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Cyclicity of the 2-class group of the first Hilbert 2-class
field of some number fields

A. Azizi, M. Rezzougui and A. Zekhnini

Abstract. Let k be a real quadratic number field. Denote by Cls (k) its 2-class group
and by ]kél) (resp. ]ng) ) its first (resp. second) Hilbert 2-class field. The aim of this
paper is to study, for a real quadratic number field whose discriminant is divisible by
one prime number congruent to 3 modulo 4, the metacyclicity of G = Gal(]kg) /k)

and the cyclicity of Gal(]kg) / ]kél)) whenever the rank of Cly(k) is 2, and the 4-rank
of Clg(]k) is 1.

1 Introduction

Let k be an algebraic number field and Cly(k) its 2-class group, that is, the 2-Sylow

subgroup of its ideal class group Cl(k). Let lkgl) be the Hilbert 2-class field of k, that is,
the maximal abelian extension of k everywhere unramified of 2-power degree over k. Put
]kgo) = k and let ]kgﬂ) denote the Hilbert 2-class field of ]kgi) for any integer ¢« > 0. Then
the sequence of fields

k=K R K c o cf

bl

is called the 2-class field tower of k.
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If, for all © > 0, we have ]kg) #* ]kgiﬂ), the tower is said to be infinite. Otherwise, the
tower is said to be finite, and the minimal integer ¢ such that ]kg) = lké”l) is called the
length of the tower. Unfortunately, there is no known method to decide whether or not
a 2-class field tower of a number field is infinite. However, it is known that if the rank
of Cb(]kgl)) is at most 2, then the tower is finite and its length is at most 3 (cf. [14]);
it is also known that if the rank of 012(]k§”) is equal to 3, then there are fields k with
infinite 2-class field tower (cf. [24]). Therefore, it is interesting to determine all fields such
that rank(Clg(]kél))) < 2. That is why Benjamin et al. started a project which aims to
characterize all quadratic fields k satisfying the last condition (cf. [6], [7], [8], [9], [11], [12],
[13], [16]). Our present paper as well as our previous one (see [3]) are part of this project.

We aim to study the cyclicity of Clg(]kgl)) of real quadratic fields k such that Cly(k) is
of the form (2",2™) for some n > 1 and m > 2, and their discriminants dj are divisible
by primes congruent to 3 modulo 4. In this paper, which is a continuation of [3], we
consider the field k = Q(v/2p1p2q), where p; = py = —qg = 1 (mod 4) are primes and
Cly(k) ~ (2,2"), with n > 2. We determine complete criteria for G = Gal(]kg)/]k) to be
metacyclic and complete criteria for Cly (]k(zl)) to be cyclic whenever G is not metacyclic.

2  Preliminary results

We begin by collecting some results that will be useful later. We recall that a 2-group
G is said to be metacyclic if there exists a normal cyclic subgroup N of G such that G/N
is cyclic. It is known that if G is metacyclic, then the minimal number of its generators is
less or equal to 2; this number is called the rank of G and will be denoted by d(G). On
the other hand, if d(G) = 2, then G/G’ is of type (2",2™) with n and m € IN*, where G’
is the commutator subgroup of G. If n = m = 1, then it is known that G is dihedral,
semi-dihedral, quaternionic or abelian of type (2,2) (cf. [20], [17]). In these cases, G admits
a cyclic maximal subgroup, and thus is metacyclic. By Blackburn [15], we know that the
metacyclicity of a 2-group G is characterized by the rank of its maximal subgroups, and
we have the following lemmas.

Lemma 2.1 ([3]). Let G be a finite 2-group such that G /G’ is of type (2",2™), where n > 1
and m > 2. Denote by H; (i = 1,2,3), the three maximal subgroups of G. Then G is
metacyclic if and only if d(H;) <2 for alli=1,2,3.

Lemma 2.2 ([7]). Let G be a non-metacyclic 2-group such that G/G' is of type (2,2™),
where m > 2. Then G admits two mazimal subgroups Hy and Hy such that Hy/G' and
Hy/G" are cyclic. Moreover, if G' is cyclic, then Hy and Hy are metacyclic.

We continue by fixing some notation. For a number field k, denote by Cly(k) its 2-class
group in the ordinary sense, denote by ho (k) the order of Cly(k), denote by ]kgl) the Hilbert
2-class field of k, and denote by k? the Hilbert 2-class field of k{". If G = Gal(k? /k),
then it is well known from class field theory that G’ = Gal(]kg) / ]kgl)) ~ Clg(]kgl)) and
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G/G = Gal(k{" /k) ~ Cly(k). Note that if Cly(k) is of type (2,2"), with n > 2, then
k admits three unramified quadratic extensions within ]kgl), which will be denoted by K;
(1 =1,2,3). We suppose that K3 is included in the three unramified biquadratic extensions
of k within ]kgl). The following result was shown in our earlier paper [4].

