Gradient estimates for a nonlinear elliptic equation on a smooth metric measure space

Xiaoshan Wang, Linfen Cao

Abstract

Let ($M, g, e^{-f} d v$) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation $$
\Delta_{f} u+a u \log u+b u=0
$$ where a, b are two real constants and f be a smooth function defined on M. As an application, we obtain a Liouville type result for such equation in the case $a<0$ under the m-dimensions Bakry-Émery Ricci curvature.

In this paper, we study the local gradient estimate for the positive solution to the following weighted nonlinear elliptic equation

$$
\begin{equation*}
\Delta_{f} u+a u \log u+b u=0 \tag{1}
\end{equation*}
$$

on a smooth metric measure space $\left(M, g, e^{-f} d v\right)$, where a, b are two real constants and f be a smooth function defined on M. The motivation to study (1) comes from understanding the Ricci flow. Moreover, the (1) is closely related to the famous Gross Logarithmic Sobolev inequality, see [2]. It is well known that Yau has proved in [14] that every positive or bounded harmonic function is constant if M has nonnegative Ricci curvature by establishing gradient estimates for the solutions to Laplacian equation, see also [6], [8], [11].

It is natural to consider similar Liouville type results for positive solutions to the nonlinear elliptic equation (1). In [10], Qian considered positive solutions to

$$
\begin{equation*}
\Delta u+a u \log u=0 \tag{2}
\end{equation*}
$$

[^0]and proved the following
Theorem 0.1. (B. Qian) Let (M, g) be an n-dimensional complete Riemannian manifold with the Ricci curvature $\operatorname{Ric}(B(x, R)) \geq-K$, where $K \geq 0$ is a constant. Let u be a positive solution to (2) on $B(x, R)$, then for any $\alpha>0$,
\[

$$
\begin{equation*}
\sup _{y \in B\left(x, \frac{R}{2}\right)} \frac{|\nabla u|}{u} \leq C(n) \sqrt{(1+\alpha)\left((a+K)+\frac{(1+\alpha)}{R^{2}}\right)+\sqrt{\frac{1+\alpha}{\alpha}}|a| L(x, R)}, \tag{3}
\end{equation*}
$$

\]

where $L(x, R)=\sup _{y \in B(x, R)}|\log u|<\infty$ and $C(n)$ is a constant depending only on the dimension n.

In particular, by letting $R \rightarrow \infty$ in (3), we obtain the following gradient estimates on complete non-compact Riemannian manifolds:

$$
\begin{equation*}
\frac{|\nabla u|}{u} \leq C(n) \sqrt{(1+\alpha)(a+K)+\sqrt{\frac{1+\alpha}{\alpha}}|a| L} \tag{4}
\end{equation*}
$$

where $L=\sup _{M}|\log u|$.
Remark 0.2. Clearly, from 4, it is easy to see that if $a+K<0$ and $a<0$, then any bounded positive solution to (2) must be a constant $u \equiv 1$. On the other hand, in [5], Huang and Ma also obtained the similar Liouville type result by a different method.

Let (M, g) be an n-dimensional complete Riemannian manifold and f be a smooth function defined on M. In general, the triple $\left(M, g, e^{-f} d v\right)$ is called a smooth metric measure space. The f-Laplacian operator is defined by

$$
\Delta_{f}=e^{f} \operatorname{div}\left(e^{-f} \nabla\right)=\Delta-\nabla f \nabla
$$

which is symmetric in $L^{2}\left(M, g, e^{-f} d v\right)$.
It is well-known that the m-dimensions Bakry-Émery Ricci curvature associated with the f-Laplacian is defined by (see [3], [4], [13])

$$
R i c_{f}^{m}=R i c+\nabla^{2} f-\frac{d f \otimes d f}{m-n},
$$

where $m \geq n$ is a constant and $m=n$ if and only if f is a constant. Define

$$
\operatorname{Ric}_{f}=\operatorname{Ric}+\nabla^{2} f .
$$

Then Ric $_{f}$ can be seen as ∞-dimensions Bakry-Émery Ricci curvature. Recently, the ∞-dimensions Bakry-Émery Ricci curvature has become an important object of study in Riemannian geometry. The equation $\operatorname{Ric}_{f}=\rho\langle$,$\rangle for some constant \rho$ is just the gradient Ricci soliton equation, which plays an important role in the study of Ricci flow (see [1]).

