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Gradient estimates for a nonlinear elliptic equation on a
smooth metric measure space

Xiaoshan Wang, Linfen Cao

Abstract. Let (M, g, e ! dv) be a smooth metric measure space. We consider local
gradient estimates for positive solutions to the following elliptic equation

Aru+aulogu +bu =0

where a, b are two real constants and f be a smooth function defined on M. As an
application, we obtain a Liouville type result for such equation in the case a < 0
under the m-dimensions Bakry-Emery Ricci curvature.

In this paper, we study the local gradient estimate for the positive solution to the
following weighted nonlinear elliptic equation

Apu+aulogu+bu=0 (1)

on a smooth metric measure space (M, g,e /dv), where a, b are two real constants and f
be a smooth function defined on M. The motivation to study (1) comes from understand-
ing the Ricci flow. Moreover, the (1) is closely related to the famous Gross Logarithmic
Sobolev inequality, see [2]. It is well known that Yau has proved in [14] that every pos-
itive or bounded harmonic function is constant if M has nonnegative Ricci curvature by
establishing gradient estimates for the solutions to Laplacian equation, see also [6], [8],
[11].

It is natural to consider similar Liouville type results for positive solutions to the
nonlinear elliptic equation (1). In [10], Qian considered positive solutions to

Au+ aulogu =0 (2)
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and proved the following

Theorem 0.1. (B. Qian) Let (M, g) be an n-dimensional complete Riemannian manifold
with the Ricci curvature Ric(B(x, R)) > —K, where K > 0 is a constant. Let u be a
positive solution to (2) on B(x, R), then for any a > 0,

sup MgC(n)\/(1+a)((a+K)+(1;—2a))+ Lta ——|a|L(z, R), (3)

yeB(z, &) U

where L(x, R) = supyep(,r)|logu| < oo and C(n) is a constant depending only on the
dimension n.

In particular, by letting R — oo in (3), we obtain the following gradient estimates on
complete non-compact Riemannian manifolds:

'V“’ ()\/(1~|—a a+ K)+

where L = supyr| logul.

ZJalL, (4)

Remark 0.2. Clearly, from 4, it is easy to see that if a + K < 0 and a < 0, then any
bounded positive solution to (2) must be a constant © = 1. On the other hand, in [5],
Huang and Ma also obtained the similar Liouville type result by a different method.

Let (M,g) be an n-dimensional complete Riemannian manifold and f be a smooth
function defined on M. In general, the triple (M,g,e /dv) is called a smooth metric
measure space. The f-Laplacian operator is defined by

A =eldiv(e V)= A - VfV,

which is symmetric in L?(M, g, e~/ dv).

It is well-known that the m-dimensions Bakry-Emery Ricci curvature associated with
the f-Laplacian is defined by (see [3], [4], [13] )
df ® df

m-—n’

Ric} = Ric+ V*f —
where m > n is a constant and m = n if and only if f is a constant. Define
Ric; = Ric+ V*f.

Then Ricy can be seen as oo-dimensions Bakry—Emery Ricci curvature. Recently, the
co-dimensions Bakry-Emery Ricci curvature has become an important object of study in
Riemannian geometry. The equation Ricy = p(,) for some constant p is just the gradient
Ricci soliton equation, which plays an important role in the study of Ricci flow (see [1]).

The aim of this paper is to generalize the results of Qian in [10] to the weighted
nonlinear elliptic equation (1) under the assumption that the m-dimensions Bakry—Emery
Ricci curvature is bounded from blow. Our main results are as follows:
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Theorem 0.3. Let (M, g,e/dv) be an n-dimensional complete smooth metric measure
space with m-dimensions Bakry-Emery Ricci curvature Ric?(B(x,R)) > —K for some
constant K > 0. Let u be a positive solution to the nonlinear equation (1) on B(x, R),
then there ezists a constant C' = C(m), such that

1
sup MSC’\/CH—K—i———|—|b|+|0L|L. (5)

yeB@8) U R
where L(x, R) := Sup,ep(s gy | logu| < co.