Theorem 2.3. Keep the notations above and assume G /G’ is of type (2,2"), where n > 2.
Then

1. G s abelian or modular if and only if

rank(Cly(K;)) =1 (i = 1,2) and rank(Cly(Kj)) = 2.

2. G is metacyclic non-abelian non-modular if and only if

rank(Cly(K;)) =2 for all i =1,2,3.

3. G 1is non-metacyclic non-abelian if and only if

rank(Cly(K;)) =2 (i = 1,2) and rank(Cly(K3)) = 3.

Let k = Q(v/d) be an arbitrary quadratic number field with a square-free integer d,
and dy be its discriminant. For a prime number p, define:

p—

(—1)"zp, ifp+#2

. )4 if p=2and d =3 (mod 4);
L T it p=2and d =2 (mod 8);
-8, if p=2and d = -2 (mod 8).
Then, let dy = pT...pips,, - .. Psy, such that pi, ... p: are positive and p},,,...,p;,, are

negative. The Rédei matrix Ry is defined to be the matrix in My y)x(ste)(Z/2Z) with
entries a; ; given by: (—1)%/ = (i—}) if i # 7 and (—1)%7 = (%#) if i = j, where (2)
is the Legendre symbol. Then the 4-rank of Cl*(k), the class group of kk in the narrow
sense, is given by:

Theorem 2.4 ([23]). Let k be a quadratic number field, then
4rank(Cl7(k)) = s+t — 1 — rank(Ry,).
Remark 2.5. If dy is divisible by a prime congruent to 3 modulo 4, then
Cly (k)) ~ Z/27 x Cly(k) and 4-rank(Cl* (k)) = 4-rank(Cl(k)),

where Cl3 (k) is the 2-class group of k in the narrow sense.
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We make use of the well known Kuroda Class Number Formula, which we state as the
following theorem.

Theorem 2.6 ([22]). Let K/k be an arbitrary normal quartic extension of number fields
with Galois group of type (2,2), and let K; (j = 1,2,3) denote the quadratic subextensions.
Then the class number of K satisfies

(K/k)h(K1)h(Kz)h(Ks)
(h(lk))? ’
where q(K/k) = [Ex : E1EyFE5] denotes the unit index of K/k (with E; = the unit group

of K;), d is the number of infinite primes in k that ramify in K, k is the Z-rank of the
unit group Ey of k, and v =0 except when K C k(v/Ex), in which case v = 1.

h(K) — 2d—/§—2—v 4q

To prove our main theorems, we also need the following results.

Theorem 2.7 ([6]). Let k be a number field such that Cly(k) ~ (2,2"), where n > 2.
Denote by K; (i = 1,2,3), the three unramified quadratic extensions of k. Then the 2-
class group of lkgl) is a non-elementary cyclic group if and only if ho(K;) > 2ho(k) and
hao(K;) = ho(K,,) = hao(k) for some {i,j,m} = {1,2,3}.

Lemma 2.8 ([6]). Let k be a number field such that Cly(k) ~ (2,2"), m > 1, n > 1. De-
note by K; (i = 1,2,3), the three unramified quadratic extensions of k. Then hg(lkgl)) =2
if and only if ha(Ko) = (1/2)he(k) where Ky = KK K;.

Corollary 2.9 ([6]). Let k be a real quadratic number field such that Cly(k) ~ (2™ 2"),
m > 1,n > 1. Denote by K; (i = 1,2,3), the three unramified quadratic extensions of k.
Then ho(k$Y) = 2 if and only if hao(Ky) = ho(Ks) = hao(Ks) = ha(k) and q(Ko/k) = 4,
where KQ = K1K2K3.

Theorem 2.10 ([6]). Let k be a real quadratic number field with Cly(k) ~ (2™,2"), m > 1,
n > 2, and dy = dydorire or rirer3ry be its discriminant, where di; and dy are posi-
tive prime discriminants and ry, ro, T3, T4 are negative prime discriminants. Denote by
K; (i = 1,2,3), the three unramified quadratic extensions of k. If hg(]kgl)) = 2 then
Qk, = Qx, = 2, and Qg, = 1 or 2 for some {i, j, s} = {1,2,3}, where Qx denotes the unit
index of K.

3 The 4-rank of the 2-class group of k = Q(1/2p1p29)-

Let p; = p» = —¢ = 1(mod 4) be different positive prime integers and k = Q(1/2p1p2q).
It is well known, by genus theory, that the 2-rank of the class group of k is 2. The purpose
of this section is to determine the 4-rank of the 2-class group of k.

