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Cyclicity of the 2-class group of the first Hilbert 2-class
field of some number fields

A. Azizi, M. Rezzougui and A. Zekhnini

Abstract. Let k be a real quadratic number field. Denote by Cl2(k) its 2-class group

and by k
(1)
2 (resp. k

(2)
2 ) its first (resp. second) Hilbert 2-class field. The aim of this

paper is to study, for a real quadratic number field whose discriminant is divisible by

one prime number congruent to 3 modulo 4, the metacyclicity of G = Gal(k
(2)
2 /k)

and the cyclicity of Gal(k
(2)
2 /k

(1)
2 ) whenever the rank of Cl2(k) is 2, and the 4-rank

of Cl2(k) is 1.

1 Introduction

Let k be an algebraic number field and Cl2(k) its 2-class group, that is, the 2-Sylow

subgroup of its ideal class group Cl(k). Let k
(1)
2 be the Hilbert 2-class field of k, that is,

the maximal abelian extension of k everywhere unramified of 2-power degree over k. Put
k
(0)
2 = k and let k

(i+1)
2 denote the Hilbert 2-class field of k

(i)
2 for any integer i ≥ 0. Then

the sequence of fields

k = k
(0)
2 ⊆ k

(1)
2 ⊆ k

(2)
2 ⊆ · · · ⊆ k

(i)
2 ⊆ · · · ,

is called the 2-class field tower of k.
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If, for all i ≥ 0, we have k
(i)
2 6= k

(i+1)
2 , the tower is said to be infinite. Otherwise, the

tower is said to be finite, and the minimal integer i such that k
(i)
2 = k

(i+1)
2 is called the

length of the tower. Unfortunately, there is no known method to decide whether or not
a 2-class field tower of a number field is infinite. However, it is known that if the rank
of Cl2(k

(1)
2 ) is at most 2, then the tower is finite and its length is at most 3 (cf. [14]);

it is also known that if the rank of Cl2(k
(1)
2 ) is equal to 3, then there are fields k with

infinite 2-class field tower (cf. [24]). Therefore, it is interesting to determine all fields such

that rank(Cl2(k
(1)
2 )) ≤ 2. That is why Benjamin et al. started a project which aims to

characterize all quadratic fields k satisfying the last condition (cf. [6], [7], [8], [9], [11], [12],
[13], [16]). Our present paper as well as our previous one (see [3]) are part of this project.

We aim to study the cyclicity of Cl2(k
(1)
2 ) of real quadratic fields k such that Cl2(k) is

of the form (2n, 2m) for some n ≥ 1 and m ≥ 2, and their discriminants dk are divisible
by primes congruent to 3 modulo 4. In this paper, which is a continuation of [3], we
consider the field k = Q(

√
2p1p2q), where p1 ≡ p2 ≡ −q ≡ 1 (mod 4) are primes and

Cl2(k) ' (2, 2n), with n ≥ 2. We determine complete criteria for G = Gal(k
(2)
2 /k) to be

metacyclic and complete criteria for Cl2(k
(1)
2 ) to be cyclic whenever G is not metacyclic.

2 Preliminary results

We begin by collecting some results that will be useful later. We recall that a 2-group
G is said to be metacyclic if there exists a normal cyclic subgroup N of G such that G/N
is cyclic. It is known that if G is metacyclic, then the minimal number of its generators is
less or equal to 2; this number is called the rank of G and will be denoted by d(G). On
the other hand, if d(G) = 2, then G/G′ is of type (2n, 2m) with n and m ∈ N∗, where G′

is the commutator subgroup of G. If n = m = 1, then it is known that G is dihedral,
semi-dihedral, quaternionic or abelian of type (2, 2) (cf. [20], [17]). In these cases, G admits
a cyclic maximal subgroup, and thus is metacyclic. By Blackburn [15], we know that the
metacyclicity of a 2-group G is characterized by the rank of its maximal subgroups, and
we have the following lemmas.

