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Almost Kenmotsu Manifolds

H. G. Nagaraja, U. Manjulamma

Abstract. The object of this paper is to study generalized φ-recurrent almost Ken-
motsu manifolds with characteristic vector field ξ belonging to (k, µ)

′
-nullity distribu-

tion. We have showed that these manifolds reduce to Kenmotsu manifolds with scalar
curvature −1. Further we establish the relations among the associated 1-forms and
proved the conditions under which gradient Ricci almost soliton reduce to gradient
Ricci soliton.

1 Introduction

Dileo and Pastore [7] introduced the notion of (k, µ)
′
-nullity distribution and established

some classification results on almost Kenmotsu manifolds [17] with characteristic vector
field ξ belonging to (k, µ)-nullity distribution. As a weaker version of local symmetry
Takahashi [16] introduced the idea of local φ-symmetry on a Sasakian manifold and study
extended to the locally φ-symmetric β-Kenmotsu manifolds by Shaikh and Hui [13]. As a
weaker version of local φ symmetry, Dubey [8] introduced generalized recurrent manifolds
and this notion with generalized Ricci recurrent manifolds has been extensively studied by
De and Guha [3], [2]. Generalizing the idea of local φ-symmetry, De et al. [4] introduced
the notion of φ-recurrent Sasakian manifolds and De et al. [5] extended the study to φ-
recurrent Kenmotsu manifolds. The investigation of almost Ricci solitons was presented by
Pigola et al. [11] by including the condition the parameter λ to be a variable and changed
the meaning of Ricci solitons.
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Motivated by above studies, in this paper, we study generalized φ-recurrent almost
Kenmotsu manifolds with characteristic vector field ξ belonging to (k, µ)

′
-nullity distribu-

tion. In section 3, we proved the relations between associated 1-forms and found eigen
value and the corresponding eigenvector of Ricci operator Q. Also we consider gener-
alized concircularly φ-recurrent and generalized projective φ-recurrent almost Kenmotsu
manifolds. In section 4, we show that almost gradient Ricci solitons in a generalized con-
circularly φ-recurrent and generalized projective φ-recurrent almost Kenmotsu manifolds
reduce to gradient Ricci solitons.

2 Preliminaries

An almost contact manifold is an n-dimensional smooth manifold M endowed with a
(1, 1)-tensor field φ, a global vector field ξ and a one-form η on M such that

φ2 = −Id+ η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (1)

In this case, such a manifold will be denoted by (M,φ, ξ, η). A Riemannian metric g on
an almost contact manifold M is said to be compatible with the almost contact structure
(φ, ξ, η) if

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2)

for any vector fields X, Y on M . An almost contact manifold (M,φ, ξ, η) with a compatible
Riemannian metric g is called an almost contact metric manifold and will be denoted by
(M,φ, ξ, η, g). With this structure, one can associate to any vector fields X and Y , a
2-form Φ such that Φ(X, Y ) = g(X,φY ).

An almost contact metric manifold (M,φ, ξ, η, g) is said to be an almost Kenmotsu
manifold if the 1-form η is closed and dΦ = 2η ∧Φ. It is well known that the normality of
almost contact structure is expressed by the vanishing of the tensor Nφ = [φ, φ] + 2dη⊗ ξ,
where [φ, φ] is the Nijenhuis tensor of φ. The normality of almost Kenmotsu manifold is
expressed by [9]

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (3)

for any vector fields X, Y on M .
In [7], the authors introduced the idea of (k, µ)′ - nullity distribution on an almost

Kenmotsu manifold (M,φ, ξ, η, g), which is defined for any p ∈M and k, µ ∈ R as follows:

Np(k, µ)′ ={Z ∈ TpM : R(X, Y )Z = k(g(Y, Z)X − g(X,Z)Y )

+ µ(g(Y, Z)h′X − g(X,Z)h′Y )},
(4)

where h′ = h ◦ φ and h = 1
2
Lξφ satisfying

hξ = 0, trh = 0, tr(hφ) = 0, hφ+ φh = 0. (5)
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In an almost Kenmotsu manifold with the characteristic vector field ξ belonging to (k, µ)
′
-

nullity distribution, the following hold:

h
′
ξ = 0, h

′2
= (κ+ 1)φ2, (6)

∇Xξ = −φ2X − φhX, (7)