E. Benjamin and C. Snyder characterized real quadratic fields whose 2-class group is
of type (2,2) in [10]. In particular, they proved the following theorem.
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Theorem 3.1. Let p; = py = —qg = 1 (mod 4) be different prime integers. Then the 2-class

group of k = Q(v/2p1p2q) is of type (2,2) (i.e. 4-rank(Cly(k)) = 0) if and only if one of
the following conditions is satisfied.

1. e <ﬂ> =1, and
P2

e cither <pl) =—1or (f) =—1, and
) -

o cither (l —1 or <pi> =—1, and

[
[y

P2

o (p%), ( , (pi>, (pi are not all equal.
2. (%) = —1 and (p%), (p%), (p%), <p%> are not all equal.

In the following theorem, we give necessary and sufficient conditions for the 2-class
group of k = Q(v/2p1p2q) to be of type (2,2") or (2™,2"), where n > 2 and m > 2.

Theorem 3.2. Let p1 = ps = —q =1 (mod 4) be different prime integers. Then the 2-class

group of k = Q(v/2p1p2q) is of type (2,2"), where n > 2,(i.e. 4-rank(Cly(k)) = 1) if and
only if one of the following conditions is satisfied.

L) = ()= (8) mrana (3) (3) -1
2 (3)=(2) = (2) = () = ona () =1
HORNORTHONOR

L) =()= () =() =

Moreover, 4-rank(Cly(k)) = 2 if and only if

() = o) = () = G) - () =

Proof. Proceeding as in [3], the results are deduced by applying Theorem 2.4 and Re-
mark 2.5. O

a8

o

)
)
)

*Blw

4 The FSUs of certain biquadratic number fields

Let p1 = p2 = —¢ = 1 (mod 4) be different prime integers. Put k = Q(v/2p1p2q)-
Consider the following three unramified quadratic extensions of k:

= Q(/p1, vV2p2q), Ko = Q(/p2,v2p1q) and Kz = Q(v/2q, \/P1p2).
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Let €2pipoqg = T +Yv/2D1P2q, €2p1qg = 2 +1t3/2p1q and e9p,q = a+ by/2paq be the fundamental
units of Q(v/2p1p29), Q(v/2p2q) and Q(1/2p1q) respectively. The goal of this section is to
determine a Fundamental System of Units (FSU) of K; basing on the conditions cited in

Theorem 3.2.
Using similar arguments as in the proof of Lemma 4.1 of [3] (see also [5]), we get the
following lemmas.

Lemma 4.1. Suppose that (p%) = (p%) = (i—;) = (p%) =— (p%) =1.

1. If x £1 is a square in N, then

1. {5p1752p2q7 1/52p2q52p1p2q} 1s a FSU Ole.

. {€pys €2p1g> /E2p10C 2p1paa ) O {Epas E2pras E2pipnqt 15 @ FSU of Ky according as z £1 is
or not a square in N.

ii. {52117 Epipar A /62q52p1p2q} is a FSU Of Kg.
2. If py(x £ 1) is a square in N, then

1. {€p1752p2q7 w/€2p2q€2p1p2q} is a FSU Ole.

. {€pys €2p10> /E2p1aC 2m1paa s OT {Epas E2p1qs E2pipaq ) 15 @ FSU of Ky according as pr(z+1)
18 or not a square in N.

iii. {€29s Epipos V/E24EpipaEopiprat O {€2g5 Epipssr E2pipaqt 95 a FSU of Ks according to
whether No( /pips)/(Epipe) €quals 1 or —1.

3. If 2p1(x £ 1) is a square in N, then

1. {€p1782p2q7 A /€2p1p2q} 1s a FSU Of Kl.
. {€pys €2p10> /E2p1aC 2m1paa )t OT {Epas E2p1as E2pipaq t 15 @ FSU of Ky according as 2p,(z+1)

1s or not a square in N.

1. {€2g, Epipas /EprpaCopipaa ) OF {€2¢s Epipas E2pipaq ) @8 @ FSU of Ky according to whether
No(ysrm)/a(Epips) equals 1 or —1.

Lemma 4.2. Suppose that <p%> =— (p%) = (i—;) = (p%) =— (p%) =1.

1. If 2p1(x + 1) is a square in N, then

1. {ep1s €2pags /Copipag) 15 @ FSU of K.

. {€p, €210> /E210C2p1paa } OT {Epas E2p1as E2prpaq ) 15 @ FSU of Ko according as 2p(z+1)
15 or not a square in N.

