
Communications in Mathematics 32 (2024), no. 1, 93–102
DOI: https://doi.org/10.46298/cm.10830
©2024 Tamás Glavosits, Zsolt Karácsony
This is an open access article licensed under the CC BY-SA 4.0

93

Existence and uniqueness theorems for functional equations

Tamás Glavosits, Zsolt Karácsony

This article is dedicated to the memory of János Aczél (1924-2020).

Abstract. In this paper we give simple extension and uniqueness theorems for re-
stricted additive and logarithmic functional equations.

1 Introduction

The main purpose of this article is to show that if X = X(+,6) is an Archimedean
ordered dense Abelian group, Y is an Abelian group ε ∈ X+ := {x ∈ X|x > 0} and
f : ]−2ε, 2ε[ ⊆ X → Y is a function such that

f(x+ y) = f(x) + f(y) (x, y ∈ ]−ε, ε[), (1)

then there uniquely exists an additive function a : X → Y such that

f(x) = a(x) x ∈ ]−2ε, 2ε[ .

Analogue Theorems concerning logarithmic functions are proven as well.
Let D ⊆ R2 be a fixed set and define the sets Dx, Dy, Dx+y by

Dx := {u ∈ R | ∃(v ∈ R) : (u, v) ∈ D} ,
Dy := {v ∈ R | ∃(u ∈ R) : (u, v) ∈ D} ,

Dx+y := {z ∈ R | ∃((u, v) ∈ D) : z = x+ y} .
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If the function f : Dx ∪Dy ∪Dx+y → R satisfies the functional equation

f(x+ y) = f(x) + f(y) ((x, y) ∈ D), (2)

then the function f is said to be additive on the set D and the equation (2) is said to
be restricted additive functional equation. The restricted additive functional equations
have previously been studied by many researchers. In the book [9] Part IV. Geometry,
Section Extension of Functional Equations p. 447–460 the authors cite numerous papers
that investigate the cases when there exists an additive function F : R → R, that is,
F (x+ y) = F (x) + F (y) for all x, y ∈ R such that the function F extends the function f ,
that is, F (x) = f(x) for all x ∈ Df where Df denotes the domain of the function f . An
incomplete list of such papers is given below:

• In the paper [4] D = (D+ ∪ {0})2.

• In the book [1] the first appearance of the concept of quasi-extension can be found.
An additive function a is said to be quasi extension of the function f if f is additive
on a set D ⊆ R2 and there exist constants c1, c2 ∈ R such that f(u) = a(u) + c1
for all u ∈ Dx; f(v) = a(v) + c2 for all v ∈ Dy and f(z) = a(z) + c1 + c2 for all
z ∈ Dx+y. For example, if the function f : ]0, 1[ ∪ ]1, 2[ is defined by f(x) := 0
whenever x ∈ ]0, 1[; f(x) := 1 whenever x ∈ ]1, 3[, then it is easy to see that function
f is additive on the set D := ]0, 1[× ]1, 2[. Although f has no additive extension to
R2 exists, to identically zero function is an additive quasi extension of the function
f from D to R2.

• In the paper [10] the cases are investigated when D = R2
+ and D is an open interval

of the real line containing the origin. In this paper the notations Dx, Dy, Dx+y has
appeared first.

• In [14] the author generalizes the above result that D ⊆ R2 is an arbitrary open set,
D0 = Dx ∪Dy ∪Dx+y, f : D0 → R is a function such that f(x + y) = f(x) + f(y)
for all (x, y) ∈ D.

• In [13] a simple extension theorem can be found for Pexider additive functional
equation where the additivity is fulfilled in a nonempty connected open set of the
real line.

• In the article [2] D = H(I) where I is a nonempty open interval of the real line and
the set H(I) is defined by

H(I) :=
{

(x, y) ∈ R2 | x, y, x+ y ∈ I
}
.

The set H(I) is a hexagon, sometimes a triangle or the empty set.

• In the book [11] D ⊆ RN is a nonempty connected open set. The extension is brought
back to the theory of convex functions, but in this book the author does not consider
the restricted Pexider additive functional equations.
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• In the article [12] an extension theorem can be found for restricted Pexider additive
functional equations where D ⊆ RN is a nonempty connected open set.

• In the book [3] several functional equations are considered in more general abstract
algebraic settings.