Lemma 2.1 ([3]). Let G be a finite 2-group such that G/G′ is of type (2n, 2m), where n ≥ 1
and m ≥ 2. Denote by Hi (i = 1, 2, 3), the three maximal subgroups of G. Then G is
metacyclic if and only if d(Hi) ≤ 2 for all i = 1, 2, 3.

Lemma 2.2 ([7]). Let G be a non-metacyclic 2-group such that G/G′ is of type (2, 2m),
where m ≥ 2. Then G admits two maximal subgroups H1 and H2 such that H1/G

′ and
H2/G

′ are cyclic. Moreover, if G′ is cyclic, then H1 and H2 are metacyclic.

We continue by fixing some notation. For a number field k, denote by Cl2(k) its 2-class

group in the ordinary sense, denote by h2(k) the order of Cl2(k), denote by k
(1)
2 the Hilbert

2-class field of k, and denote by k
(2)
2 the Hilbert 2-class field of k

(1)
2 . If G = Gal(k

(2)
2 /k),

then it is well known from class field theory that G′ = Gal(k
(2)
2 /k

(1)
2 ) ' Cl2(k

(1)
2 ) and
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G/G′ = Gal(k
(1)
2 /k) ' Cl2(k). Note that if Cl2(k) is of type (2, 2n), with n ≥ 2, then

k admits three unramified quadratic extensions within k
(1)
2 , which will be denoted by Ki

(i = 1, 2, 3). We suppose that K3 is included in the three unramified biquadratic extensions

of k within k
(1)
2 . The following result was shown in our earlier paper [4].

Theorem 2.3. Keep the notations above and assume G/G′ is of type (2, 2n), where n ≥ 2.
Then

1. G is abelian or modular if and only if

rank(Cl2(Ki)) = 1 (i = 1, 2) and rank(Cl2(K3)) = 2.

2. G is metacyclic non-abelian non-modular if and only if

rank(Cl2(Ki)) = 2 for all i = 1, 2, 3.

3. G is non-metacyclic non-abelian if and only if

rank(Cl2(Ki)) = 2 (i = 1, 2) and rank(Cl2(K3)) = 3.

Let k = Q(
√
d) be an arbitrary quadratic number field with a square-free integer d,

and dk be its discriminant. For a prime number p, define:

p∗ =


(−1)

p−1
2 p, if p 6= 2;

−4, if p = 2 and d ≡ 3 (mod 4);

8, if p = 2 and d ≡ 2 (mod 8);

−8, if p = 2 and d ≡ −2 (mod 8).

Then, let dk = p∗1 . . . p
∗
sp
∗
s+1 . . . p

∗
s+t such that p∗1, . . . , p

∗
s are positive and p∗s+1, . . . , p

∗
s+t are

negative. The Rédei matrix Rk is defined to be the matrix in M(s+t)×(s+t)(Z/2Z) with

entries ai,j given by: (−1)ai,j =
(
p∗i
pj

)
if i 6= j and (−1)ai,j =

(
dk/p

∗
i

pi

)
if i = j, where

(•
•

)
is the Legendre symbol. Then the 4-rank of Cl+(k), the class group of k in the narrow
sense, is given by:

Theorem 2.4 ([23]). Let k be a quadratic number field, then

4-rank(Cl+(k)) = s+ t− 1− rank(Rk).

Remark 2.5. If dk is divisible by a prime congruent to 3 modulo 4, then

Cl+2 (k)) ' Z/2Z× Cl2(k) and 4-rank(Cl+(k)) = 4-rank(Cl(k)),

where Cl+2 (k) is the 2-class group of k in the narrow sense.
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We make use of the well known Kuroda Class Number Formula, which we state as the
following theorem.