φlφ− l = 2(h2 − φ2), (8)

where l = R(·, ξ)ξ.
From equation (4), we obtain

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h
′
X − η(X)h

′
Y ]. (9)

S(Y, Z) = (n− 1)kg(Y, Z)− µg(h′Y, Z). (10)

QY = (n− 1)kY − µh′
Y. (11)

r = n(n− 1)k. (12)

Also we have

(∇Xh
′
)Y = −g(h

′
X + h

′2X, Y )ξ − η(Y )(h
′
X + h

′2X)− (µ+ 2)η(X)h
′
Y. (13)

A Riemannian manifold (M, g) is called generalized recurrent [3] if its curvature tensor R
of type (1,3) satisfies

∇R = A⊗R +B ⊗G, (14)

and (M, g) is called a generalized Ricci-recurrent manifold [2] if its Ricci tensor S of type
(0,2) is not identically zero and satisfies the condition

∇S = A⊗ S +B ⊗ S, (15)

where A and B are non-vanishing 1-forms defined by A(·) = g(·, ρ1), B(·) = g(·, ρ2), where
ρ1 and ρ2 are unit vector fields.

Specially, if the 1-form B vanishes, then (14) turns into the notion of recurrent manifold
introduced by Walker [18] and (15) reduced to the notion of Ricci-recurrent manifold
introduced by Patterson [10].

A Riemannian manifold (M, g) is called a super generalized Ricci-recurrent manifold
[12] if its Ricci tensor S of type (0,2) satisfies the condition

∇S = α⊗ S + β ⊗ g + γ ⊗ η ⊗ η, (16)

where α, β, and γ are non-vanishing unique 1-forms. In particular, if β = γ, then (16)
reduces to the notion of quasi-generalized Ricci-recurrent manifold introduced by Shaikh
and Roy [14].

A Riemannian manifold (M, g) is said to be an almost Ricci soliton, if there exist a
complete vector field X and a smooth soliton function λ : M → R satisfying

S(X, Y ) +
1

2
LXg(X, Y ) = λg(X, Y ), (17)
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where LX is the Lie derivative with respect to vector field X. An almost Ricci soliton
(M, g,X, λ) will be called expanding, steady or shrinking, if λ < 0, λ = 0 or λ > 0
respectively. If the vector field X is gradient of a smooth function f : M → R, the manifold
will be called a gradient almost Ricci soliton. In this case, the preceding equation becomes

S +∇2f = λg, (18)

where ∇2f represents the Hessian of f .

3 Generalized φ-recurrent Almost Kenmotsu manifolds

Definition 3.1. An almost Kenmotsu manifold is said to be generalized φ-recurrent if it
satisfies the relation

φ2((∇WR)(X, Y )Z) = A(W )(R(X, Y )Z) +B(W )(G(X, Y )Z), (19)

for all X, Y, Z,W ∈ χ(M), where A(·) = g(·, ρ1) and B(·) = g(·, ρ2) are non-vanishing
1-forms, ρ1 and ρ2 are unit vector fields, and the tensor G of type (1,3) is given by

G(X, Y )Z = (X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y, (20)

for all X, Y, Z ∈ χ(M);χ(M) being the lie algebra of smooth vector fields on M and ∇
denotes the operator of covariant differentiation with respect to the metric tensor g. The
1-forms A and B are called the associated 1-forms of the manifolds.

Proposition 3.2. A generalized φ-recurrent almost Kenmotsu manifold M with ξ belonging
to (k, µ)

′
nullity distribution, the vector fields of associated 1-forms are co-directional.

Further in M the following are equivalent:

(i) φ2((∇ρ1R)(X, Y )Z) = 0

(ii) M is of constant sectional curvature k.

Proof. We suppose that the manifold M is a generalized φ-recurrent almost Kenmotsu
manifold.

Differentiating (9) covariantly with respect to W , we obtain

(∇WR)(ξ, Y )Z = k[η(Z)η(W )Y − g(Z, h
′
W )Y + η(∇WZ)h

′
Y ] (21)

+ µ[g(Z, h
′
W )h

′
Y − η(Z)η(W )h

′
Y + η(Z)(∇Wh

′
)(Y )− η(∇WZ)h

′
Y ].

By virtue of (1) and (19), we get

−(∇WR)(X, Y )Z + η((∇WR)(X, Y )Z)ξ (22)

= A(W )R(X, Y )Z +B(W )[g(Y, Z)X − g(X,Z)Y ].
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Setting X = ξ in (22), we have

−(∇WR)(ξ, Y )Z + η((∇WR)(ξ, Y )Z)ξ (23)

= A(W )R(ξ, Y )Z +B(W )[g(Y, Z)ξ − g(ξ, Z)Y ].