1. {€29s Eprpar \/EprpaCapipaat O {€2¢> Eprpas E2pipag )t 15 @ FSU of Ky according to whether
N@(\/pIPQ)/Q(6P1P2) equals 1 or —1.

2. If 2po(x £ 1) is a square in N, then
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1. {€p1) €205 \/E2paaCampaq) 15 @ FSU of K.
ii. {€pys E2p1gr /E2pipaa) 15 @ FSU of Ky.
il. {€29; Epipas \/Epip2Eoappaa) OT 1€q> Epipar E2pipaq) 15 @ FSU of K3 according to whether
No(ypip)/0(Epip) equals 1 or —1.

3. If q(x £ 1) is a square in N, then

1. {5p1752p2q7 1/52p2q52p1p2q} 1s a FSU Ole.

. {€pys €2p10> /E2p10C 2p1paa ) O {Epas E2p1as E2pipaq} @8 @ FSU of Ky according to whether
q(z — 1) is or not a square in N.

1. {€2¢, €pipos \/E2pipaq) 5 @ FSU of K.

Lemma 4.3. Suppose that <3> = — (l) = (ﬂ> = <i> = <i> =1.
p1 p2 D2 p1 p2
L. If 2py(z £ 1) is a square in N, then

1. {€p1782p2q7 A /€2p1p2q} 1s a FSU Of Kl.
1. {€p, €210> /E210E2p1paa } OT {Epas E2p1qs E2pipaq ) 18 @ FSU of Ko according as 2p (z+1)

15 or mot a square in N.

i, {€29s Eprpar \/EprpaCopipaat O {€2q> Eprpas E2pipaq ) 15 @ FSU of Ky according to whether
No(/pirz)/@(Epipe) €quals 1 or —1.

2. If po(x £ 1) is a square in N, then

1. {6p1>52p2q; A /52p2q82p1p2q} 1s a FSU Of Kl.
. {€pys €2p10> /E2p1aC 2papaa) OT {Epss E2p1as E2pipaq ) 15 @ FSU of Ky according as (z £ 1)

15 or mot a square in N.

i, {€29) Epipas V/E20EpipaCampat O {€2¢5 Epipssr E2pipaq) 15 a FSU of K3 according to
whether No( /pips)/(Epipe) equals 1 or —1.

3. If2q(x £ 1) is a square in N, then

1. {€p1752p2q7 A /52p2q82p1p2q} is a FSU Of Kl.
i {€ps: €2p10) v/E2p1aE2pip2a) O {Ep2: E2pr1g E2pipag} 18 a FSU of Ko according as 2q(2+1)

s or not a square in N.

iii. {€2g,Epipsr \/E2¢C2p1paq) 15 0 FSU of Ks.

5 The structure of the group Gal(]kgz)/]k).

In this section we consider the field k = Q(/2p1p2q), where p; = ps = —¢ =1 (mod 4),
and the three unramified quadratic extensions

K, = Q(\/p_la \% 2]92(])7 Ky = Q(\/p_Q7 \% QPIQ) and Ks = Q(\/Tqa \/]91]92)-
Let Cly(K;) denote the 2-class group of K; (i = 1,2, 3).
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5.1 The metacyclic case

Theorem 5.1. Let py = ps = —q = 1 (mod 4) be different prime integers, and k =
Q(v2p1paq). Assume Gal(]kél)/]k) is a non-elementary 2-group. Then G = Gal(lkg)/lk) is
metacyclic if and only if

(2)-(2)-(2)-(2)

i af (B2) =1, then G is a metacyclic non-abelian non-modular 2-group,
p2

More precisely,

ii. of (Z—;) = —1, then G is a modular or abelian 2-group according as 2p1pa(x + 1) is a
square or not in N.

Proof. According to Theorems 3.1 and 3.2, there are five cases to distinguish. By [1] and
2] we have:

L1(2) = (2) - (2) - (2) - () 1.

rank(Cly(K;)) = rank(Cly(Ky)) = rank(Cly(Ks)) = 3.

1 (2) = (2) = (2) = tand () = (£) =1, then

rank(Cly(K;)) =3 and rank(Cly(Kj)) = rank(Cly(Kj3)) = 2.

3. If <p%> = <p%> = (p% = (p%) =1 and <§—;> = —1, then

rank(Cly(K;)) = rank(Cly(Kjy)) = 2 and rank(Cly(Kj3)) = 3.