Theorem 2.6 ([22]). Let K/k be an arbitrary normal quartic extension of number fields
with Galois group of type (2, 2), and let Kj (j = 1, 2, 3) denote the quadratic subextensions.
Then the class number of K satisfies

h(K) = 2d−κ−2−υ
q(K/k)h(K1)h(K2)h(K3)

(h(k))2
,

where q(K/k) = [EK : E1E2E3] denotes the unit index of K/k (with Ej = the unit group
of Kj), d is the number of infinite primes in k that ramify in K, κ is the Z-rank of the
unit group Ek of k, and υ = 0 except when K ⊆ k(

√
Ek), in which case υ = 1.

To prove our main theorems, we also need the following results.

Theorem 2.7 ([6]). Let k be a number field such that Cl2(k) ' (2, 2n), where n ≥ 2.
Denote by Ki (i = 1, 2, 3), the three unramified quadratic extensions of k. Then the 2-

class group of k
(1)
2 is a non-elementary cyclic group if and only if h2(Ki) ≥ 2h2(k) and

h2(Kj) = h2(Km) = h2(k) for some {i, j,m} = {1, 2, 3}.

Lemma 2.8 ([6]). Let k be a number field such that Cl2(k) ' (2m, 2n), m ≥ 1, n ≥ 1. De-

note by Ki (i = 1, 2, 3), the three unramified quadratic extensions of k. Then h2(k
(1)
2 ) = 2

if and only if h2(K0) = (1/2)h2(k) where K0 = K1K2K3.

Corollary 2.9 ([6]). Let k be a real quadratic number field such that Cl2(k) ' (2m, 2n),
m ≥ 1, n ≥ 1. Denote by Ki (i = 1, 2, 3), the three unramified quadratic extensions of k.

Then h2(k
(1)
2 ) = 2 if and only if h2(K1) = h2(K2) = h2(K3) = h2(k) and q(K0/k) = 4,

where K0 = K1K2K3.

Theorem 2.10 ([6]). Let k be a real quadratic number field with Cl2(k) ' (2m, 2n), m ≥ 1,
n ≥ 2, and dk = d1d2r1r2 or r1r2r3r4 be its discriminant, where d1 and d2 are posi-
tive prime discriminants and r1, r2, r3, r4 are negative prime discriminants. Denote by
Ki (i = 1, 2, 3), the three unramified quadratic extensions of k. If h2(k

(1)
2 ) = 2 then

QKi
= QKj

= 2, and QKs = 1 or 2 for some {i, j, s} = {1, 2, 3}, where QK denotes the unit
index of K.

3 The 4-rank of the 2-class group of k = Q(
√
2p1p2q).

Let p1 ≡ p2 ≡ −q ≡ 1(mod 4) be different positive prime integers and k = Q(
√

2p1p2q).
It is well known, by genus theory, that the 2-rank of the class group of k is 2. The purpose
of this section is to determine the 4-rank of the 2-class group of k.

E. Benjamin and C. Snyder characterized real quadratic fields whose 2-class group is
of type (2, 2) in [10]. In particular, they proved the following theorem.
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Theorem 3.1. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different prime integers. Then the 2-class
group of k = Q(

√
2p1p2q) is of type (2, 2) (i.e. 4-rank(Cl2(k)) = 0) if and only if one of

the following conditions is satisfied.

1. •
(
p1
p2

)
= 1, and

• either
(

2
p1

)
= −1 or

(
q
p1

)
= −1, and

• either
(

2
p2

)
= −1 or

(
q
p2

)
= −1, and

•
(

2
p1

)
,
(

2
p2

)
,
(
q
p1

)
,
(
q
p2

)
are not all equal.

2.
(
p1
p2

)
= −1 and

(
2
p1

)
,
(

2
p2

)
,
(
q
p1

)
,
(
q
p2

)
are not all equal.

In the following theorem, we give necessary and sufficient conditions for the 2-class
group of k = Q(

√
2p1p2q) to be of type (2, 2n) or (2m, 2n), where n ≥ 2 and m ≥ 2.

Theorem 3.2. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different prime integers. Then the 2-class
group of k = Q(

√
2p1p2q) is of type (2, 2n), where n ≥ 2,(i.e. 4-rank(Cl2(k)) = 1) if and

only if one of the following conditions is satisfied.

