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Generalized curvature tensor and the hypersurfaces of the
Hermitian manifold for the class of Kenmotsu type

Mohammed Y. Abass and Habeeb M. Abood

Abstract. This paper determines the components of the generalized curvature ten-
sor for the class of Kenmotsu type and establishes the mentioned class is η-Einstein
manifold when the generalized curvature tensor is flat; the converse holds true un-
der suitable conditions. It also introduces the notion of generalized Φ-holomorphic
sectional (GΦSH-) curvature tensor and thus finds the necessary and sufficient condi-
tions for the class of Kenmotsu type to be of constant GΦSH-curvature. In addition,
the notion of Φ-generalized semi-symmetric is introduced and its relationship with
the class of Kenmotsu type and η-Einstein manifold established. Furthermore, this
paper generalizes the notion of the manifold of constant curvature and deduces its re-
lationship with the aforementioned ideas. It finally shows that the class of Kenmotsu
type exists as a hypersurface of the Hermitian manifold and derives a relation be-
tween the components of the Riemannian curvature tensors of the almost Hermitian
manifold and its hypersurfaces.

1 Introduction

The notion of generalized curvature tensor was introduced by Shaikh and Kundu [19]
to generalize well-known curvature tensors such as the conformal curvature tensor, the
concircular tensor, and the conharmonic tensor. Yildiz and De [22] introduced and stud-
ied Φ-projectively semisymmetric and Φ-Weyl semisymmetric non-Sasakian (k, µ)-contact
metric manifolds while Kenmotsu [13] and Kirichenko and Khari-tonova [16] discussed the
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Φ-holomorphic sectional curvature tensor. On the other hand, investigation of the geome-
try of the submanifolds of some Riemannian manifolds has captured the interest of authors
such as Alegre and Carriazo [3], Sular and Özgür [20] and Chen [6]. The special subject
in the study of the geometry of submanifolds is the hypersurface of the Riemannian man-
ifolds, which has been discussed by Goldberg [9]. We concentrated on the geometry of the
hypersurfaces of the almost Hermitian manifolds that have almost contact structures on
the associated G-structure space. The last mentioned topic was studied by Banaru and
Kirichenko [5]. Moreover, Ignatochkina [12], Ignatochkina and Morozov [11], and Niki-
forova and Ignatochkina [17] studied the transformations and conformal transformations
on hypersurfaces induced from almost Hermitian manifolds.

The aim of this article is organized according to the differential geometry of the gen-
eralized curvature tensor of the almost contact metric manifolds, especially the class of
Kenmotsu type and the class of Kenmotsu type as a hypersurface of the Hermitian mani-
fold.

2 Preliminaries

We use the notations M2n+1, X(M) and ∇ to denote the smooth manifold M of
dimension 2n + 1, the Lie algebra of smooth vector fields of M , and the Riemannian
connection respectively.

Definition 2.1 ([14]). A smooth manifold M2n+1 with the quadruple (Φ, ξ, η, g) is called
an almost contact metric manifold or briefly ACR-manifold, where Φ : X(M) → X(M),
ξ ∈ X(M), g is the Riemannian metric and η(·) = g(·, ξ), are such that

Φ(ξ) = 0; η(ξ) = 1; η ◦ Φ = 0; Φ2 = −id + η ⊗ ξ;

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ); ∀X, Y ∈ X(M).

In the present article, we fix the components of the Riemannian metric g of an ACR-
manifold M2n+1 as follows:

g00 = 1; ga0 = gab = gâb̂ = 0; gâb = δab ; gij = gji, (1)

where a, b = 1, 2, . . . , n, â = a+n and i, j = 0, 1, . . . , 2n. Moreover, the components of the
endomorphism Φ are given by

Φ0
0 = Φa

b̂
= 0; Φa

b =
√
−1δab ; Φj

i = −Φî
ĵ
, (2)

where ˆ̂i = i. So, for all X, Y ∈ X(M), we have

X = X iεi; g(X, Y ) = gijX
iY j; Φ(X) = Φi

jX
jεi,

where X i ∈ C∞(M) and (p; ε0 = ξ, ε1, . . . , ε2n) is an A-frame over M2n+1 such that p ∈M ,
εa = 1√