Below some necessary concepts and notations are collected:
Let X = X(+,6) be an ordered group. The absolute value of an element x ∈ X is

defined by
|x| := max{x,−x}.

Let X = X(+,6) be an ordered group. If x ∈ X and n ∈ Z where Z denotes the ring
of integers, then we can define the element nx ∈ X by

nx :=


x+ · · ·+ x, if n > 0;

0, if n = 0;
(−x) + · · ·+ (−x), if n < 0.

An ordered group X = X(+,6) is said to be Archimedean ordered, if for every two
elements x, y ∈ X+ := {z ∈ X|z > 0}, there exists n ∈ Z+ := {1, 2, . . . }, such that y < nx.

An ordered group X = X(+,6) is said to be dense, if

]a, b[ := {x ∈ X | a < x and x < b} 6= ∅

for all a, b ∈ X with a < b.
An ordered field F = F(+, ·,6) is said to be Archimedean ordered, if the ordered group

F = F(+,6) is Archimedean ordered. (We use the concept of the field including the
commutativity of the operation ’·’.)

A homomorphism a : X(+)→ Y (+), that is, a function a : X → Y with

a(x+ y) = a(x) + a(y) (x, y ∈ X)

is said to be an additive function.
A homomorphism l : X(·)→ Y (+), that is, a function l : X → Y with

l(xy) = l(x) + l(y) (x, y ∈ X)

is said to be a logarithmic function.
In the rest of this article we use four properties of the open intervals in the appropriately

ordered structure [8]:

1. If G(+,6) is an ordered group, then the open intervals are translation invariant, that
is,

γ + ]α, β[ = ]γ + α, γ + β[ (γ ∈ G).

2. If G(+,6) is an ordered dense Abelian group, α, β, γ, δ ∈ G such that α < β and
γ < δ, then

]α, β[ + ]γ, δ[ = ]α + γ, β + δ[ .
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3. If F(+, ·,6) is an ordered field, then the open intervals are homothety invariant, that
is, if α, β, γ ∈ F such that α < β and γ > 0, then

γ · ]α, β[ = ]γα, γβ[ .

4. If F(+, ·,6) is an ordered field, α, β, γ, δ ∈ F such that 0 < α < β and 0 < γ < δ,
then

]α, β[ · ]γ, δ[ = ]αγ, βδ[ .

Property (2) can be easily deduced from property (1), although in [7] can be found an
example of dense Abelian semigroup which has property (2) without property (1).

Similarly, property (4) can be easily deduced from property (3), although in [7] can
also be found an example for dense Abelian semigroup which has property (4) without
property (3).

Our paper is structured as follows: In section 2 we consider the additive and multi-
plicative versions of Euclid’s Theorem, which will be the key to our extension theorems for
additive and logarithmic functions respectively. In section 3 we give extension theorems for
additive and logarithmic functions. In section 4 we give uniqueness theorems for additive
and logarithmic functions.

2 Euclid’s Theorem

Euclid’s Elements [6] is one of the most influential mathematical textbooks written
more than two thousand years ago. In this textbook (book X, proposition 3.) there is an
algorithm using the so-called Euclidean or remainder division to give the greatest common
measure of two given commensurable magnitudes. We use the modern version of this
division to give our extension theorem for restricted additive functional equations. We
start with the existence and uniqueness theorem of Euclidean division.

Theorem 2.1. If G = G(+,6) is an Archimedean ordered group, x, y ∈ G with y 6= 0.
Then there uniquely exists an integer q and an element r ∈ G such that

x = qy + r where 0 6 r < |y|.

Proof. It is easy to see that

G =
⋃
z∈Z

(zy + [0, |y|[)

and the union is disjoint whence the theorem is clear.

Proposition 2.2. If F is an Archimedean ordered field, x, y ∈ F+, x 6= 0. Then there exists
n, m ∈ Z+ such that xm < y < xn.
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Proof. First, we investigate the case when x > 1. Let h := x− 1. Thus we have that there
exists n ∈ Z+ such that

y < 1 + nh

and by the Bernoulli inequality [5] we have that

1 + nh 6 (1 + h)n = xn.

From the above two inequalities we obtain, that y < xn.
It is also easy to see that

lim
n→∞

(
1

x

)n
= 0,

thus we obtain that there exists an integer m such that xm < y. The case 0 < x < 1 is
similar.