1.
(

2
p1

)
=
(

2
p2

)
=
(
p1
p2

)
= 1 and

(
q
p1

)(
q
p2

)
= −1.

2.
(

2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= 1 and

(
p1
p2

)
= −1.

3.
(

2
p1

)
= −

(
2
p2

)
= 1 and

(
p1
p2

)
=
(
q
p1

)
= 1.

4.
(

2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= −1.

Moreover, 4-rank(Cl2(k)) = 2 if and only if(
2

p1

)
=

(
2

p2

)
=

(
p1
p2

)
=

(
q

p1

)
=

(
q

p2

)
= 1.

Proof. Proceeding as in [3], the results are deduced by applying Theorem 2.4 and Re-
mark 2.5.

4 The FSUs of certain biquadratic number fields

Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different prime integers. Put k = Q(
√

2p1p2q).
Consider the following three unramified quadratic extensions of k:

K1 = Q(
√
p1,
√

2p2q), K2 = Q(
√
p2,
√

2p1q) and K3 = Q(
√

2q,
√
p1p2).
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Let ε2p1p2q = x+ y
√

2p1p2q, ε2p1q = z+ t
√

2p1q and ε2p2q = a+ b
√

2p2q be the fundamental
units of Q(

√
2p1p2q), Q(

√
2p2q) and Q(

√
2p1q) respectively. The goal of this section is to

determine a Fundamental System of Units (FSU) of Ki basing on the conditions cited in
Theorem 3.2.

Using similar arguments as in the proof of Lemma 4.1 of [3] (see also [5]), we get the
following lemmas.

Lemma 4.1. Suppose that
(

2
p1

)
=
(

2
p2

)
=
(
p1
p2

)
=
(
q
p1

)
= −

(
q
p2

)
= 1.

1. If x± 1 is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as z± 1 is

or not a square in N.

iii. {ε2q, εp1p2 ,
√
ε2qε2p1p2q} is a FSU of K3.

2. If p1(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as p1(z±1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
ε2qεp1p2ε2p1p2q} or {ε2q, εp1p2 , ε2p1p2q} is a FSU of K3 according to

whether NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

3. If 2p1(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as 2p1(z+1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
εp1p2ε2p1p2q} or {ε2q, εp1p2 , ε2p1p2q} is a FSU of K3 according to whether

NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

Lemma 4.2. Suppose that
(

2
p1

)
= −

(
2
p2

)
=
(
p1
p2

)
=
(
q
p1

)
= −

(
q
p2

)
= 1.

1. If 2p1(x+ 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as 2p1(z+1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
εp1p2ε2p1p2q} or {ε2q, εp1p2 , ε2p1p2q} is a FSU of K3 according to whether

NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

2. If 2p2(x± 1) is a square in N, then
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i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1p2q} is a FSU of K2.

iii. {ε2q, εp1p2 ,
√
εp1p2ε2p1p2q} or {εq, εp1p2 , ε2p1p2q} is a FSU of K3 according to whether

NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

3. If q(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according to whether

q(z − 1) is or not a square in N.

iii. {ε2q, εp1p2 ,
√
ε2p1p2q} is a FSU of K3.

Lemma 4.3. Suppose that
(

2
p1

)
= −

(
2
p2

)
=
(
p1
p2

)
=
(
q
p1

)
=
(
q
p2

)
= 1.

1. If 2p1(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as 2p1(z±1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
εp1p2ε2p1p2q} or {ε2q, εp1p2 , ε2p1p2q} is a FSU of K3 according to whether

NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

2. If p2(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as (z ± 1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
ε2qεp1p2ε2p1p2q} or {ε2q, εp1p2 , ε2p1p2q} is a FSU of K3 according to

whether NQ(
√
p1p2)/Q(εp1p2) equals 1 or −1.