2
(id−

√
−1Φ)ea, εâ = 1√

2
(id+

√
−1Φ)ea, and {ξ, e1, . . . , en,Φe1, . . . ,Φen} is a basis

of X(M). The set of all A-frames as given above is called an associated G-structure space
(AG-structure space). For more details, we refer to [14].
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Definition 2.2 ([1]). A class of ACR-manifold such that the following identity:

∇X(Φ)Y −∇ΦX(Φ)ΦY = −η(Y )ΦX, ∀ X, Y ∈ X(M)

holds is called a class of Kenmotsu type.

Lemma 2.3 ([1]). On the AG-structure space, the class of Kenmotsu type satisfies the
following relations:

Aad[bc] −Bad
[cb] −Bah

[b B
d

|h|c] = 0; Aacdb −B
a[cd]

b +B
a[c

hB
|h|d]

b = 0; Aa[bcd] = 0

A
[bc]
ad +B

[cb]
ad +B

[b
ah B

|h|c]
d = 0; Abacd +B b

a[cd] −B h
a[c B b

|h|d] = 0; A[bcd]
a = 0;

where [·| · |·] denotes the anti-symmetric operator of the involved indices except | · | and
c, d, h ∈ {1, 2, . . . , n}.

We denote by R, r, Q the Riemann curvature tensor, the Ricci tensor and the Ricci
operator of and ACR-manifold respectively.

Theorem 2.4 ([1]). The components of R for the class of Kenmotsu type over the AG-
structure space are given by

1. Ra
0c0 = −δac ; Ra

b̂cd
= 2(Bab

[cd] − δa[c δbd]); Ra
b̂cd̂

= Babd
c −Bab

h B
hd

c;

2. Ra
bcd = 2Aabcd; Ra

bcd̂
= Aadbc −Bah

c B
d

bh − δac δdb ,

where R(X, Y )Z = Ri
jklX

kY lZjεi, k, l = 0, 1, . . . , 2n and the remaining components of R

are given by the first Bianchi identity or by the conjugate (i.e. Ri
jkl = Rî

ĵk̂l̂
; 0̂ = 0) of the

above components or are identically zero.

Theorem 2.5 ([1]). The components of r of the class for Kenmotsu type over the AG-
structure space are as follows:

1. r00 = −2n; rab = −2Acabc +B c
cab −B h

ca B c
hb ;

2. ra0 = 0; râb = −2(nδab +Bca
[bc]) + Aaccb −Bah

b B
c

ch ,

where r(X, Y ) = rijX
iY j, rij = rji and the remaining components of r are conjugate to

the above components.

Definition 2.6 ([1]). An ACR-manifold (M2n+1,Φ, ξ, η, g) with Ricci tensor r,

1. is called an Einstein manifold, if rij = λgij, where λ is an Einstein constant.

2. is called an η-Einstein manifold, if rij = λgij + µηiηj, where λ, µ are scalars.

3. is said to have Φ-invariant property, if ra0 = rab = 0.
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Definition 2.7 ([19]). The projective, concircular and generalized curvature tensors of
type (4, 0) on the ACR-manifold (M2n+1,Φ, ξ, η, g) are defined by the following formulas
respectively:

P (X, Y, Z,W ) = R(X, Y, Z,W )− 1

2n
{g(X,Z)r(Y,W )− g(X,W )r(Y, Z)};

C(X, Y, Z,W ) = R(X, Y, Z,W )− s

2n(2n+ 1)
{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)};

B(X, Y, Z,W ) = a0R(X, Y, Z,W ) + a1{g(X,Z)r(Y,W )− g(X,W )r(Y, Z)

+ r(X,Z)g(Y,W )− r(X,W )g(Y, Z)}
+ 2a2s{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)};

for all X, Y, Z,W ∈ X(M), where s is the scalar curvature, a0, a1, a2 are scalars and for
any tensor T of type (3, 1), we get T (X, Y, Z,W ) = g(T (Z,W )Y,X), which is a tensor of
type (4, 0).