Now we show the multiplicative version of the Euclidean division.

Theorem 2.3. If F = F(+, ·,6) is an Archimedean ordered field, x, y ∈ F+ such that
y 6= 1. Then there uniquely exists an integer z and an element r ∈ F+ such that

x = yz · r.

Furthermore, if 1 < y, then 1 < r < y; and if y < 1, then y < r < 1.

Proof. By Proposition 2.2. we have that

F+ =



⋃
z∈Z

yz [1, y[ if 1 < y;

⋃
z∈Z

yz [y, 1[ if y < 1;

and the union is disjoint, whence the proof can be easily derived.

3 Extension Theorems for additive and logarithmic functional equa-
tions

Theorem 3.1. Let G(+,6) be an Archimedean ordered dense Abelian group, Y (+) be a
group, ε ∈ G+ and f : ]−2ε, 2ε[→ Y be a function such that

f(x+ y) = f(x) + f(y) (x, y ∈ ]−ε, ε[), (3)

then there exists an additive function a : G→ Y which extends the function f .



98 Tamás Glavosits, Zsolt Karácsony

Proof. Define the function a : G→ Y by

a(x) := nf(y0) + f(r)

where y0 ∈ ]0, ε[ is an arbitrarily fixed element and the element x ∈ G is of the form
x = ny0 + r where n ∈ Z and r ∈ G such that 0 ≤ r < y0. This form of x is unique by
Theorem 2.1.

We show that the function a is additive. For this let x, y ∈ G. By Theorem 2.1. we
have that

x = n1y0 + r1,

y = n2y0 + r2,

0 6 r1 < y0

0 6 r2 < y0.
(4)

Then
x+ y = (n1 + n2)y0 + r1 + r2 = (n1 + n2)y0 + r3,

where r3 := r1 + r2 thus 0 6 r3 < 2y0. There are two cases:

• If 0 6 r3 < y0, then

a(x+ y) = (n1 + n2)f(y0) + f(r3) =

(n1 + n2)f(y0) + f(r1 + r2)
(3)
=

[n1f(y0) + f(r1)] + [n2f(y0) + f(r2)] = a(x) + a(y).

• If y0 6 r3 < 2y0, that is, 0 6 r3 − y0 < y0. Then

x+ y = (n1 + n2 + 1)y0 + (r3 − y0), (5)

and the another hand since r3 − y0 ∈ ]ε, ε[ and y0 ∈ ]−ε, ε[ thus

f(r3) = f(r3 − y0) + f(y0). (6)

Whence we have that

a(x+ y)
(5)
= (n1 + n1 + 1)f(y0) + f(r3 − y0)
= (n1 + n2)f(y0) + [f(r3 − y0) + f(y0)]

(6)
= (n1 + n2)f(y0) + f(r3)

= (n1 + n2)f(y0) + f(r1 + r2)

(3)
= (n1 + n2)f(y0) + f(r1) + f(r2)

= [n1f(y0) + f(r1)] + [n1f(y0) + f(r1)]

= a(x) + a(y).

We show that
f(x) = a(x) (x ∈ ]−ε, ε[).
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For this let x ∈ ]−ε, ε[. Then by Euclidean division, we obtain that there exists a number
n ∈ Z and an element r ∈ G such that

x = ny0 + r where 0 6 r < y0.

There are three cases:

• If x ∈ [0, ε[, then

a(x) = nf(y0) + f(r)
(3)
= f(ny0) + f(r)

(3)
= f(ny0 + r) = f(x).

• If x ∈ ]−ε, 0[ and ny0 ∈ ]−ε, 0[, then we can apply the chain of reasoning of the first
case.

• If x ∈ ]−ε, 0[ and ny0 < −ε, then

ny0 < x < (n+ 1)y0, and (n+ 1)y0 ∈ ]−ε, 0[ ,

whence we have that
(n+ 1)f(y0) = f((n+ 1)y0). (7)

On the other hand (y0 − r) ∈]0, ε[, r ∈ ]0, ε[ thus f(y0) = f(y0 − r) + f(r) but
f(y0 − r) = −f(r − y0) whence we have that

f(r) = f(r − y0) + f(y0). (8)

Thus we obtain that

a(x) = nf(y0) + f(r)

(8)
= nf(y0) + f(r − y0) + f(y0)

= (n+ 1)f(y0) + f(r − y0)
(7)
= f((n+ 1)y0) + f(r − y0)
(3)
= f(ny0 + r) = f(x).