L (2) = (2) = 1 and (8) = (£) = 1, then

rank(Cly(K;)) =3 and rank(Cly(Kj)) = rank(Cly(Kj3)) = 2.

o (2) = (2) = () = (£) = -1, then

i If (%) =1, then
rank(Cly(K;)) = rank(Cly(Kj)) = rank(Cly(K3)) = 2.
I (5—;) — _1, then
rank(Cly(K;)) = rank(Cly(K3)) = 1 and rank(Cly(K3)) = 2.

Hence the results are deduced from Theorem 2.3, Lemma 2.1 and [8, Theorem 2]. O
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5.2 The non-metacyclic case

Assuming Cly(k) ~ (2,2"), n > 2, for the non-metacyclic case we have four cases to
distinguish, according to Theorems 3.2 and 5.1. For simplicity, we will denote by ¢; the
unit index of the field K; (i = 1,2, 3). In all that follows, we use the notations of [19, page
336]. Put p; = 2e*+ (—1)7d?, g = 2r* +(—1)7s* and A = sd + 2er + 2y(es + dr) according
as <2> = (—=1)"*!, where v € {0, 1}.

q
5.2.1 Case 1: <l> = (l) = <ﬁ> = (i) = — (i> =1

p1 P2 P2 p1 P2
Theorem 5.2. Let § € {1,p1,2p1} be such that 6(x £ 1) is a square in N. The group
Clg(]k(;)) ~ Gal(]kg)/]kgl)) is non-elementary cyclic if and only if one of the two following
assertions holds:

I. i d(z=%1) is not a square in N,

ii. at least one of the elements {(;%) , <I2)—‘11> } equals —1, and
4

ii. either

a. 0 =1 and (%)4 = (%)4, or
b. § #1 and (%)4 = (%)4 =1

II. i 0(z%1) is a square in N or <A> = <@> =1, and
4

P p1

ii. either
— pi P2
a. 0 =1 and <p2>4 # <p1>4, or
b. & # 1 and one of (i—;) (’2>4 is equal to —1.

4’ p1

Proof. Form Theorem 2.7, we must calculate the 2-class numbers of K.

e By [19], if (p%) = —1, then hy(2p2q) = 2, and, according to Lemma 4.1, ¢ = 2. In
this case, the 2-class number of K; is given by [27]:

1
ha(Ky) = ZQIhQ(pl)hQ(2p2Q)h2(QPIPQQ) = ho(2p1p2q).

o If (Z2) = (L) =1, then, by [19], he(2p1q) > 4. More precisely, hy(2p1q) = 4 if and
yan

p1
2q

only if at least one of the elements (pﬁl) , <p1

) equals —1. The 2-class number of
4
Ky is given by:
1 1
ha(Ks) = 7 a2h2(p2)ha(2p10)ha(2p1024) = 762ha(2p19)ha (2p11029),

50 ho(Kg) = ho(2p1paq) if and only if ¢ = 1 and he(2p1q) = 4. On the other hand,
by Lemma 4.1, ¢o = 1 if and only if 6(z £ 1) is not a square in N.
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e Similarly, the 2-class number of K3 is given by:

1 1
he(K3) = quha(2q)hz(p1p2)h2(2p1pzq) = ZQSh2(p1p2)h2(2P1P2Q)a

so ha(K3) = ha(2p1p2q) if and only if either g3 = 1 and ho(pip2) = 4, or ¢z = 2
and ho(p1p2) = 2. In this case, according to [21] (see also [25]) and Lemma 4.1,
ha(Ks3) = ha(2p1p2q) if and only if one of the two following conditions is satisfied:

1. 6 =1 and (5—)4 4 (;;—)4
2. 0 # 1 and either <§—;)4 =—1lor (’2>4 =—1.

P

Using Theorem 2.7, we get the results. O

Example 5.3. Put a — (pé) s = (@>4 ty = (ﬂ)4, ty — (%)4 ¢ = CIED), n = ha(k),

p1 p2

n; = ho(K;) (i = 1,2,3) and qo = q(Ko/k), and by using PARI/GP [26], we get the

following examples for the case: z £1 is a square, z+ 1 and z — 1 are not squares, (& = —1
or s =—1) and t; = ts.

d = 2p1pag Gl @ || a| s [hjlegn|n|n|n3|q| ¢
38082=2-73-89-3 | 2|1 |2 |—-1|—-1|1|1|8|8 |8 |16|16| [4]
60006 =2-73-137-3 | 2 |1 |2 |—-1|—-1|1]|1|8| 8| 8 64|16 [16]

208862=2-73-89-23| 2 | 1|2 |—-1|—-1|1|1/|8] 8 |8 [16] 16| [12]