The aim of this paper is to generalize the results of Qian in [10] to the weighted nonlinear elliptic equation (1) under the assumption that the m-dimensions Bakry-Émery Ricci curvature is bounded from blow. Our main results are as follows:

Theorem 0.3. Let $\left(M, g, e^{-f} d v\right)$ be an n-dimensional complete smooth metric measure space with m-dimensions Bakry-Émery Ricci curvature $\operatorname{Ric}_{f}^{m}(B(x, R)) \geq-K$ for some constant $K \geq 0$. Let u be a positive solution to the nonlinear equation (1) on $B(x, R)$, then there exists a constant $C=C(m)$, such that

$$
\begin{equation*}
\sup _{y \in B\left(x, \frac{R}{2}\right)} \frac{|\nabla u|}{u} \leq C \sqrt{a+K+\frac{1}{R^{2}}+|b|+|a| L} \tag{5}
\end{equation*}
$$

where $L(x, R):=\sup _{y \in B(x, R)}|\log u|<\infty$.
In particular, by letting $R \rightarrow \infty$ in (5), we obtain the following gradient estimates on complete non-compact Riemannian manifolds:

$$
\begin{equation*}
\frac{|\nabla u|}{u} \leq C \sqrt{a+K+|b|+|a| L} \tag{6}
\end{equation*}
$$

where $L=\sup _{M}|\log u|$.
From (6), it is easy to obtain the following results:
Corollary 0.4. Let $\left(M, g, e^{-f} d v\right)$ be an n-dimensional complete smooth metric measure space with Ric $f_{f}^{m} \geq-K$. If u is a bounded positive solution to (1) with $a+K<0$ and $a<0$, then $u \equiv 1$. Furthermore, if $R i c_{f}^{m} \geq 0$ and $a \leq 0$, then any bounded positive solution to (1) must be $u \equiv 1$.

Remark 0.5. When $m=n$ in Theorem 0.3, we have Ric $f_{f}^{m}=\operatorname{Ric}$ and $\Delta_{f}=\Delta$. Hence, in this case, our Theorem 0.3 becomes Theorem 0.1 of Qian. That is, our results of this paper generalize those of Qian in [10].

1 Proof of Theorem 0.3

Lemma 1.1. Let u be a bounded positive solution to the nonlinear equation (1), then we have,

$$
\begin{align*}
|\nabla u| \Delta_{f}|\nabla u| \geq & \frac{|\nabla(|\nabla u|)|^{2}}{m}-(a u \log u+b u)^{2}+\operatorname{Ric}_{f}^{m}(\nabla u, \nabla u) \tag{7}\\
& -(a+a \log u+b)|\nabla u|^{2}
\end{align*}
$$

Proof. Since we have the Bochner-weitzenböck formula with respect to f-Laplacian, for any $u \in C^{2}(M)$, we have

$$
\frac{1}{2} \Delta_{f}|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\operatorname{Ric}_{f}(\nabla u, \nabla u)+\left(\nabla u, \nabla \Delta_{f} u\right)
$$

On the other hand,

$$
\Delta_{f}|\nabla u|^{2}=2|\nabla u| \Delta_{f}|\nabla u|+2|\nabla(|\nabla u|)|^{2},
$$

hence

$$
|\nabla u| \Delta_{f}|\nabla u|=\left|\nabla^{2} u\right|^{2}+\operatorname{Ric}_{f}(\nabla u, \nabla u)+\left(\nabla u, \nabla \Delta_{f} u\right)-|\nabla(|\nabla u|)|^{2} .
$$

Since u is a solution to (1), we obtain

$$
|\nabla u| \Delta_{f}|\nabla u|=\left|\nabla^{2} u\right|^{2}+\operatorname{Ric}_{f}(\nabla u, \nabla u)-(a+a \log u+b)|\nabla u|^{2}-|\nabla(|\nabla u|)|^{2} .
$$