Finally we show that

f(x) = a(x) (x ∈ ]−2ε, 2ε[).

For this let x ∈ ]−2ε, 2ε[. Then based on the relation for the sum of the intervals we get
that

]−2ε, 2ε[ = ]−ε, ε[ + ]−ε, ε[
thus there exist elements u, v ∈ ]−ε, ε[ such that x = u+ v. Thus by the previous part of
this proof we get

f(x) = f(u+ v)
(3)
= f(u) + f(v) = a(u) + a(v) = a(u+ v) = a(x).
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Theorem 3.2. Let F(+, ·,6) be an Archimedean ordered field, Y (+) be a group, ε ∈ F+,
f : ]ε−2, ε2[→ Y be a function such that

f(xy) = f(x) + f(y) (x, y ∈
]
ε−1, ε

[
), (9)

then there exists a logarithmic function l : F+ → Y which extends the function f .

Proof. Define the function l : F+ → Y by

l(x) := nf(y0) + f(r)

where y0 ∈ ]1, ε[ is an arbitrarily fixed element and the element x ∈ F+ is of the form
x = yn0 · r where n ∈ Z and r ∈ F+ such that 1 ≤ r < y0. This form of x is unique by
Theorem 2.3. Similarly as in the proof of the Theorem 3.1. it is easy to show that the
function l is logarithmic and extends the function f .

4 Uniqueness Theorem for additive and logarithmic functional equa-
tions

Theorem 4.1. Let G be an Archimedean ordered Abelian group and a : G → Y be an
additive function. If there exist constants α β ∈ G with α < β and c ∈ Y such that

a(x) = c (x ∈ ]α, β[),

then a(x) = 0 for all x ∈ G.

Proof. By the translation invariant property of intervals, it is easy to see that a(y) = d for
all y ∈ ]0, β − α[ where d = c− a(α). Let ε ∈ ]0, β − α[ and δ ∈ ]0, ε[. Then

d = a(ε) = a(ε− δ + δ) = a(ε− δ) + a(δ) = d+ d

thus we have that a(y) = 0 for all y ∈ ]0, β − α[.
Let x ∈ G be arbitrary. By the Theorem 2.1. there exists an integer z and an element

r ∈ G such that 0 6 r < ε and x = qε+ r, whence we obtain that

a(x) = a(qε+ r) = q · a(ε) + a(r) = q · 0 + 0 = 0

which completes the proof.

Corollary 4.2. Let G be an Archimedean ordered Abelian group and a1, a2 : G → Y be
additive functions. If there exists a nonempty open interval ]α, β[ ⊆ X and a constant
c ∈ Y such that

a1(x) = a2(x) + c (x ∈ ]α, β[),

then a1(x) = a2(x) = 0 for all x ∈ G.
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Theorem 4.3. Let F(+, ·,6) be an Archimedean ordered field, Y (+) be a group, l : F+ → Y
be a logarithmic function. If there exists a nonempty internal ]a, b[ ⊆ F+ and a constant
c ∈ Y such that

l(x) = c (x ∈ ]a, b[),

then l(x) = 0 for all x ∈ F+.

Proof. By the homothety invariant property of intervals, it is easy to see that a(y) = d for
all y ∈

]
1, β

α

[
where d = c− l(α). Let ε ∈

]
1, β

α

[
and δ ∈ ]1, ε[, then

d = a(ε) = a
(ε
δ
· δ
)

= a
(ε
δ

)
+ a(δ) = d+ d

thus we have that a(y) = 0 for all y ∈
]
1, β

α

[
.

Let x ∈ F+ be arbitrary. By the Theorem 2.3. there exists an integer z and an element
r ∈ F+ such that 1 6 r < ε and x = εq · r whence we obtain that

l(x) = l(εq · r) = q · l(ε) + a(r) = q · 0 + 0 = 0

which completes the proof.

Corollary 4.4. Let F(+, ·,6) be an Archimedean ordered group and l1, l2 : F+ → Y be an
additive functions. If there exists a nonempty open interval ]α, β[ ⊆ F+ and a constant
c ∈ Y such that

l1(x) = l2(x) + c (x ∈ ]α, β[),

then l1(x) = l2(x) for all x ∈ F+.
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