studied track

Let’s assume a section of track composed of N track elementary sections subjected to
an external load F as it’s shown in figure 3.

The number of degrees of freedom is given by:

Ndof = 8N − 3(N − 1)

The displacement vector is written as:

U =


...
uj,k

...


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Figure 3: Track section modelling

where, {
uj,k = u∗j,k where k ∈ [1, 8] if j = 1
uj,k = u∗j,k where k ∈ [3, 4, 5, 6, 8] if j 6= 1

and,
U∗
j = [uj,1, θj,1, uj,2, θj,2, uj,3, θj,3, uj,T1, uj,T2]

j refers to the element’s number.
The mass, stiffness and dumping matrices in the base U are obtained by assembling

those of a track elementary section determined earlier.
The vector of loads is defined by:

F =


...
fj
...


where, 

N is even


N = 2

{
fj = P if j = 5
fj = 0 else

N 6= 2

{
fj = P if j = (5N/2) + 1
fj = 0 else

N is uneven

{
fj = P if j = (5(N + 1)/2)− 1
fj = 0 else



Dynamic behavior of a railway track under a moving wheel load modelled as a sinusoidal pulse 41

Figure 4: Sinusoidal and rectangular pulses over a period of td

P is a rectangular or a sinusoidal load given as:

• Sinusoidal pulse: {
P = P0 sinωt if t ≤ td
P = 0 else

• Rectangular pulse: {
P = P0 if t ≤ td
P = 0 else

Its shape is shown in the figure 4.

3.2 Description of the methods of resolution

The dynamic behavior of the section of track may be analyzed by modal superposition
if the dumping matrix verifies orthogonality properties. That method is used in particular
for an undumped system. In that case, the equation of motion is reduced to:

MÜ +KU = F.

Let’s assume that ω2
i are the eigenvalues associated to the track vibration. We note {φi}

the normalized eigenvectors related to ω2
i . Therefore, the equation of motion is written as:

Z̈ + diag(ω2
i )Z = φTF (3)

where diag(ω2
i ) is a diagonal matrix of the eigenvalues and:

U = Φ.Z

The system of equations (3) is uncoupled where each equation is written as:

z̈i + ω2
i zi = Φj,iP (t)
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Figure 5: z(t) response to a rectangular and sinusoidal pulse td/T = 0.75

The resolution of that equation is given by DUHAMEL integral:

zi(t) = (1/ωi)

∫ t

0

Φj,iP (τ) sinωi(t− τ)dτ

Therefore, the solution for a sinusoidal pulse load is given as:

zi(t) =

{
(Φj,iP0/ω

2
i ).(1/(1− β2))(sinωt− β sinωit) if t ≤ td

(żi(td)/ωi) sinωi(t− td) + zi(td) cosωi(t− td) if t ≥ td

where,
β = ω/ωi

and the solution for a rectangular pulse load is given as:

zi(t) =

{
(Φj,iP0/ω

2
i )(1− cosωit) if t ≤ td

(Φj,iP0/ω
2
i )(cosωi(t− td)− cosωit if t ≥ td

The figure 5 shows the response z(t) to a sinusoidal and a rectangular pulse. It’s
obvious that in the forced phase, the maximum rectangular response is higher than the
maximum sinusoidal response.

In general, the dumping matrix doesn’t verify the orthogonality characteristics. There-
fore, the modal superposition method is substituted by the following method.

The equation of motion can be written as:

Z̈ + φTCφ.Ż + diag(ω2
i ).Z = φTF (4)

where diag(ωi
2) and φ are defined earlier. Knowing that:

Ż − Ż = 0 (5)
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(4) and (5) could be written as:
Ẏ = D.Y + F ∗ (6)

where,

Y =

[
Z

Ż

]
, D = A−1B, F ∗ = A−1

[
φTF

0

]
and,

A =

[
φTCφ I
I 0

]
, B =

[
diag(ω2

i ) 0
0 −I

]
Let’s assume that {λi} are the eigenvalues associated to the matrix D. We note {ψi}

the normalized eigenvectors related to {ωi
2}. We define X(t) as:

Z = ψ.X

The equation (6) is written as:

Ẋ = diag(λi).X + ψ−1F ∗ (7)

The system of equations (7) is uncoupled where each equation is written as:

ẋi(t) = ai.xi(t) + bi.P (8)

where,
ai = λi and bi = χi

and,

χ = ψ−1

[
φT 0
0 0

]
The resolution of the equation (8) gives:

• Sinusoidal pulse:

xi(t) =

{
biPω
a2i+ω2 e

ait − aibiP
a2i+ω2 sinωt− biPω

a2i+ω2 cosωt if t ≤ td

xi(td)e
ai(t−td) if t ≥ td

• Rectangular pulse:

xi(t) =

{
(bP/a)(eait − 1) if t ≤ td
xi(td)e

ai(t−td) if t ≥ td
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Figure 6: Rail response under sinusoidal, rectangular pulses (N = 4, td = 0.01s, P = 10T)
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Figure 7: Sleeper response under sinusoidal and rectangular pulses (N = 4, td = 0.01s,
P = 10T)

Figure 8: Loads induced in the substructure (N = 30, td = 0.01s, P = 10T)
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Sleeper
number

% of load
(undumped -
sinusoidal load)

% of load
(dumped -
sinusoidal load)

% of load
(undumped -
rectangular
load)

% of load
(dumped -
rectangular
load)

13 4.49% 1.73% 5.50% -
14 11.52% 6.12% 13.66% 6.63%
15 23.24% 15.29% 26.00% 16.41%
16 30.78% 22.43% 34.35% 23.55%
17 23.24% 15.29% 26.00% 16.41%
18 11.52% 6.12% 13.66% 6.63%
19 4.49% 1.73% 5.50% -

Table 2: Repartition of the loads under the sleepers (N = 30, td = 0.01s, P = 10T)

3.3 Results and discussion

The figures presented in this section show the numerical resolution of the system of
equations of a dumped track section subjected to a rectangular and sinusoidal loads. The
properties of the track are defined in table 1. In figure 6 and figure 7, the sinusoidal pulse
is presented in red; however, the rectangular pulse is presented in black.

1. Displacements and rotations of the rail

2. Displacements of the sleepers

It’s clear that the maximum values of rail and sleepers movement under rectangular
pulse are higher than those reached under a sinusoidal pulse. The figure 8 shows the
maximum loads induced in the substructure. The table 2 shows the repartition of the
loads under the sleepers.

These results have many consequences in the railway field. Actually, we may optimize
railway infrastructure components for example (like ballast height). Moreover, the study
is made by considering a static load (10 T). This load is mainly amplified by rail/wheel
interaction and train speed [1].

4 Conclusion

Based on the results of the model analysis studied in order to determine the loads
induced on the substructure, the following conclusions can be drawn:

• The common modelling of the load applied on the track due to a moving wheel as a
rectangular pulse acting in the time sample of a force signal generates a higher rate
of movement in the track and over sizes the loads induced in the substructure than
a sinusoidal pulse model;
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• Dumping matrix has a major influence on reducing the loads induced in the sub-
structure. Therefore, it’s necessary to preserve the quality of the track components
while maintaining it.

As an application, we may evaluate the track behavior according to different characteristics
of the track elements that degrade because of maintenance operations. Indeed, the ballast
is considered as the most affected element because of operations of damping required for
track geometry corrections.
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