We can rewrite the above tensors on AG-structure space as follows:

Pijkl = Rijkl −
1

2n
{gik rjl − gil rjk}; (3)

Cijkl = Rijkl −
s

2n(2n+ 1)
{gik gjl − gil gjk}; (4)

Bijkl = a0Rijkl + a1{gik rjl − gil rjk + rik gjl − ril gjk}+ 2a2s{gik gjl − gil gjk}. (5)

We note that the generalized curvature tensor B satisfies the first Bianchi identity.

3 Properties of the Generalized Curvature Tensor

In this section, we shall investigate some properties of the generalized curvature tensor
on the class of Kenmotsu type.

Theorem 3.1. On the AG-structure space, the components of the generalized curvature
tensor are given by

1. Ba0b0 = a1 rab;

2. Bâ0b0 = −(a0 + 2na1 − 2a2s)δ
a
b + a1 râb;

3. Bâbcd = 2a0 A
a
bcd + a1{δac rbd − δad rbc};

4. Bâbcd̂ = a0(Aadbc −Bah
c B

d
bh ) + a1{δac Qd

b + δdb Q
a
c}+ (2a2s− a0)δac δ

d
b ;

5. Bâb̂cd = 2a0 B
ab

[cd] + 4a1 δ
[a
[c Q

b]
d] + 2(2a2s− a0) δ

[a
[c δ

b]
d];

and the remaining components are identically zero, given by the first Bianchi identity or
conjugate to the above components.
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Proof. Since r(X, Y ) = g(X,QY ), then rij = gikQ
k
j . Consquently, regarding the Equa-

tion (1), we have
râb = gâkQ

k
b = gâ0Q

0
b + gâcQ

c
b + gâĉQ

ĉ
b = Qa

b .

Since B is defined on the class of Kenmotsu type, then we may substitute the values of
Rijkl = Rî

jkl according to Theorem 2.4 and the values of gij according to Equation (1) in
Equation (5), obtaining the desired result.

Theorem 3.2. The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) has flat generalized curvature
tensor if and only if M is η-Einstein manifold with:

λ =
1

a1

(a0 + 2na1 − 2a2s), Aabcd = 0, µ = −(2n+ λ),

Aadbc = Bah
c B

d
bh +

a1

a0

µδac δ
d
b and Bab

[cd] =
a1

a0

µδa[cδ
b
d],

provided that a0, a1 6= 0.

Proof. Suppose that M2n+1 has flat generalized curvature tensor with a0 6= 0 and a1 6= 0,
then Bijkl = 0 and from Theorem 3.1, we have

rab = 0; râb =
1

a1

(a0 + 2na1 − 2a2s)δ
a
b ; Aabcd = 0.

Then, according to the Definition 2.6, we get λ = 1
a1

(a0 + 2na1 − 2a2s). Since M is the
class of Kenmotsu type, then from the Theorem 2.5, we have r00 = −2n = λ+ µ and this
gives us µ. Again, Theorem 3.1, item 4 gives Aadbc = Bah

c B
d

bh + a1
a0
µ δac δ

d
b . Moreover,

Theorem 3.1, item 5 gives Bab
[cd] = a1

a0
µ δa[c δ

b
d]. The converse is also true.

Now, we introduce the notion of generalized Φ-holomorphic sectional GΦHS-curvature
tensor as follows:

Definition 3.3. A GΦHS-curvature tensor S of an ACR-manifold (M2n+1,Φ, ξ, η, g) is a
map defined by

S(X) =
B(ΦX,X,X,ΦX)

(g(X,X))2
; ∀ X ∈ ker(η); X 6= 0.

Moreover, M is called of pointwise constant GΦHS-curvature if S(X) = γ and γ does not
depend on X.

Clearly, a GΦHS-curvature tensor is a Φ-holomorphic sectional (ΦHS-)curvature ten-
sor if and only if a0 = 1 and a1 = a2 = 0. Therefore, we can derive the necessary and
sufficient condition for an ACR-manifold to have pointwise constant GΦHS-curvature on
AG-structure space.
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Theorem 3.4. An ACR-manifold (M2n+1,Φ, ξ, η, g) has pointwise constant GΦHS-curva-
ture if and only if, on the AG-structure space, the generalized curvature tensor B of M
satisfies

B
(a d)
(bc) =

γ

2
δ̃adbc ,

where δ̃adbc = δab δ
d
c + δac δ

d
b and (··) denotes the symmetric operator of the included indices.