Theorem 5.4. Let § € {1,py,2p1} such that 5(z+1) is a square in N. Then #Cly(k{V) = 2
if and only if the following conditions are satisfied:

i. 0(z £ 1) is not a square in N,

ii. at least one of the elements {(;%) , <%> } equals —1.
4

b1
i (3),7 (1),
Proof. Suppose that #Clg(]kgl)) = 2. Then, according to Corollary 2.9, ho(K;) = ha(k)
for all i = 1,2,3. By the proof of Theorem 5.2, the equality hs(Ks) = ho(k) implies the

two first conditions and ¢; = 1. On the other hand, as ¢; = 2, from Theorem 2.10 we
infer g3 = 2. Accordingly, ha(pi1p2) = 2 and No(/pipz)/(Epip,) = 1, Which is equivalent to

(8),7 (8), (s 125D

Reciprocally, suppose the three conditions (i), (ii) and (iii) are satisfied. Applying
results of the proof of Theorem 5.2, we get ha(K;) = ho(k) for all i = 1,2,3. Let
Ko = KiKoKs = Q(y/P1, /P2, v2q), and denote by Eg, the unit group of K; and by
q¢(Ko/k) = [Ex, : Ex, Fx, Fx,] the unit index of Ky/k. Hence, by Corollary 2.9, it remains
to prove only ¢(Ky/k) = 4. According to Lemma 4.1, we have:
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1. Ex, = (—1,6p,,E9pq,€), Where € = VE2p1p2q OF \/€2p2qE2p1paq according to 2p1(x £ 1) is
or not a square in N,

2. EKz - <_1’€p2752p1q752171p2q>7

_ / r_
3. Ex, = (—1,€2¢,Epypy,€), Where &' = VE24E2p1p2a> \/€2qEp1p2€2pipag OF \/EpipaC2pipag AC-
cording to (x £ 1), p1(z £ 1) or 2p;(z £ 1) is a square in N.

Put
A = 5;15;;2(]8(137 ap, a2, a3 € {07 1}a
B =ghgh o b1, b, b3 € {0,1}
p2°2p1g=2p1p2q> Y1 Y25 Y3 R
¢ = 652816)21;028/%7 C1,C2,C3 € {07 1})
n? =+AB.C.
So

NKO/K1(772) = (_1>b1(i€2p1p2q)03(5331;1p2q14)2>
NKo/Kz(n2> = (_1>a1(i52p1pzq)a3(i52p1p2q)6332a

NKO/KS (772) = (_1>a1 (_1)b1 (i52p1p2q>a3 (63%11;2,10)2-

Assume n € Ko, if ag # 0 or ¢z # 0, then /g3, € Ko O /€251 € Ks, which
contradicts Lemma 4.1. On the other hand, if a3 = ¢ = 0 and (ay = 1 or by = 1),
then Ni,/k,(n*) < 0 or Nk, /x,(n*) < 0, which contradicts the fact that Ng,x,(n*) > 0.
Therefore, a; = by = az = ¢c3 = 0 and we get
b3 c1 _co

€

2 a2 bo
= +e €2p1¢%2p1p29524Cpip2 -

2p2q
From the proof of Lemma 4.1, we deduce thet /23,625, OF \/E2pq € Ex, (1 = 1,2).
According to our assumption, No( /pps)/0(Epip,) = 1, which implies that /g, € Fk
We distinguish the following cases:

0*

i. If (x £ 1) is a square in N, then /€35, \/€2p2q> /E2p1paq ¢ Pk, and Lemma 4.1 implies
that

V Ep1p2 ¢ EK1 EKzEKga
\/52q52p1q7 \/52]?1(1 é EKlEKzEK37
\/52116217117247 \/€2p2q52p1p2q S EK1 EKzEK3'

By a case by case study, we obtain

E]Ko = <\/ €2p1q OF \/62(162]71!17 \/61711727 EK1EK2EK3>'
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ii. If py(z £1) is a square in N, then /234, \/E2pgs \/E2p1paq ¢ Fk,y, By Lemma 4.1, we
have

v/ Epip2 ¢ EKIEKzEKga
VE24E2p105 V/E2prq & By B, B,

\/52q€p1p2€2p1p2q7 \/€2p2q52p1p2q € EKl EKQ EKs'

Thus we obtain

EKO = <\/ €2p1q OT \/52q52p1q> \/€P1P2? EK1EK2EK3>'

iii. If 2p;(x+x1) is a square in N, then | /€24, \/E2poq ¢ Ex, and | /E2,62pq € Ex,, by Lemma
4.1, \/epipas \/E2p1paq € P, Bk, Ex,, from which we deduce that

EKO = <\/ €2p1q OF \/€2q52p1q’ \/52q52p2q> EK1EK2EK3>'

In the three cases we get ¢(Ko/k) = 4, so it suffices to apply Corollary 2.9 to obtain the
results. N

