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Gradient estimates for a nonlinear elliptic equation on a
smooth metric measure space

Xiaoshan Wang, Linfen Cao

Abstract. Let (M, g, e−fdv) be a smooth metric measure space. We consider local
gradient estimates for positive solutions to the following elliptic equation

∆fu + au log u + bu = 0

where a, b are two real constants and f be a smooth function defined on M . As an
application, we obtain a Liouville type result for such equation in the case a < 0
under the m-dimensions Bakry-Émery Ricci curvature.

In this paper, we study the local gradient estimate for the positive solution to the
following weighted nonlinear elliptic equation

∆fu+ au log u+ bu = 0 (1)

on a smooth metric measure space (M, g, e−fdv), where a, b are two real constants and f
be a smooth function defined on M . The motivation to study (1) comes from understand-
ing the Ricci flow. Moreover, the (1) is closely related to the famous Gross Logarithmic
Sobolev inequality, see [2]. It is well known that Yau has proved in [14] that every pos-
itive or bounded harmonic function is constant if M has nonnegative Ricci curvature by
establishing gradient estimates for the solutions to Laplacian equation, see also [6], [8],
[11].

It is natural to consider similar Liouville type results for positive solutions to the
nonlinear elliptic equation (1). In [10], Qian considered positive solutions to

∆u+ au log u = 0 (2)
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and proved the following

Theorem 0.1. (B. Qian) Let (M, g) be an n-dimensional complete Riemannian manifold
with the Ricci curvature Ric(B(x,R)) ≥ −K, where K ≥ 0 is a constant. Let u be a
positive solution to (2) on B(x,R), then for any α > 0,

sup
y∈B(x,R

2
)

|∇u|
u
≤ C(n)

√
(1 + α)((a+K) +

(1 + α)

R2
) +

√
1 + α

α
|a|L(x,R), (3)

where L(x,R) = supy∈B(x,R)| log u| < ∞ and C(n) is a constant depending only on the
dimension n.

In particular, by letting R → ∞ in (3), we obtain the following gradient estimates on
complete non-compact Riemannian manifolds:

|∇u|
u
≤ C(n)

√
(1 + α)(a+K) +

√
1 + α

α
|a|L, (4)

where L = supM | log u|.

Remark 0.2. Clearly, from 4, it is easy to see that if a + K < 0 and a < 0, then any
bounded positive solution to (2) must be a constant u ≡ 1. On the other hand, in [5],
Huang and Ma also obtained the similar Liouville type result by a different method.

Let (M, g) be an n-dimensional complete Riemannian manifold and f be a smooth
function defined on M . In general, the triple (M, g, e−fdv) is called a smooth metric
measure space. The f -Laplacian operator is defined by

∆f = efdiv(e−f∇) = ∆−∇f∇,

which is symmetric in L2(M, g, e−fdv).
It is well-known that the m-dimensions Bakry-Émery Ricci curvature associated with

the f -Laplacian is defined by (see [3], [4], [13] )

Ricmf = Ric+∇2f − df ⊗ df
m− n

,

where m ≥ n is a constant and m = n if and only if f is a constant. Define

Ricf = Ric+∇2f.

Then Ricf can be seen as ∞-dimensions Bakry-Émery Ricci curvature. Recently, the

∞-dimensions Bakry-Émery Ricci curvature has become an important object of study in
Riemannian geometry. The equation Ricf = ρ〈, 〉 for some constant ρ is just the gradient
Ricci soliton equation, which plays an important role in the study of Ricci flow (see [1]).

The aim of this paper is to generalize the results of Qian in [10] to the weighted
nonlinear elliptic equation (1) under the assumption that the m-dimensions Bakry-Émery
Ricci curvature is bounded from blow. Our main results are as follows:
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Theorem 0.3. Let (M, g, e−fdv) be an n-dimensional complete smooth metric measure
space with m-dimensions Bakry-Émery Ricci curvature Ricmf (B(x,R)) ≥ −K for some
constant K ≥ 0. Let u be a positive solution to the nonlinear equation (1) on B(x,R),
then there exists a constant C = C(m), such that

sup
y∈B(x,R

2
)

|∇u|
u
≤ C

√
a+K +

1

R2
+ |b|+ |a|L. (5)

where L(x,R) := supy∈B(x,R) | log u| <∞.
In particular, by letting R → ∞ in (5), we obtain the following gradient estimates on

complete non-compact Riemannian manifolds:

|∇u|
u
≤ C

√
a+K + |b|+ |a|L, (6)

where L = supM | log u|.
From (6), it is easy to obtain the following results:

Corollary 0.4. Let (M, g, e−fdv) be an n-dimensional complete smooth metric measure
space with Ricmf ≥ −K. If u is a bounded positive solution to (1) with a + K < 0 and
a < 0, then u ≡ 1. Furthermore, if Ricmf ≥ 0 and a ≤ 0, then any bounded positive
solution to (1) must be u ≡ 1.