If we consider a local normal chart at x in which $u_{1}(x)=|\nabla u|(x)$ and $u_{j}(x)=0$ for $j \geq 2$, then $\nabla_{i}(|\nabla u|)=u_{1 i}$, hence $|\nabla(|\nabla u|)|^{2}=\Sigma_{i} u_{1 i}^{2}$. Since u is a solution to (1), in the above local chart we have at x

$$
\sum_{i \geq 2} u_{i i}=-u_{11}-a u \log u-b u+\nabla f \cdot \nabla u
$$

Therefore,

$$
\begin{aligned}
\left|\nabla^{2} u\right|^{2}-|\nabla(|\nabla u|)|^{2}= & \sum_{i \geq 1, j \geq 1} u_{i j}^{2}-\sum_{j \geq 1} u_{1 j}^{2}=\sum_{i \geq 2, j \geq 1} u_{i j}^{2} \geq \sum_{i \geq 2} u_{i 1}^{2}+\sum_{i \geq 2} u_{i i}^{2} \\
\geq & \sum_{i \geq 2} u_{i 1}^{2}+\frac{1}{n-1}\left(\sum_{i \geq 2} u_{i i}\right)^{2} \\
= & \sum_{i \geq 2} u_{i 1}^{2}+\frac{1}{n-1}\left(-u_{11}-a u \log u-b u+\nabla f \cdot \nabla u\right)^{2} \\
\geq & \frac{1}{(n-1)(1+\alpha)} \sum_{i \geq 1} u_{i 1}^{2}-\frac{1}{(n-1) \alpha}(a u \log u+b u-\nabla f \cdot \nabla u)^{2} \\
\geq & -\frac{1}{(n-1) \alpha}\left[\left(1+\frac{1}{\epsilon}\right)(a u \log u+b u)^{2}+(1+\epsilon)(\nabla f \cdot \nabla u)^{2}\right] \\
& +\frac{1}{(n-1)(1+\alpha)} \sum_{i \geq 1} u_{i 1}^{2} \\
= & \frac{1}{m} \sum_{i \geq 1} u_{i 1}^{2}-(a u \log u+b u)^{2}-\frac{(\nabla f \cdot \nabla u)^{2}}{m-n}
\end{aligned}
$$

where we use the elementary inequalities (see [12]):

$$
(a+b)^{2} \geq \frac{1}{1+\alpha} a^{2}-\frac{1}{\alpha} b^{2} \quad \text { and } \quad(a+b)^{2} \leq(1+\epsilon) a^{2}+\left(1+\frac{1}{\epsilon}\right) b^{2}
$$

which holds for any $\alpha>0, \epsilon>0$. The last equality we choose $\alpha=\frac{m-n+1}{n-1}$ and $\epsilon=\frac{1}{m-n}$.
Hence

$$
\begin{align*}
|\nabla u| \Delta_{f}|\nabla u| \geq & \frac{|\nabla(|\nabla u|)|^{2}}{m}-(a u \log u+b u)^{2}-\frac{(\nabla f \cdot \nabla u)^{2}}{m-n} \\
& +\operatorname{Ric}_{f}(\nabla u, \nabla u)-(a+a \log u+b)|\nabla u|^{2} \\
= & \frac{|\nabla(|\nabla u|)|^{2}}{m}-(a u \log u+b u)^{2}+\left(\operatorname{Ric}_{f}-\frac{d f \otimes d f}{m-n}\right) u_{i} u_{j} \tag{8}\\
& -(a+a \log u+b)|\nabla u|^{2} \\
= & \frac{|\nabla(|\nabla u|)|^{2}}{m}-(a u \log u+b u)^{2}+\operatorname{Ric}_{f}^{m}(\nabla u, \nabla u) \\
& -(a+a \log u+b)|\nabla u|^{2} .
\end{align*}
$$