3. If 2q(x± 1) is a square in N, then

i. {εp1 , ε2p2q,
√
ε2p2qε2p1p2q} is a FSU of K1.

ii. {εp2 , ε2p1q,
√
ε2p1qε2p1p2q} or {εp2 , ε2p1q, ε2p1p2q} is a FSU of K2 according as 2q(z±1)

is or not a square in N.

iii. {ε2q, εp1p2 ,
√
ε2qε2p1p2q} is a FSU of K3.

5 The structure of the group Gal(k
(2)
2 /k).

In this section we consider the field k = Q(
√

2p1p2q), where p1 ≡ p2 ≡ −q ≡ 1 (mod 4),
and the three unramified quadratic extensions

K1 = Q(
√
p1,
√

2p2q), K2 = Q(
√
p2,
√

2p1q) and K3 = Q(
√

2q,
√
p1p2).

Let Cl2(Ki) denote the 2-class group of Ki (i = 1, 2, 3).
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5.1 The metacyclic case

Theorem 5.1. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different prime integers, and k =

Q(
√

2p1p2q). Assume Gal(k
(1)
2 /k) is a non-elementary 2-group. Then G = Gal(k

(2)
2 /k) is

metacyclic if and only if (
q

p1

)
=

(
q

p2

)
=

(
2

p1

)
=

(
2

p2

)
= −1.

More precisely,

i. if
(
p1
p2

)
= 1, then G is a metacyclic non-abelian non-modular 2-group,

ii. if
(
p1
p2

)
= −1, then G is a modular or abelian 2-group according as 2p1p2(x + 1) is a

square or not in N.

Proof. According to Theorems 3.1 and 3.2, there are five cases to distinguish. By [1] and
[2] we have:

1. If
(

2
p1

)
=
(

2
p2

)
=
(
p1
p2

)
=
(
q
p1

)
=
(
q
p2

)
= 1, then

rank(Cl2(K1)) = rank(Cl2(K2)) = rank(Cl2(K3)) = 3.

2. If
(

2
p1

)
=
(

2
p2

)
=
(
p1
p2

)
= 1 and

(
q
p1

)
= −

(
q
p2

)
= 1, then

rank(Cl2(K1)) = 3 and rank(Cl2(K2)) = rank(Cl2(K3)) = 2.

3. If
(

2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= 1 and

(
p1
p2

)
= −1, then

rank(Cl2(K1)) = rank(Cl2(K2)) = 2 and rank(Cl2(K3)) = 3.

4. If
(

2
p1

)
= −

(
2
p2

)
= 1 and

(
p1
p2

)
=
(
q
p1

)
= 1, then

rank(Cl2(K1)) = 3 and rank(Cl2(K2)) = rank(Cl2(K3)) = 2.

5. If
(

2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= −1, then

i. If
(
p1
p2

)
= 1, then

rank(Cl2(K1)) = rank(Cl2(K2)) = rank(Cl2(K3)) = 2.

ii. If
(
p1
p2

)
= −1, then

rank(Cl2(K1)) = rank(Cl2(K2)) = 1 and rank(Cl2(K3)) = 2.

Hence the results are deduced from Theorem 2.3, Lemma 2.1 and [8, Theorem 2].
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5.2 The non-metacyclic case

Assuming Cl2(k) ' (2, 2n), n ≥ 2, for the non-metacyclic case we have four cases to
distinguish, according to Theorems 3.2 and 5.1. For simplicity, we will denote by qi the
unit index of the field Ki (i = 1, 2, 3). In all that follows, we use the notations of [19, page
336]. Put p1 = 2e2 + (−1)γd2, q = 2r2 + (−1)γs2 and A = sd+ 2er+ 2γ(es+ dr) according

as
(

2
q

)
= (−1)γ+1, where γ ∈ {0, 1}.