Proof. Since the tensor B has the same properties as the Riemannian curvature tensor R,
then we can follow the same proof was found in [14] or equivalently in [21].

Theorem 3.5.The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) has pointwise constant GΦHS-
-curvature if and only if, on the AG-structure space, M satisfies the following equality:

Aadbc = B
[ad]

bc −B a
hb Bdh

c −
2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .

Proof. Suppose that M is the class of Kenmotsu type and has pointwise constant GΦHS-
curvature. Using Theorem 3.4 and Theorem 3.1, item 4, we get

A
(ad)
(bc) = B

(a|h|
(b B

d)
c)h −

2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .

The above equation can be rewritten as follows:

A
(ad)
(bc) = −B (a

h(b B
d)h

c) −
2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .

Since Aadbc = A
[ad]
[bc] +A

[ad]
(bc) +A

(ad)
[bc] +A

(ad)
(bc) , then taking into account Lemma 2.3 and the above

result, we conclude the proof.

Recently, Yıldız and De [22] introduced the notions of Φ-projectively semisymmetric
and Φ-Weyl semisymmetric. Regarding these ideas, we can introduce the following defini-
tion:

Definition 3.6. An ACR-manifold (M2n+1,Φ, ξ, η, g) is called Φ-generalized semisymmetric
if B(Z,W ) · Φ = 0, for all Z,W ∈ X(M), or equivalently

B(X,ΦY, Z,W ) +B(ΦX, Y, Z,W ) = 0; ∀ X, Y, Z,W ∈ X(M).

Lemma 3.7. On AG-structure space, the ACR-manifold (M2n+1,Φ, ξ, η, g) is Φ-generalized
semi (ΦGS-)symmetric if and only if

Ba0b0 = Bâ0b0 = Ba0bc = Bâ0bc = Ba0b̂c = Babcd = Bâb̂cd = 0.

Proof. According to the Definition 3.6, we have that M is Φ-generalized semi-symmetric
if and only if

B(X,ΦY, Z,W ) +B(ΦX, Y, Z,W ) = 0; ∀ X, Y, Z,W ∈ X(M).
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On the AG-structure space, the above identity is equivalent to the following:

Biqkl Φq
j +Btjkl Φt

i = 0; q, t = 0, 1, . . . , 2n.

If we take

(i, j, k, l) = (a, 0, b, 0), (â, 0, b, 0), (a, 0, b, c), (â, 0, b, c), (a, 0, b̂, c), (a, b, c, d), (â, b̂, c, d),

and using Equation (2), we obtain the result.

It is not hard to conclude the following:

Corollary 3.8. The ACR-manifold (M2n+1,Φ, ξ, η, g) of flat generalized curvature tensor is
usually ΦGS-symmetric.

Corollary 3.9. The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) has flat generalized curvature
tensor if and only if M is ΦGS-symmetric with Aabcd = 0 and Aadbc = Bah

c B
d

bh + a1
a0
µ δac δ

d
b ,

where µ = − 1
a1

(a0 + 4na1 − 2a2s), provided that a0, a1 6= 0.

Proof. Suppose that M is the class of Kenmotsu type and it has flat generalized curvature
tensor, then from the Corollary 3.8, M is ΦGS-symmetric and from the Theorem 3.1, we
get the other conditions.

Conversely, If M is ΦGS-symmetric with the above conditions then according to
Lemma 3.7 and Theorem 3.1, M has flat generalized curvature tensor.

Theorem 3.10. The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) is ΦGS-symmetric if and
only if M is η-Einstein manifold with λ = 1

a1
(a0 + 2na1 − 2a2s), µ = −(2n + λ) and

Bab
[cd] = a1

a0
µ δa[cδ

b
d], provided that a0, a1 6= 0.