Using (4), (21) in (23), we obtain

k{g(Z, h
′
W )Y − η(∇WZ)Y − η(Z)η(W )Y }+ µ{η(Z)(∇Wh

′
)Y − η(Z)η(W )h

′
Y (24)

+ g(Z, h
′
W )h

′
Y − η(∇WZ)h

′
Y }+ k{η(Z)η(W )η(Y )ξ − g(Z, h

′
W )η(Y )ξ

+ η(∇WZ)η(Y )ξ} − µ{η(Z)η(∇Wh
′
)η(Y )ξ}

= A(W )
[
k{g(Y, Z)ξ − η(Z)Y } − µ{η(Z)h

′
Y }
]

+B(W )
[
g(Y, Z)ξ − η(Z)Y

]
.

For any vector fields Y , Z orthogonal to ξ, (24) takes the form

k[g(Z, h
′
W )Y − η(∇WZ)Y ] + µ[g(Z, h

′
W )h

′
Y − η(∇WZ)h

′
Y ]

= A(W ){kg(Y, Z)ξ}+B(W )g(Y, Z)ξ.
(25)

Contracting the above equation with ξ , we obtain

B(W ) = −kA(W ). (26)

Putting (26) and (20) in (19), we obtain

φ2((∇WR)(X, Y )Z) = A(W )
[
R(X, Y )Z − k{g(Y, Z)X − g(X,Z)Y }

]
. (27)

Taking W = ρ1 in (27), we get

φ2((∇ρ1R)(X, Y )Z) = R(X, Y )Z − k{g(Y, Z)X − g(X,Z)Y }. (28)

The result follows from (28).

We have the following result due to Dileo and Pastore [6]:

Theorem A. An almost Kenmotsu manifold of constant sectional curvature K is a Ken-
motsu manifold and K = −1.

From Theorem A and Proposition 3.2, we have the following:

Corollary 3.3. If a generalized φ-recurrent almost Kenmotsu manifold M with ξ belonging
to (k, µ)

′
nullity distribution satisfies φ2((∇ρ1R)(X, Y )Z) = 0 then it reduces to a Ken-

motsu manifold, where ρ1 is a vector field of associated 1-form of M . In this case sectional
curvature K = k = −1.

Theorem 3.4. In a generalized φ-recurrent almost Kenmotsu manifold (M, g), the char-
acteristic vector field ξ and the vector field ρ1k + ρ2 associated to the 1-form Ak + B are
co-directional.
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Proof. Taking inner product of (22) with ξ and using first Bianchi’s identity, we get

A(W )η(R(X, Y )Z) + A(X)η(R(Y,W )Z) + A(Y )η(R(W,X)Z)

+B(W )[η(X)g(Y, Z)− η(Y )g(X,Z)] +B(X)[η(Y )g(W,Z)

− η(W )g(Y, Z)] +B(Y )[η(W )g(X,Z)− η(X)g(W,Z)] = 0.

(29)

Using (4) in (29), we obtain

(A(W )k +B(W ))[g(Y, Z)η(X)− g(X,Z)η(Y )]

+ (A(X)k +B(X))[g(W,Z)η(Y )− g(Y, Z)η(W )]

+ (A(Y )k +B(Y ))[g(X,Z)η(W )− g(W,Z)η(X)] = 0,

(30)

for any vector fields X, Y , Z, W . Let {ei, i = 1, 2, 3....n} be a local orthonormal basis of
tangent space at each point of the manifold M . Setting Y = U = ei in the above equation
and taking summation over i : 1 ≤ i ≤ n, we get

[A(W )k +B(W )]η(X) = [A(X)k +B(X)]η(W ). (31)

Putting X = ξ in (31), we obtain

[A(W )k +B(W )] = [η(ρ1)k + η(ρ2)]η(W ), (32)

for any vector field W . The result follows from equations (31) and (32).

Theorem 3.5. In a generalized φ-recurrent almost Kenmotsu manifold ρ1 is an eigen vector
of the ricci operator Q corresponding to the eigen value

(−(n−1)
2

)
.