Example 5.5. Keep the notation of Example 5.3. For the case pi;(x + 1) is a square,

p1(z £ 1) is not a square, (« = —1 or s = —1) and t; # to, we have
d = p1p2q G| G@|q| | s |t |ty |n|n |na|n3g|q| ¢
51798 =2-97-89 -3 2 (12| -1|1 1 |—-118| 8|8 |8 |16]|][2]
64862 =2-113-41-7 2 (12| -1|1 1 |—-118| 8|8 ]| 8 |16]]6]
113734 =2-73-41-19 | 2 | 1 | 2| 1 | =1 | -1| 1 |8| 8 | 8|8 |16]][6]

22 coe (3) = (2) = (1) = () = () =»

P
Lemma 5.6. Let py = po = —q = 1 (mod 4) be three positive prime integers satisfying
<p%) = (;%) = (p% = (p%) — (ﬁ—;) = 1. Then the rank of the 2-class group of
KO = @(\/p_h \/p_Qv \/2—(]) equals 3.

Proof. As (1%) = —1, it is well known (cf. [21]) that the class number of ko = Q(,/p1, /P2)

is odd. Consider the extension Ky/ky. Then according to [18], the rank of the 2-class group
of Kq is given by the formula:

rank(Cly(Ko)) =r —e — 1,

where 7 is the number of finite and infinite primes of ky that ramify in Kq/ko and e is
defined by 2¢ = [E, : Ex, N Nk, /i, (K§)] < 2% Asr = 8 (4 primes above 2 and 4 above q),
rank(Cly(Kp)) =7 —e—1=8—e —1 > 3. On the other hand, the Schreier’s inequality
implies that rank(Cly(Kg)) < 3, concluding the proof. O
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Theorem 5.7. Let p1 = ps = —q¢ = 1 (mod 4) be three positive prime integers satisfying
1 A A
p1 P2 P

rank(Cly (k")) > 2.

Proof. Suppose that rank(Clg(]kél))) =1, then, by Lemma 2.2, the proof of Theorem 5.1

and class field theory, the Galois groups Gal(]kg) /K1) and Gal(lkém /Ks) are metacyclic,
and since K is an unramified quadratic extension of K;, then Lemma 2.1 implies that
rank(Cly(Kp)) < 2, which contradicts Lemma 5.6. O

Example 5.8. For d = 47158 = 2-73 - 17 - 19, we have Clg(]kél)) is of type (2,4), and for
d = 59942 = 217 - 41 - 43, we have Cly(k") is of type (2,4).

s23 cmes: (2) =~ (2) = (2) = () = (3) -

Using similar arguments as above, we prove the following two theorems.

Theorem 5.9. Let 6 € {2p1,2ps,q} be such that §(x + 1) is a square in N. The group
Clg(]kél)) ~ Gal(]kg)/]kgl)) is cyclic non-elementary if and only if one of the following two
conditions is satisfied:

I. 1 0#2py and 6(z = 1) is not a square in N, and
ii. at least one of the elements {(p%) , <@) } equals —1, and

P1 )y

—

iii. either

a. d =q and ( ;)4 = (%)4, or

p1
p:
b. 0 # q and (%)4: (1%)4_

II. i 0=2py ord(z+£1) is a square in N or <A> = <%> =1, and
4
i. either

o b=qand (2) £ (2) o

a6
b. 0 # q and one of <§—> (72) is equal to —1.

—
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Example 5.10. Keep the notation of Example 5.3. For the case 2py(z £+ 1) is a square and
ty = —1 or ty = —1, we have

d = 2p1paq G1|G2|q3| a | s |ty | ta | n|ny|ng|n3|q| €
17630 =2-41-5-43 |22 ]2 ]| 1 1 1 |—1|8]8 (32| 8[32] [§]
29614 =2-17-13-67 | 2|2 |2 | 1 |—-1|—-1| 1 8|1 8116 8 | 32 [4]
34238 =2-17-53-19 |2 |2 |1 ] 1 1 |—-1|—-1] 8| 8132 8 |16 [8]
41830 =2-89-5-47 | 2|2 |1 |—-1|—-1|-1]—-1|16|16|32|16]16 [4]
59630 =2-89-5-67 |2 2|1 |—-1| 1 |—-1|—18 |8 |16| 8 |16 [4]
69782 =2-41-37-23 | 2| 2|2 | 1 |—-1|—=1| 1|8 |8 |16| 8 |32 [4]
91078 =2-113-13-31 |2 |2 |2 | —=1|—1| 1 |=1|16|16|32|16|32][12]