Proof. Suppose that M is Φ-generalized semi-symmetric class of Kenmotsu type, then
from Lemma 3.7 and Theorem 3.1, we have

rab = 0; râb =
1

a1

(a0 + 2na1 − 2a2s)δ
a
b ; Bab

[cd] = − 1

a0

(a0 + 4na1 − 2a2s)δ
a
[cδ

b
d].

Regarding the Definition 2.6 and Theorem 2.5, we obtain the values of λ and µ.
The converse is verified directly.

Corollary 3.11. The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) is ΦGS-symmetric and has
GΦHS-curvature if and only if, M is η-Einstein manifold with λ = 1

a1
(a0 + 2na1 − 2a2s),

µ = −(2n + λ), Bab
[cd] = a1

a0
µδa[cδ

b
d], and Aadbc = γ

2a0
δ̃adbc − B a

hb Bdh
c + a1

a0
µδab δ

d
c , provided

that a0, a1 6= 0.

Proof. Suppose that M is the class of Kenmotsu type, then the necessary and sufficient
conditions of the present corollary are satisfied from Theorems 3.5 and 3.10.
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4 Generalized Curvature Tensor Related with Another Tensors

In this section, we introduce a generalization of the notion of ACR-manifold of constant
curvature that is used by Abood and Al-Hussaini [2]. We shall present this idea in the
following definition:

Definition 4.1. An ACR-manifold (M2n+1,Φ, ξ, η, g) is said to have constant generalized
curvature κ if the following identity holds:

B(X, Y, Z,W ) = κ{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)}; ∀ X, Y, Z,W ∈ X(M).

On the AG-structure space, Definition 4.1 equivalent to the identity below.

Bijkl = κ{gik gjl − gil gjk}. (6)

Directly, regarding the Definition 4.1, Definition 2.7 and the definition of the conharmonic
curvature tensor (see [8]), we have the following result:

Theorem 4.2. Suppose that M2n+1 is an ACR-manifold of constant generalized curvature
κ = 2a2s. Then M has flat conharmonic curvature tensor if and only if, a0 = 1 and
a1 = − 1

2n−1
.

Theorem 4.3. An ACR-manifold (M2n+1,Φ, ξ, η, g) has constant generalized curvature κ
if and only if, on the AG-structure space, B has the following components:

1. Bâ0b0 = κ δab ;

2. Bâbcd̂ = κ δac δ
d
b ;

3. Bâb̂cd = 2κ δa[cδ
b
d];

and the remaining components are identically zero, obtained from the above components by
the first Bianchi identity or by taking the conjugate operation.

Proof. The result follows from Equation (6) by taking

(i, j, k, l) = (â, 0, b, 0), (â, b, c, d̂), (â, b̂, c, d);

and using the Equation (1).

Theorem 4.4. The ACR-manifold (M2n+1,Φ, ξ, η, g) is ΦGS-symmetric if and only if, M
has constant generalized curvature κ = 0.

Proof. The claim of this theorem is obtained from Lemma 3.7 and Theorem 4.3.

Theorem 4.5. If an ACR-manifold (M2n+1,Φ, ξ, η, g) has constant generalized curvature
κ, then M has pointwise constant GΦHS-curvature equal to γ = κ.
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Proof. The result follows from Theorems 3.4 and 4.3.

Theorem 4.6. The class of Kenmotsu type (M2n+1,Φ, ξ, η, g) has constant generalized cur-
vature κ if and only if, M is an η-Einstein manifold with:

λ =
1

a1

(a0 + 2na1 − 2a2s+ κ), Aabcd = 0, µ = −(2n+ λ),

Aadbc = Bah
c B

d
bh +

a1

a0

µδac δ
d
b and Bab

[cd] =
a1

a0

µδa[cδ
b
d],

provided that a0, a1 6= 0.

Proof. The assertion of this theorem is obtained by combining the results of the Theo-
rems 3.1 and 4.3.

Now, we find the geometric properties of ACR-manifold if the generalized curvature
tensor, the concircular tensor and the projective tensor are related.