In particular, by letting R — oo in (5), we obtain the following gradient estimates on
complete non-compact Riemannian manifolds:

\V4
‘u—u| < Cyva+ K + |b| + |a|L, (6)

where L = supyr| logul.

From (6), it is easy to obtain the following results:

Corollary 0.4. Let (M, g,e~/dv) be an n-dimensional complete smooth metric measure
space with Ricf > —K. If u is a bounded positive solution to (1) with a + K < 0 and
a < 0, then w = 1. Furthermore, if Ric}' > 0 and a < 0, then any bounded positive
solution to (1) must be u = 1.

Remark 0.5. When m = n in Theorem 0.3, we have Ric}" = Ric and Ay = A. Hence,
in this case, our Theorem 0.3 becomes Theorem 0.1 of Qian. That is, our results of this
paper generalize those of Qian in [10].

1 Proof of Theorem 0.3

Lemma 1.1. Let u be a bounded positive solution to the nonlinear equation (1), then we
have,

MO

\VulAf|Vu| > — (aulogu + bu)® 4+ Ric} (Vu, Vu)

(7)
— (a + alogu + b)|Vul?.

Proof. Since we have the Bochner-weitzenbock formula with respect to f-Laplacian, for
any u € C%(M), we have
1
5Af|vu|2 = |V2ul|® + Ricy(Vu, Vu) + (Vu, VA u).
On the other hand,
As|Vul* = 2|Vl Af|Vu| +2|V([Vul)?,

hence

|Vu|As|Vu| = |V?ul? + Ricy(Vu, Vu) + (Vu, VAsu) — [V(|Vul) %
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Since u is a solution to (1), we obtain
IVulA ;| Vu| = |[V?ul? + Ricy(Vu, Vu) — (a + alogu + b)|Vul> — |V(|Vu])|?.
If we consider a local normal chart at z in which u;(z) = |Vu|(z) and u;(x) = 0 for
J > 2, then V;(|Vul|) = uy;, hence |V(|Vul])|> = Z;u?,. Since u is a solution to (1), in the
above local chart we have at x
Zu” = —uy — aulogu — bu + Vf - Vu.

i>2
Therefore,
VP = IV(VaD? = 3 uf= ) uli= 3wz ) ui+ ) u
i>1,j>1 j>1 i>2,5>1 i>2 i>2
1
> uh+ — Q)
i>2 " i>2
1
:Zu% + ——(~uy — aulogu — bu + V[ - Vu)?
= n—1
> L Zu2 —;(auloguﬂm—Vj‘*Vu)2
“(n—-1)(1+a) T (n—1)a

i>1

1

1
1 2
TS0t a) ;“1
' 2
:—Zull (aulogu + bu)* — M,
i>1 m=n
where we use the elementary inequalities (see [12]):
1 1 1
25 2 19 2 2 L2
(a+b)° > =" ab and (a+b)<(1+4+¢€)a +(1+e>b’
which holds for any o > 0, € > 0. The last equality we choose o = m;f;r Land e = ml_n
Hence
2 . 2
m m—n
+ Ricy(Vu, Vu) — (a + alogu + b)|Vul|?
2 df ® d
:M — (aulogu + bu)? + (Ricy — 7{1? T]:)uzuj (8)
— (a + alogu + b)|Vul?
[V(ulP

- — (aulogu + bu)® 4+ Ric} (Vu, Vu)

— (a + alogu + b)|Vul?.
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This completes the prove of Lemma 1.1.

Proof of Theorem 0.3. Denote 1) = |V logu| = @, ie.,

|Vu| = ¢u.
Direct computation gives
V(IVu Vu|lVu
S .27 O\
u u

At the point where Vu # 0, we have

271Vl = Ag(u) = ubgp + $Agu + 2V - T
= ulA ) —P(aulogu + bu) 4+ 2V - Vu.