Remark 0.5. When m = n in Theorem 0.3, we have Ricmf = Ric and ∆f = ∆. Hence,
in this case, our Theorem 0.3 becomes Theorem 0.1 of Qian. That is, our results of this
paper generalize those of Qian in [10].

1 Proof of Theorem 0.3

Lemma 1.1. Let u be a bounded positive solution to the nonlinear equation (1), then we
have,

|∇u|∆f |∇u| ≥
|∇(|∇u|)|2

m
− (au log u+ bu)2 +Ricmf (∇u,∇u)

− (a+ a log u+ b)|∇u|2.
(7)

Proof. Since we have the Bochner-weitzenböck formula with respect to f -Laplacian, for
any u ∈ C2(M), we have

1

2
∆f |∇u|2 = |∇2u|2 +Ricf (∇u,∇u) + (∇u,∇∆fu).

On the other hand,
∆f |∇u|2 = 2|∇u|∆f |∇u|+ 2|∇(|∇u|)|2,

hence
|∇u|∆f |∇u| = |∇2u|2 +Ricf (∇u,∇u) + (∇u,∇∆fu)− |∇(|∇u|)|2.
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Since u is a solution to (1), we obtain

|∇u|∆f |∇u| = |∇2u|2 +Ricf (∇u,∇u)− (a+ a log u+ b)|∇u|2 − |∇(|∇u|)|2.

If we consider a local normal chart at x in which u1(x) = |∇u|(x) and uj(x) = 0 for
j ≥ 2, then ∇i(|∇u|) = u1i, hence |∇(|∇u|)|2 = Σiu

2
1i. Since u is a solution to (1), in the

above local chart we have at x∑
i≥2

uii = −u11 − au log u− bu+∇f · ∇u.

Therefore,

|∇2u|2 − |∇(|∇u|)|2 =
∑

i≥1,j≥1

u2ij −
∑
j≥1

u21j =
∑

i≥2,j≥1

u2ij ≥
∑
i≥2

u2i1 +
∑
i≥2

u2ii

≥
∑
i≥2

u2i1 +
1

n− 1
(
∑
i≥2

uii)
2

=
∑
i≥2

u2i1 +
1

n− 1
(−u11 − au log u− bu+∇f · ∇u)2

≥ 1

(n− 1)(1 + α)

∑
i≥1

u2i1 −
1

(n− 1)α
(au log u+ bu−∇f · ∇u)2

≥− 1

(n− 1)α
[(1 +

1

ε
)(au log u+ bu)2 + (1 + ε)(∇f · ∇u)2]

+
1

(n− 1)(1 + α)

∑
i≥1

u2i1

=
1

m

∑
i≥1

u2i1 − (au log u+ bu)2 − (∇f · ∇u)2

m− n
,

where we use the elementary inequalities (see [12]):

(a+ b)2 ≥ 1

1 + α
a2 − 1

α
b2 and (a+ b)2 ≤ (1 + ε)a2 + (1 +

1

ε
)b2,

which holds for any α > 0, ε > 0. The last equality we choose α = m−n+1
n−1 and ε = 1

m−n .
Hence

|∇u|∆f |∇u| ≥
|∇(|∇u|)|2

m
− (au log u+ bu)2 − (∇f · ∇u)2

m− n
+Ricf (∇u,∇u)− (a+ a log u+ b)|∇u|2

=
|∇(|∇u|)|2

m
− (au log u+ bu)2 + (Ricf −

df ⊗ df
m− n

)uiuj

− (a+ a log u+ b)|∇u|2

=
|∇(|∇u|)|2

m
− (au log u+ bu)2 +Ricmf (∇u,∇u)

− (a+ a log u+ b)|∇u|2.

(8)
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This completes the prove of Lemma 1.1.

Proof of Theorem 0.3. Denote ψ = |∇ log u| = |∇u|
u

, i.e.,

|∇u| = ψu.

Direct computation gives

∇ψ =
∇(|∇u|)

u
− |∇u|∇u

u2
. (9)

At the point where ∇u 6= 0, we have

∆f |∇u| = ∆f (ψu) = u∆fψ + ψ∆fu+ 2∇ψ · ∇u
= u∆fψ − ψ(au log u+ bu) + 2∇ψ · ∇u.

This yields

∆fψ =
∆f |∇u|

u
+ ψ(a log u+ b)− 2

∇ψ · ∇u
u

=
|∇u|∆f |∇u|
|∇u|u

+ ψ(a log u+ b)− 2
∇ψ · ∇u

u
.

By Lemma 1.1, we can derive,

∆fψ ≥
|∇(|∇u|)|2

m
− (au log u+ bu)2 +Ricmf (∇u,∇u)− (a+ a log u+ b)|∇u|2

|∇u|u

+ ψ(a log u+ b)− 2
∇ψ · ∇u

u

≥|∇(|∇u|)|2

m|∇u|u
− (a log u+ b)2

ψ
− (a+K)ψ − 2

∇ψ · ∇u
u

.