This completes the prove of Lemma 1.1.
Proof of Theorem 0.3. Denote $\psi=|\nabla \log u|=\frac{|\nabla u|}{u}$, i.e.,

$$
|\nabla u|=\psi u
$$

Direct computation gives

$$
\begin{equation*}
\nabla \psi=\frac{\nabla(|\nabla u|)}{u}-\frac{|\nabla u| \nabla u}{u^{2}} \tag{9}
\end{equation*}
$$

At the point where $\nabla u \neq 0$, we have

$$
\begin{aligned}
\Delta_{f}|\nabla u| & =\Delta_{f}(\psi u)=u \Delta_{f} \psi+\psi \Delta_{f} u+2 \nabla \psi \cdot \nabla u \\
& =u \Delta_{f} \psi-\psi(a u \log u+b u)+2 \nabla \psi \cdot \nabla u
\end{aligned}
$$

This yields

$$
\begin{aligned}
\Delta_{f} \psi & =\frac{\Delta_{f}|\nabla u|}{u}+\psi(a \log u+b)-2 \frac{\nabla \psi \cdot \nabla u}{u} \\
& =\frac{|\nabla u| \Delta_{f}|\nabla u|}{|\nabla u| u}+\psi(a \log u+b)-2 \frac{\nabla \psi \cdot \nabla u}{u}
\end{aligned}
$$

By Lemma 1.1, we can derive,

$$
\begin{align*}
\Delta_{f} \psi \geq & \frac{\frac{|\nabla(|\nabla u|)|^{2}}{m}-(a u \log u+b u)^{2}+\operatorname{Ric}_{f}^{m}(\nabla u, \nabla u)-(a+a \log u+b)|\nabla u|^{2}}{|\nabla u| u} \\
& +\psi(a \log u+b)-2 \frac{\nabla \psi \cdot \nabla u}{u} \tag{10}\\
\geq & \frac{|\nabla(|\nabla u|)|^{2}}{m|\nabla u| u}-\frac{(a \log u+b)^{2}}{\psi}-(a+K) \psi-2 \frac{\nabla \psi \cdot \nabla u}{u}
\end{align*}
$$

For any $\delta>0$, by (9)

$$
\begin{aligned}
2 \frac{\nabla \psi \cdot \nabla u}{u} & =(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\delta \frac{\nabla \psi \cdot \nabla u}{u} \\
& =(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\delta \frac{\nabla u}{u}\left(\frac{\nabla(|\nabla u|)}{u}-\frac{|\nabla u| \nabla u}{u^{2}}\right) \\
& =(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\delta \frac{\nabla(|\nabla u|) \cdot \nabla u}{u^{2}}-\delta \psi^{3} \\
& \leq(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\delta \frac{|\nabla(|\nabla u|)| \cdot|\nabla u|}{u^{2}}-\delta \psi^{3} \\
& \leq(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\frac{\delta}{2}\left(\frac{|\nabla(|\nabla u|)|^{2}}{|\nabla u| u}+\frac{|\nabla u|^{3}}{u^{3}}\right)-\delta \psi^{3} \\
& =(2-\delta) \frac{\nabla \psi \cdot \nabla u}{u}+\frac{\delta}{2} \frac{|\nabla(|\nabla u|)|^{2}}{|\nabla u| u}-\frac{\delta}{2} \psi^{3} .
\end{aligned}
$$

Choosing $\delta=\frac{2}{m}$ and substituting into (10), we obtain

$$
\begin{align*}
\Delta_{f} \psi \geq & -(a+K) \psi-\left(2-\frac{2}{m}\right) \frac{\nabla \psi \cdot \nabla u}{u}+\frac{\psi^{3}}{m} \\
& -\frac{(a \log u+b)^{2}}{\psi} \tag{11}
\end{align*}
$$