5.2.1 Case 1:
(

2
p1

)
=
(

2
p2

)
=
(

p1

p2

)
=
(

q
p1

)
= −

(
q
p2

)
= 1

Theorem 5.2. Let δ ∈ {1, p1, 2p1} be such that δ(x ± 1) is a square in N. The group

Cl2(k
(1)
2 ) ' Gal(k

(2)
2 /k

(1)
2 ) is non-elementary cyclic if and only if one of the two following

assertions holds:

I. i. δ(z ± 1) is not a square in N,

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1, and

iii. either

a. δ = 1 and
(
p1
p2

)
4

=
(
p2
p1

)
4
, or

b. δ 6= 1 and
(
p1
p2

)
4

=
(
p2
p1

)
4

= 1.

II. i. δ(z ± 1) is a square in N or
(
A
p1

)
=
(

2q
p1

)
4

= 1, and

ii. either

a. δ = 1 and
(
p1
p2

)
4
6=
(
p2
p1

)
4
, or

b. δ 6= 1 and one of
(
p1
p2

)
4
,
(
p2
p1

)
4

is equal to −1.

Proof. Form Theorem 2.7, we must calculate the 2-class numbers of Ki.

• By [19], if
(
q
p2

)
= −1, then h2(2p2q) = 2, and, according to Lemma 4.1, q1 = 2. In

this case, the 2-class number of K1 is given by [27]:

h2(K1) =
1

4
q1h2(p1)h2(2p2q)h2(2p1p2q) = h2(2p1p2q).

• If
(

2
p1

)
=
(
q
p1

)
= 1, then, by [19], h2(2p1q) ≥ 4. More precisely, h2(2p1q) = 4 if and

only if at least one of the elements
(
A
p1

)
,
(

2q
p1

)
4

equals −1. The 2-class number of

K2 is given by:

h2(K2) =
1

4
q2h2(p2)h2(2p1q)h2(2p1p2q) =

1

4
q2h2(2p1q)h2(2p1p2q),

so h2(K2) = h2(2p1p2q) if and only if q2 = 1 and h2(2p1q) = 4. On the other hand,
by Lemma 4.1, q2 = 1 if and only if δ(z ± 1) is not a square in N.
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• Similarly, the 2-class number of K3 is given by:

h2(K3) =
1

4
q3h2(2q)h2(p1p2)h2(2p1p2q) =

1

4
q3h2(p1p2)h2(2p1p2q),

so h2(K3) = h2(2p1p2q) if and only if either q3 = 1 and h2(p1p2) = 4, or q3 = 2
and h2(p1p2) = 2. In this case, according to [21] (see also [25]) and Lemma 4.1,
h2(K3) = h2(2p1p2q) if and only if one of the two following conditions is satisfied:

1. δ = 1 and
(
p1
p2

)
4
6=
(
p2
p1

)
4
.

2. δ 6= 1 and either
(
p1
p2

)
4

= −1 or
(
p2
p1

)
4

= −1.

Using Theorem 2.7, we get the results.

Example 5.3. Put α =
(
A
p1

)
, s =

(
2q
p1

)
4
, t1 =

(
p1
p2

)
4
, t2 =

(
p2
p1

)
4
, c = Cl(k

(1)
2 ), n = h2(k),

ni = h2(Ki) (i = 1, 2, 3) and q0 = q(K0/k), and by using PARI/GP [26], we get the
following examples for the case: x±1 is a square, z+ 1 and z−1 are not squares, (α = −1
or s = −1) and t1 = t2.

d = 2p1p2q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
38982 = 2 · 73 · 89 · 3 2 1 2 −1 −1 1 1 8 8 8 16 16 [4]
60006 = 2 · 73 · 137 · 3 2 1 2 −1 −1 1 1 8 8 8 64 16 [16]
298862 = 2 · 73 · 89 · 23 2 1 2 −1 −1 1 1 8 8 8 16 16 [12]

Theorem 5.4. Let δ ∈ {1, p1, 2p1} such that δ(x±1) is a square in N. Then #Cl2(k
(1)
2 ) = 2

if and only if the following conditions are satisfied:

i. δ(z ± 1) is not a square in N,

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1.

iii.
(
p1
p2

)
4
6=
(
p2
p1

)
4
.