Suppose that (M2n+1,Φ, ξ, η, g) is an ACR-manifold satisfies the following condition:

B(X, Y, Z,W ) =
a0

3
{P (X, Y, Z,W )− P (Y,X,Z,W ) + C(X, Y, Z,W )}. (7)

Regarding the Equations (3), (4) and (5), we can write the Equation (7) on the AG-
structure space as follows:

(a1 +
a0

6n
){gik rjl−gil rjk+rik gjl−ril gjk}+(2a2 +

a0

6n(2n+ 1)
)s{gik gjl−gil gjk} = 0. (8)

The contracting of the Equation (8), that is, multiplying it by gik (the components of g−1

on AG-structure space), we can deduce that

rjl = −(α + 2nβ)s

(2n− 1)α
gjl, (9)

where α = a1 + a0
6n

and β = 2a2 + a0
6n(2n+1)

. Moreover, the contracting of Equation (9) gives

a0 + 4na1 + 4n(2n+ 1)a2 = 0. Then we can state the following theorem:

Theorem 4.7. Any ACR-manifold (M2n+1,Φ, ξ, η, g) which satisfies the identity (7) is an
Einstein manifold with a0 + 4na1 + 4n(2n + 1)a2 = 0, provided that α 6= 0. Moreover, if

M is the class of Kenmotsu type then s = 2n(2n−1)α
α+2nβ

, provided that α + 2nβ 6= 0.

Proof. The first part of this theorem is obvious from the above discussion. Now, if M is
the class of Kenmotsu type then from the Theorem 2.5, we have r00 = −2n. Then the
result is established from the Equations (1) and (9).
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5 The Hypersurfaces of the Hermitian Manifold

Suppose that (M2n−1,Φ, ξ, η, g) is an ACR-manifold, then there exists an almost com-
plex structure J on M ×R defined by J(X, f d

dt
) = (ΦX − fξ, η(X) d

dt
), where X ∈ X(M),

t ∈ R and f is a smooth function on R. The Riemannian metric h on M ×R is defined by

h((X, f1
d

dt
), (Y, f2

d

dt
)) = g(X, Y ) + f1 f2; ∀ X, Y ∈ X(M); f1, f2 ∈ C∞(R).

The structure on M×R is Hermitian if and only if the structure on M is normal (see [18]).
Since the class of Kenmotsu type is normal because it is the class C3⊕C4⊕C5, where C5

is taken here to be α-Kenmotsu manifold with α = 1 (see [7] for more detail about the
classes C3 and C4). Then the product manifold of the class of Kenmotsu type and the real
line is Hermitian (i.e. W3 ⊕W4, see [10]).

Now, we discuss the opposite problem, that is, if (N2n, J, h) is an Hermitian manifold,
then can we find a hypersuface of N which is the class of Kenmotsu type? We rely on the
citation [5] for the background.

Suppose that a, b, c = 1, 2, . . . , n − 1 and σij = σji; i, j = 1, 2, . . . , 2n − 1 are the
components of the second quadratic form as mentioned in [5].

Theorem 5.1 ([5]). An ACR-manifold which a hypersuface of an almost Hermitian man-
ifold has the following first family of the Cartan structure equations:

dωa = ωab ∧ ωb +Bab
c ωc ∧ ωb +Babc ωb ∧ ωc + (

√
2Ban

b +
√
−1σab )ω

b ∧ ω

+ (
√
−1σab −

√
2B̃nab − 1√

2
Bab
n −

1√
2
B̃abn)ωb ∧ ω;

dωa = −ωba ∧ ωb +Bc
ab ωc ∧ ωb +Babc ω

b ∧ ωc + (
√

2Bb
an −

√
−1σba)ωb ∧ ω

− (
√
−1σab +

√
2B̃nab +

1√
2
Bn
ab +

1√
2
B̃abn)ωb ∧ ω;

dω =
√

2Bnab ω
a ∧ ωb +

√
2Bnab ωa ∧ ωb + (

√
2Bna

b −
√

2Ba
nb − 2

√
−1σab )ω

b ∧ ωa
+ (B̃nbn +Bn

nb +
√
−1σnb)ω ∧ ωb + (B̃nbn +Bnb

n −
√
−1σbn)ω ∧ ωb.