Now we define

$$
F(y):=\left(R^{2}-d^{2}(x, y)\right) \frac{|\nabla u|(y)}{u(y)}=\left(R^{2}-d^{2}\right) \psi(y)
$$

and

$$
\psi(y)=\frac{|\nabla u|(y)}{u(y)}, \quad y \in B(x, R)
$$

Since $\left.F\right|_{\partial B(x, R)}=0$, if $\nabla u=0$, then F can only achieve its maximum at some point $x_{0} \in B(x, R)$, if $|\nabla u|\left(x_{0}\right)=0$, the desired result holds. Then, without loss of generality, we can suppose $|\nabla u|\left(x_{0}\right) \neq 0$. Assume $x_{0} \notin \operatorname{cut}(x)$, by the maximum principle we have $\Delta_{f} F\left(x_{0}\right) \leq 0$ and $\nabla F\left(x_{0}\right)=0$. It yields, at x_{0},

$$
\nabla F=-\psi \nabla d^{2}+\left(R^{2}-d^{2}\right) \nabla \psi=0
$$

It holds,

$$
\begin{equation*}
\frac{\nabla \psi}{\psi}=\frac{\nabla d^{2}}{R^{2}-d^{2}}=\frac{2 d \nabla d}{R^{2}-d^{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{f} F=\Delta_{f}\left(\left(R^{2}-d^{2}\right) \psi\right)=\left(R^{2}-d^{2}\right) \Delta_{f} \psi-\psi \Delta_{f} d^{2}-2 \nabla d^{2} \nabla \psi \leq 0 \tag{13}
\end{equation*}
$$

Hence, dividing by $\left(R^{2}-d^{2}\right) \psi$ to both sides of (13) and combining (12), we have at x_{0},

$$
0 \geq \frac{\Delta_{f} \psi}{\psi}-\frac{\Delta_{f} d^{2}}{R^{2}-d^{2}}-\frac{8 d^{2}}{\left(R^{2}-d^{2}\right)^{2}}
$$

By the f-Laplacian comparison theorem in [12] (see also [7] or [9]), we have

$$
\Delta_{f} d^{2} \leq C \sqrt{K} d \operatorname{coth}(\sqrt{K} d) \leq C \sqrt{K} d
$$

where C only depends on m. Together with (11), we have at x_{0},

$$
\begin{align*}
0 \geq & -(a+K)-\left(2-\frac{2}{m}\right) \frac{\nabla \psi \cdot \nabla u}{\psi u}+\frac{\psi^{2}}{m} \\
& -\frac{(a \log u+b)^{2}}{\psi^{2}}-\frac{C \sqrt{K} d}{R^{2}-d^{2}}-\frac{8 d^{2}}{\left(R^{2}-d^{2}\right)^{2}} \tag{14}
\end{align*}
$$

By (12),

$$
\frac{\nabla \psi \cdot \nabla u}{\psi u}=\frac{2 d}{R^{2}-d^{2}} \frac{\nabla d \cdot \nabla u}{u} \leq \frac{2 d \psi}{R^{2}-d^{2}}
$$

then multiplying both sides of (14) by $\psi^{2}\left(R^{2}-d^{2}\right)^{4}$, combining with $\psi=\frac{F}{R^{2}-d^{2}}$, we can derive

$$
\begin{aligned}
0 \geq & \frac{1}{m} F^{4}-\frac{4(m-1)}{m} d F^{3}-\left(R^{2}-d^{2}\right)^{4}(a \log u+b)^{2} \\
& -\left((a+K)\left(R^{2}-d^{2}\right)^{2}+8 d^{2}+C \sqrt{K} d\left(R^{2}-d^{2}\right)\right) F^{2} \\
\geq & \frac{1}{m} F^{4}-4 R F^{3}-\left((a+K) R^{2}+C \sqrt{K} R+8\right) R^{2} F^{2} \\
& -R^{8}(a \log u+b)^{2} .
\end{aligned}
$$

Since $\frac{1}{2 m} F^{4}-4 R F^{3} \geq-8 m R^{2} F^{2}$, it holds

$$
\begin{aligned}
\frac{1}{2 m} F^{4}- & \left((a+K) R^{2}+C \sqrt{K} R+C\right) R^{2} F^{2} \\
& -R^{8}(a \log u+b)^{2} \leq 0
\end{aligned}
$$