(10)

For any δ > 0, by (9)

2
∇ψ · ∇u

u
= (2− δ)∇ψ · ∇u

u
+ δ
∇ψ · ∇u

u

= (2− δ)∇ψ · ∇u
u

+ δ
∇u
u

(
∇(|∇u|)

u
− |∇u|∇u

u2
)

= (2− δ)∇ψ · ∇u
u

+ δ
∇(|∇u|) · ∇u

u2
− δψ3

≤ (2− δ)∇ψ · ∇u
u

+ δ
|∇(|∇u|)| · |∇u|

u2
− δψ3

≤ (2− δ)∇ψ · ∇u
u

+
δ

2
(
|∇(|∇u|)|2

|∇u|u
+
|∇u|3

u3
)− δψ3

= (2− δ)∇ψ · ∇u
u

+
δ

2

|∇(|∇u|)|2

|∇u|u
− δ

2
ψ3.
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Choosing δ = 2
m

and substituting into (10), we obtain

∆fψ ≥− (a+K)ψ − (2− 2

m
)
∇ψ · ∇u

u
+
ψ3

m

− (a log u+ b)2

ψ
.

(11)

Now we define

F (y) := (R2 − d2(x, y))
|∇u|(y)

u(y)
= (R2 − d2)ψ(y),

and

ψ(y) =
|∇u|(y)

u(y)
, y ∈ B(x,R).

Since F |∂B(x,R) = 0, if ∇u = 0, then F can only achieve its maximum at some point
x0 ∈ B(x,R), if |∇u|(x0) = 0, the desired result holds. Then, without loss of generality,
we can suppose |∇u|(x0) 6= 0. Assume x0 6∈ cut(x), by the maximum principle we have
∆fF (x0) ≤ 0 and ∇F (x0) = 0. It yields, at x0,

∇F = −ψ∇d2 + (R2 − d2)∇ψ = 0.

It holds,
∇ψ
ψ

=
∇d2

R2 − d2
=

2d∇d
R2 − d2

(12)

and
∆fF = ∆f ((R2 − d2)ψ) = (R2 − d2)∆fψ − ψ∆fd

2 − 2∇d2∇ψ ≤ 0. (13)

Hence, dividing by (R2 − d2)ψ to both sides of (13) and combining (12), we have at x0,

0 ≥ ∆fψ

ψ
− ∆fd

2

R2 − d2
− 8d2

(R2 − d2)2
.

By the f -Laplacian comparison theorem in [12] (see also [7] or [9]), we have

∆fd
2 ≤ C

√
Kd coth(

√
Kd) ≤ C

√
Kd,

where C only depends on m. Together with (11), we have at x0,

0 ≥− (a+K)− (2− 2

m
)
∇ψ · ∇u
ψu

+
ψ2

m

− (a log u+ b)2

ψ2
− C

√
Kd

R2 − d2
− 8d2

(R2 − d2)2
.

(14)

By (12),
∇ψ · ∇u
ψu

=
2d

R2 − d2
∇d · ∇u

u
≤ 2dψ

R2 − d2
,
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then multiplying both sides of (14) by ψ2(R2 − d2)4, combining with ψ = F
R2−d2 , we can

derive

0 ≥ 1

m
F 4 − 4(m− 1)

m
dF 3 − (R2 − d2)4(a log u+ b)2

− ((a+K)(R2 − d2)2 + 8d2 + C
√
Kd(R2 − d2))F 2

≥ 1

m
F 4 − 4RF 3 − ((a+K)R2 + C

√
KR + 8)R2F 2

−R8(a log u+ b)2.

Since 1
2m
F 4 − 4RF 3 ≥ −8mR2F 2, it holds

1

2m
F 4−((a+K)R2 + C

√
KR + C)R2F 2

−R8(a log u+ b)2 ≤ 0.

It follows
sup

y∈B(x,R)

(R2 − d2(x, y))|∇ log u| ≤ F (x0)

≤
√

2m((a+K)R2 + C
√
KR + C)R2 +

√
2m(|b|+ |a|L)R4.

Restricting on the ball B(x, R
2

), we have

sup
y∈B(x,R

2
)

3R2

4
|∇ log u| ≤ sup

y∈B(x,R
2
)

(R2 − d2(x, y))|∇ log u| ≤ F (x0)

≤
√

2m((a+K)R2 + C
√
KR + C)R2 +

√
2m(|b|+ |a|L)R4.

Therefor, we can derive

sup
y∈B(x,R

2
)

|∇u|
u
≤

√
4m(a+K + C

√
K

R
+
C

R2
) +
√

8m(|b|+ |a|L).

Then use the Cauchy-Schwarz inequality, we obtain

sup
y∈B(x,R

2
)

|∇u|
u
≤ C

√
a+K +

1

R2
+ |b|+ |a|L.

Now let R→∞, this yields, for any x ∈M ,

ψ(x) ≤ ψ(x0) ≤ C
√
a+K + |b|+ |a|L.

This completes the prove of Theorem 0.3.
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