Proof. Taking cyclic sum of (22) in W , Y , X and then by virtue of Bianchi’s second
identity we have

A(X)R(Y,W )Z + A(Y )R(W,X)Z + A(W )R(X, Y )Z

+B(W )[g(Y, Z)X − g(X,Z)Y ]

+B(X)[g(W,Z)Y − g(Y, Z)W ]

+B(Y )[g(X,Z)W − g(W,Z)X] = 0.

(33)

Contracting (33) with U , we obtain

A(X)g(R(Y,W )Z,U) + A(Y )g(R(W,X)Z,U) + A(W )g(R(X, Y )Z,U)

+B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

+B(X)[g(W,Z)g(Y, U)− g(Y, Z)g(W,U)]

+B(Y )[g(X,Z)g(W,U)− g(W,Z)g(X,U)] = 0.

(34)

Setting Y = U = ei in (34), where {ei} is an orthonormal basis of the tangent space at
each point of the manifold and summing over i = 1, 2, 3...n, we get

A(X)S(W,Z) + A(ei)g(R(W,X)Z, ei) + A(W )g(R(X, ei)Z, ei)

+B(W )[g(X,Z)(1− n)] +B(X)[(n− 1)g(W,Z)]

+B(ei)[g(X,Z)g(W, ei)− g(W,Z)g(X, ei)] = 0.

(35)
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Again taking Z = X = ei in (35) and then taking summation over i, 1 ≤ i ≤ n, we get

S(W, ρ1) =
(n− 1)2

2
B(W ) +

r

2
A(W ). (36)

Using (26), (12) in (36), we obtain

Qρ1 =
(−(n− 1)

2

)
ρ1.

In an almost Kenmotsu manifold for any (1,3) tensor K, we define

φ2((∇WK)(X, Y )Z) = A(W )(K(X, Y )Z) +B(W )(G(X, Y )Z), (37)

for all X, Y, Z,W ∈ χ(M), where A and B are defined as in (19).
The concircular curvature and projective curvature tensors of type (1,3) are respectively

given by

C̃(X, Y )Z = R(X, Y )Z − r

n(n− 1)
G(X, Y )Z, (38)

and

P (X, Y )Z = R(X, Y )Z − 1

n− 1
(S(Y, Z)X − S(X,Z)Y ), (39)

for all X, Y , Z ∈ χ(M).

Theorem 3.6. A generalized concircularly φ-recurrent almost Kenmotsu manifold M is a
super generalized Ricci recurrent manifold.

Proof. If M is an almost Kenmotsu manifold where (37) holds, then for a concircular
curvature tensor C̃, we have

φ2((∇W C̃)(X, Y )Z) = A(W )(C̃(X, Y )Z) +B(W )(G(X, Y )Z), (40)

where A and B are defined as in (19).
Using (1) in (38), we get

−(∇W C̃)(X, Y )Z + η((∇W C̃)(X, Y )Z)ξ = A(W )(C̃(X, Y )Z)

+B(W )[g(Y, Z)X − g(X,Z)Y ].
(41)

Contracting with U in (41), we obtain

− g((∇W C̃)(X, Y )Z,U) + η((∇W C̃)(X, Y )Z)η(U)

= A(W )
[
g(C̃(X, Y )Z,U) +B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].

(42)

Setting X = U = ei in (42), and using (38), we get

(∇WS)(Y, Z) = −A(W )S(Y, Z) +

[
(Wr)− n(n− 1)2B(W )

n(n− 1)

]
g(Y, Z)

−
[

(Wr)

n(n− 1)

]
η(Y )η(Z).

(43)
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Above equation can be written as

∇S = A1 ⊗ S + ψ ⊗ g +H ⊗ η ⊗ η, (44)

where
A1(W ) = −A(W ),

ψ(W ) =
(Wr)− n(n− 1)2B(W )

n(n− 1)
,

H(W ) = −
[

(Wr)

n(n− 1)

]
.

Theorem 3.7. In a generalized projectively φ-recurrent almost Kenmotsu manifold M with
constant scalar curvature we have

B(W ) =
−r

n(n− 1)
A(W ).