From Banaru [4], we see that the Hermitian manifold N satisfies Bαβγ = Bαβγ = 0,
where α, β, γ = 1, 2, . . . , n, and thus the Theorem 5.1 reduce to the following form:

Theorem 5.2. An ACR-manifold which a hypersuface of the Hermitian manifold has the
following first family of the Cartan structure equations:

dωa = ωab ∧ ωb +Bab
c ωc ∧ ωb + (

√
2Ban

b +
√
−1σab )ω

b ∧ ω + (
√
−1σab − 1√

2
Bab
n )ωb ∧ ω;

dωa = −ωba ∧ ωb +Bc
ab ωc ∧ ωb + (

√
2Bb

an −
√
−1σba)ωb ∧ ω − (

√
−1σab +

1√
2
Bn
ab)ω

b ∧ ω;

dω = (
√

2Bna
b −

√
2Ba

nb − 2
√
−1σab )ω

b ∧ ωa + (Bn
nb +
√
−1σnb)ω ∧ ωb

+ (Bnb
n −

√
−1σbn)ω ∧ ωb.
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Regarding Abood and Abass [1], we note that the class of Kenmotsu type satisfies the
following theorem:

Theorem 5.3 ([1]). The class of Kenmotsu type M2n−1 has the following first group of
Cartan structure equations:

dωa = ωab ∧ ωb +Bab
c ω

c ∧ ωb − ωa ∧ ω;

dωa = −ωba ∧ ωb +B c
ab ωc ∧ ωb − ωa ∧ ω;

dω = 0,

where Bab
c and B c

ab are the components of the first Kirichenko’s tensor as explained in
[15].

Now, if the class of Kenmotsu type M2n−1 is a hypersurface of the Hermitian manifold
N2n, then the cartan structure equations that mentioned in the Theorems 5.2 and 5.3 must
be equal. Then we get

Bab
c = Bab

c;
√

2Ban
b +

√
−1σab = −δab ;

√
−1σab − 1√

2
Bab
n = 0;

Bc
ab = B c

ab ;
√

2Bb
an −

√
−1σba = −δba;

√
−1σab +

1√
2
Bn
ab = 0; (10)

√
2Bna

b −
√

2Ba
nb − 2

√
−1σab = 0; Bn

nb +
√
−1σnb = 0; Bnb

n −
√
−1σbn = 0.

Since σ[αβ] = 0 and Bγ
[αβ] = Bγ

αβ, then Equation (10) gives the following relations:

σab = 0; σnb = 0; σab =
√
−1(
√

2Ban
b + δab ). (11)

Then from the above discussion, we can establishing the theorem below.

Theorem 5.4. If the Hermitian manifold has the class of Kenmotsu type as a hypersurface,
then the second quadratic form has components agree with the Equation (11).

On the other hand, we can establish a relation between the components of the Rieman-
nian curvature tensors of the almost Hermitian manifold and its hypersurfaces.

Suppose thatRi
jkl are the components of the Riemannian curvature tensor of the almost

Hermitian manifold, N2n and R̃i
jkl are the components of the Riemannian curvature tensor

of its hypersurface M2n−1. Then from the second group of cartan structure equations, we
have

dωij = ωik ∧ ωkj +
1

2
Ri
jkl ω

k ∧ ωl;

dθij = θik ∧ θkj +
1

2
R̃i
jkl θ

k ∧ θl;

where ωij and θij are the Riemannian connection forms of N and M respectively. Whereas,
ωk and θk are the dual A-frames on AG-structure spaces of N and M respectively. More-
over, from [5], we have

θi = Ci
j ω

j; ωi = C̃i
j θ

j; θij = Ci
k ω

k
r C̃

r
j ; ωij = C̃i

k θ
k
r C

r
j ;
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where C = (Ci
j) and C−1 = (C̃i

j) were defined in [5]. Then the substitution of the above
relations in the second group of cartan structure equations, we conclude the following
theorem:

Theorem 5.5. If Ri
jkl and R̃q

rst are the components of the Riemannian curvature tensor of
the almost Hermitian manifold (N2n, J, g) and its hypersurface (M2n−1,Φ, ξ, η, g) respec-
tively, then they are related as follow:

Ri
jkl = C̃i

q R̃
q
rst C

r
j C

s
k C

t
l .
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