It follows

$$
\begin{aligned}
& \sup _{y \in B(x, R)}\left(R^{2}-d^{2}(x, y)\right)|\nabla \log u| \leq F\left(x_{0}\right) \\
& \leq \sqrt{2 m\left((a+K) R^{2}+C \sqrt{K} R+C\right) R^{2}+\sqrt{2 m}(|b|+|a| L) R^{4}} .
\end{aligned}
$$

Restricting on the ball $B\left(x, \frac{R}{2}\right)$, we have

$$
\begin{aligned}
& \sup _{y \in B\left(x, \frac{R}{2}\right)} \frac{3 R^{2}}{4}|\nabla \log u| \leq \sup _{y \in B\left(x, \frac{R}{2}\right)}\left(R^{2}-d^{2}(x, y)\right)|\nabla \log u| \leq F\left(x_{0}\right) \\
& \leq \sqrt{2 m\left((a+K) R^{2}+C \sqrt{K} R+C\right) R^{2}+\sqrt{2 m}(|b|+|a| L) R^{4}}
\end{aligned}
$$

Therefor, we can derive

$$
\sup _{y \in B\left(x, \frac{R}{2}\right)} \frac{|\nabla u|}{u} \leq \sqrt{4 m\left(a+K+C \frac{\sqrt{K}}{R}+\frac{C}{R^{2}}\right)+\sqrt{8 m}(|b|+|a| L)} .
$$

Then use the Cauchy-Schwarz inequality, we obtain

$$
\sup _{y \in B\left(x, \frac{R}{2}\right)} \frac{|\nabla u|}{u} \leq C \sqrt{a+K+\frac{1}{R^{2}}+|b|+|a| L}
$$

Now let $R \rightarrow \infty$, this yields, for any $x \in M$,

$$
\psi(x) \leq \psi\left(x_{0}\right) \leq C \sqrt{a+K+|b|+|a| L}
$$

This completes the prove of Theorem 0.3.

References

[1] Cao H.-D.: Recent progress on Ricci solitons, Recent advances in geometric analysis. Adv. Lect. Math. (11) (2010) 1-38.
[2] Gross L. : Logarithmic Sobolev inequality and contractivity properties of semigroups, in: Dirichlet Forms. 1563 (1993) 54-88.
[3] Huang G. Y. and Ma B. Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. 94 (2010) 265-275.
[4] Huang G. Y. and Li H. Z.: Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten laplacian. Pacific J. Math. 268 (2014) 47-78.
[5] Huang G. Y. and Ma B. Q.: Gradient estimates and Liouville type theorems for a nonlinear elliptic equation. Arch. Math. 105 (2015) 491-499.
[6] Li P. and Yau S. T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153-201.
[7] Li J.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifold. J. Funct. Anal. 100 (1991) 233-256.
[8] Li X. D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84 (2005) 1295-1361.
[9] Li Y.: Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature. Nonlinear Anal. 113 (2015) 1-32.
[10] Qian B.: Yau's gradient estimates for a nonlinear elliptic equation. Arch. Math. 108 (2017) 427-435.
[11] Schoen R. and Yau S. T.: Lectures on Differential Geometry. International Press, Cambridge, MA, (1994).
[12] Wu J. Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature. J. Math. Anal. Appl. 361 (2010) 10-18.
[13] Wu J. Y.: Elliptic gradient estimates for a nonlinear heat equation and applications. Nonlinear Anal. 151 (2017) 1-17.
[14] Yau S. T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Math. J. 25 (1976) 659-670.

Received: December 15, 2020
Accepted for publication: December 03, 2021
Communicated by: Haizhong Li

[^0]: MSC 2020: Primary 58J35, Secondary 35B45
 Keywords: gradient estimates, nonlinear equation, m-dimensions Bakry-Émery Ricci curvature, Liouville type property

 Affiliation:
 Xiaoshan Wang - Department of Mathematics, Luoyang Normal University, Luoyang 471934, China.
 E-mail: xswang2017@126.com
 Linfen Cao - College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 Henan, China
 E-mail: linfencao6@163.com