Theorem 5.11. Let § € {2p1,2p2,q} be such that 6(x + 1) is a square in N. The order
#CIQ(]kS)) = 2 if and only if the following conditions are satisfied:

i. 0 #2py and 6(z £ 1) is not a square in N,
ii. at least one of the elements {(pél) , <@> } equals —1,
4

p1
o (o P2
iii. (—) =+ (—) .

b2 )y P1 )y

Example 5.12. Keep the notation of Example 5.3. For the case ¢(z+1) is a square, g(z+1)

and ¢(z — 1) are not squares, (« = —1 or s = —1) and t; # to we have
d = 2p1pag G| @@ |o] s |t | ta | n NNy N3 qo| C
9430 =2-41-5-23 2 (12 |1|-1|1|-1]|16[16|16 |16 |16 | [2]
20074 =2-17-13-47 | 2 | 1 |2 |1 |—-1|-1] 1 8 | 8 | 8| 8 [16] 2]
94064 =2-41-37-31 | 2 |1 |2 |1|—-1|—-1] 1 8 | 8| 8| 8|16 [2]
102638 =2-73-37-19 |2 |1 |2 | 1|—-1|—-1] 1 |8 | 8| 8|8 |16] 6]

5.2.4 Case 4: <l> = — (3) = <ﬂ> = <i> = (i> =1
p1 P2 p2 D1 D2
Using similar arguments as above, we prove the following two theorems.
Theorem 5.13. Let § € {2p1,p9,2q} such that 6(x £ 1) is a square in N. The group

Clg(]kgl)) ~ Gal(lkéz)/lkél)) is cyclic non-elementary if and only if one of the following two
conditions is satisfied:

I i 0=nps (resp. § #p2) and (z £ 1) (resp. §(z £ 1)) is not a square in N,
ii. at least one of the elements {(é) , <@> } equals —1,
4

p1 p1

iii. either
a. 0 = 2q and (;’—;)4 = <f}—f)4, or
b. 6 # 2q and (%) = <%) =1.
2/4 1/ 4
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II. i (z2£1) (resp. d(zx1)) is a square in N if 6 = py (resp. 0 # pa) or (;)Al) =
(1%)4 =1
ii. esther
a. 0 = 2q and <£—;)4 =+ <§—f)4, or
b.  # 2q and one of (%)4, (’2>4 is equal to —1.

p1

Example 5.14. Keep the notation of Example 5.3. For the case ps(x+1) is a square, (z£1

is a square or (¢ = s =1)) and (t; = —1 or t; = —1), we have
d = 2p1p2gq G| @@ |o| s [t [ty |n|n Ny N3 |G| €
84422 =2-17-13-191 |2 |2 |2 |1 |—-1|—=1| 1 |8 | 8 |16| 8 |32 [12]
113102 =2-97-53-11 | 2 | 1 | 2 | 1] 1 1 |—-1(8| 8 |16] 8 | 16| [4]
123710=2-89-5-139 | 2 |1 |1 |1 1 |—-1|—-1[8| 8 |16| 8 | 16| [§]
139334 =2-233-13-23 | 2 | 1 [ 1 | 1| 1 |—-1|—-1|8| 8 |16| 8 |16]| [§]
159310=2-89-5-179 | 2 | 1 |1 |1 1 |—-1|—-1|8| 8 [32] 8 |16 | [16]

Theorem 5.15. Let § € {2p1,p2,2q} such that 6(x £ 1) is a square in N. The order
#Cb(]ké”) = 2 if and only if the following conditions are satisfied:

i. 0 =py (resp. § # p2) and (z £ 1) (resp. 0(z £ 1)) is not a square in N,
ii. at least one of the elements {(f) , <ﬁ> } equals —1,
! 4

p1
o (o P2
iii. (—) =+ (—) .

b2 )y P1 )y

Example 5.16. Keep notations of Example 5.3. For the case: py(z £ 1) is a square, z + 1

and z — 1 are not squares, (¢ = —1 or s = —1) and t; # ts.
d = 2pi.pagq G| @ || a| s |t |ta|n | n|nygng|q| ¢
45526 =2-17-13-103 | 2 | 1 | 2| —-1|—-1|—=1| 1 | 8 | 8 | 8 | 8 | 16 | [6]
53710=2-41-5-131 | 2 | 1 |2 |-1] 1 1 |—-1]8 |8 |8]| 8 [16][2]
56134 =2-17-13-127| 2 | 1 |2 | =1 | 1 | —=1| 1 |16 |16 |16 | 16 | 16 | [6]
63438 =2-97-109-3 | 2 | 1|2 |—-1] 1 1 |—-1/8 |8 8] 8 /|16]|]2
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