Proof. We assume that an almost Kenmotsu manifold M is generalized projectively φ-
recurrent. Then from (37), we have

φ2((∇WP )(X, Y )Z) = A(W )(P (X, Y )Z) +B(W )(G(X, Y )Z), (45)

where A and B are defined as in (19).
By virtue of (1), it follows from (45), that

−(∇WP )(X, Y )Z + η((∇WP )(X, Y )Z)ξ = A(W )(P (X, Y )Z)

+B(W )[g(Y, Z)X − g(X,Z)Y ].
(46)

Taking inner product of (46) with U , we obtain

−g((∇WP )(X, Y )Z,U)+η((∇WP )(X, Y )Z)η(U) = A(W )(g(P (X, Y )Z,U))

+B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].
(47)

Setting X = U = ei in (47) and summing over i = 1, 2, 3....n, we get

(∇WS)(Y, Z) = −A(W )S(Y, Z)− [(n− 1)B(W )]g(Y, Z). (48)

Letting Y = Z = ei in (48), we obtain

(Wr) = −
(
rA(W ) + n(n− 1)B(W )

)
.
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4 Gradient Almost Ricci Solitons on Almost Kenmotsu manifolds

In this section we consider gradient almost Ricci soliton (M, g,X, λ). i.e. an almost
Ricci soliton (M, g,X, λ) when the vector field X is the gradient of a smooth function
f ∈ C∞(M). Accordingly equation (18) becomes

∇YDf = QY + λY, (49)

where D is the gradient operator of g and Q is Ricci operator.

Theorem 4.1. Let M be an almost Kenmotsu manifold admitting gradient almost Ricci
soliton. If M is generalized concircularly φ-recurrent or generalized projectively φ-recurrent
then the following are equivalent:

(i) Xλ = (ξλ)η(X) for any vector field X.

(ii) f is constant along kφ2X − µh′
X.

Proof. By virtue of (49), we obtain

R(X, Y )Df = (∇XQ)Y − (∇YQ)X − (Y λ)X + (Xλ)Y, (50)

Case (i): Suppose M is generalized concircularly φ-recurrent. From (43), we get

(∇YQ)X = A(Y )QX +
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)A(Y )
+ (n− 2)B(Y )

]
X

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
A(Y )−B(Y )

]
η(Y )ξ.

(51)

Substituting (51) in (50), we get

R(X, Y )Df = A(Y )QX − A(X)QY

+
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y ) + (n− 2)B(Y )

]
X

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y )−B(Y )

]
η(X)ξ

−
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X) + (n− 2)B(X)

]
Y

+
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X)−B(X)

]
η(Y )ξ

− (Y λ)X + (Xλ)Y.

(52)



270 H. G. Nagaraja, U. Manjulamma

Taking inner product with ξ in (52), we obtain

g(R(X, Y )Df, ξ) = A(Y )g(X,Qξ)− A(X)g(Y,Qξ)

+
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y ) + (n− 2)B(Y )

]
η(X)

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y )−B(Y )

]
η(X)

−
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X) + (n− 2)B(X)

]
η(Y )

+
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X)−B(X)

]
η(Y )

− (Y λ)η(X) + (Xλ)η(Y ).

(53)

Interchange Df by ξ and using (10) in (53), we get

g(R(X, Y )ξ,Df) = (Y λ)X − (Xλ)Y. (54)

Using (9), (11) in (54), we obtain

k
[
g(X,Df)η(Y )− g(Y,Df)η(X)

]
+ µ
[
g(h

′
X,Df)η(Y )− g(h

′
Y,Df)η(X)

]
= (Y λ)η(X)− (Xλ)η(Y ).

(55)

Putting Y = ξ in (55), we get

k
[
g(X,Df)− η(X)η(Df)

]
+ µ
[
g(h

′
X,Df)

]
= (ξλ)η(X)− (Xλ). (56)

The above equation may be rewritten in the form

(kφ2X − µh′X)f = Xλ− (ξλ)η(X). (57)

Case (ii): Suppose M is generalized projectively φ-recurrent. Then from (48), we
have

(∇YQ)X = A(Y )QX −
[
A(Y )k(

2n− 3

n− 1
) + (n− 2)B(Y )

]
X

+
[
A(Y )k(

2n− 3

n− 1
) +B(Y )

]
η(X)ξ

− (Y λ)X + (Xλ)Y.

(58)

Using (58) in (50) and proceeding as in case (i), we obtain (57). This completes the
proof.

Remark 4.2. In view of Theorem 4.1, we note that gradient almost Ricci soliton on a gener-
alized concircularly φ-recurrent (or generalized projectively φ-recurrent) almost Kenmotsu
manifold M reduces to gradient Ricci soliton if f is constant along kφ2X − µh′

X.
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