This yields

A .
App = @ +Y(alogu + b) — vauVu
- [VulAsVu] + ¢¥(alogu + b) — 2V¢ : Vu.
\Vulu u

By Lemma 1.1, we can derive,

Ay > —'V“ZL“W — (aulogu + bu)?* + Ric}(Vu, Vu) — (a + alogu + b)|Vul?
2 |Vulu
+Y(alogu +b) — 2V1/J Vu
2 2 :
Z|V(|Vu\)| _ (alogu+b)* (a+K)¢—2vw Vu'
m|Vulu (0 u

For any ¢ > 0, by (9)

2V1/11;Vu —(2- 5>V¢1;Vu +5V¢I.Lvu
SCTP AL LA (ST L
=(2- 5)qu;vu + 5V(|VZ|2) Vu 07
<(2- 5)W1'LV“ N 5\V(|Vuu!2| AVl s
Vi -Vu 8, |V(Vu))]? | Vul? 3
=y 2! Vau | @ ) — 0
_(p— gy Y Vu  SVAVADE 6

u 2 |Vulu 2

153

(10)
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Choosing § = 2 and substituting into (10), we obtain

. 3
Af¢2_(a+;()¢_<2_3>w+¢_

_ (alogu +)? " ! " (11)
(alogu 4
Now we define
F) = (1 = e ) W) = (2 = )us),
and Vul(y)
Y(y) = () y € B(z, R)

Since Flop(,ry = 0, if Vu = 0, then F can only achieve its maximum at some point
xg € B(z, R), if |Vul|(xg) = 0, the desired result holds. Then, without loss of generality,
we can suppose |Vu|(xg) # 0. Assume zg & cut(z), by the maximum principle we have
A¢F(x9) <0 and VF(zy) = 0. It yields, at zo,

VF = —¢Vd* + (R* — d*)Vi = 0.

It holds,
2
Ve V& 2dVd 12
w R2 _ d2 R2 _ d2
and
AfF = Af((R? — d®)Y) = (R? — d®) Ay — pApd® — 2V d*Vep < 0. (13)
Hence, dividing by (R? — d?)v to both sides of (13) and combining (12), we have at z,
-V

b RR—d (R2—d2)?
By the f-Laplacian comparison theorem in [12] (see also [7] or [9]), we have

Asd? < CVKdcoth(VKd) < CVKd,

where C' only depends on m. Together with (11), we have at z,

05— (a+ K)— (2 2)Y¥-Vu ¥
m Yu m 14)
(alogu +b)> CVKd 8d? (
o 2 _RQ—dz_(R2—d2)2'

By (12),
Vi-Vu 2 Vd‘Vu< 2dv

Yu R2—d?> w — R?2—d%¥
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then multiplying both sides of (14) by ¥?(R? — d?)*, combining with 1 = ﬁ, we can
derive A .
%dﬁ’ — (R* - d®)*(alogu + b)?

— ((a+ K)(R? — d*)? 4+ 84> + CVKd(R? — d*)) F?
1
EEF“ —4RF® — ((a + K)R? + CVKR + 8) R*F*

— R¥(alogu + b)*.
Since 3 F* —4RF* > —8mR*F?, it holds

0 ziF‘* —

3

1
%F4—((a + K)R* + CVKR + C)R*F”
— R¥(alogu +b)? <0.
It follows
sup (R® — d*(x,y))|Vlogu| < F(x)
yEB(z,R)
< \2m((a+ K)R2 + CVER + C)R2 + vam([b| + |a| L) RY.

Restricting on the ball B(z, £), we have

3R?
sup T|V10gu! < sup (R2 — d2(m,y))]V10gu| < F(xo)
yEB(:E,g) yGB(m,%)

< \/2m((a + K)R2 + CVEKR + C)R? + v2m([b| + |a L) R*.

Therefor, we can derive

[Vul < \/4m(a + K+ Cﬂ + Q) + V8m(|b] + [al L).

yeB(ZE,%) u R R2

Then use the Cauchy-Schwarz inequality, we obtain

V 1
sup MgC\/CHLKJF—+|b|+|a|L.

2
yeB(z, &) U R

Now let R — oo, this yields, for any x € M,

U(z) < h(xo) < Cv/a+ K + |b] + |a|L.

This completes the prove of Theorem 0.3. O
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