Proof. Suppose that #Cl2(k
(1)
2 ) = 2. Then, according to Corollary 2.9, h2(Ki) = h2(k)

for all i = 1, 2, 3. By the proof of Theorem 5.2, the equality h2(K2) = h2(k) implies the
two first conditions and q2 = 1. On the other hand, as q1 = 2, from Theorem 2.10 we
infer q3 = 2. Accordingly, h2(p1p2) = 2 and NQ(

√
p1p2)/Q(εp1p2) = 1, which is equivalent to(

p1
p2

)
4
6=
(
p2
p1

)
4

(see [25]).

Reciprocally, suppose the three conditions (i), (ii) and (iii) are satisfied. Applying
results of the proof of Theorem 5.2, we get h2(Ki) = h2(k) for all i = 1, 2, 3. Let
K0 = K1K2K3 = Q(

√
p1,
√
p2,
√

2q), and denote by EKi
the unit group of Ki and by

q(K0/k) = [EK0 : EK1EK2EK3 ] the unit index of K0/k. Hence, by Corollary 2.9, it remains
to prove only q(K0/k) = 4. According to Lemma 4.1, we have:
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1. EK1 = 〈−1, εp1 , ε2p2q, ε〉, where ε =
√
ε2p1p2q or

√
ε2p2qε2p1p2q according to 2p1(x ± 1) is

or not a square in N,

2. EK2 = 〈−1, εp2 , ε2p1q, ε2p1p2q〉,

3. EK3 = 〈−1, ε2q, εp1p2 , ε
′〉, where ε′ =

√
ε2qε2p1p2q,

√
ε2qεp1p2ε2p1p2q or

√
εp1p2ε2p1p2q ac-

cording to (x± 1), p1(x± 1) or 2p1(x± 1) is a square in N.

Put

A = εa1p1ε
a2
2p2q

εa3 , a1, a2, a3 ∈ {0, 1},

B = εb1p2ε
b2
2p1q

εb32p1p2q, b1, b2, b3 ∈ {0, 1},

C = εc12qε
c2
p1p2

ε′c3 , c1, c2, c3 ∈ {0, 1},

η2 = ±A.B.C.
So

NK0/K1(η
2) = (−1)b1(±ε2p1p2q)c3(εb32p1p2qA)2,

NK0/K2(η
2) = (−1)a1(±ε2p1p2q)a3(±ε2p1p2q)c3B2,

NK0/K3(η
2) = (−1)a1(−1)b1(±ε2p1p2q)a3(εb32p1p2qC)2.

Assume η ∈ K0, if a3 6= 0 or c3 6= 0, then
√
ε2p1p2q ∈ K2 or

√
ε2p1p2q ∈ K3, which

contradicts Lemma 4.1. On the other hand, if a3 = c3 = 0 and (a1 = 1 or b1 = 1 ),
then NK0/K1(η

2) < 0 or NK0/K2(η
2) < 0, which contradicts the fact that NK0/Ki

(η2) > 0.
Therefore, a1 = b1 = a3 = c3 = 0 and we get

η2 = ±εa22p2qε
b2
2p1q

εb32p1p2qε
c1
2qε

c2
p1p2

.

From the proof of Lemma 4.1, we deduce thet
√
ε2qε2piq or

√
ε2piq ∈ EK0 (i = 1, 2).

According to our assumption, NQ(
√
p1p2)/Q(εp1p2) = 1, which implies that

√
εp1p2 ∈ EK0 .

We distinguish the following cases:

i. If (x± 1) is a square in N, then
√
ε2q,
√
ε2p2q,

√
ε2p1p2q /∈ EK0 , and Lemma 4.1 implies

that

√
εp1p2 /∈ EK1EK2EK3 ,√

ε2qε2p1q,
√
ε2p1q /∈ EK1EK2EK3 ,√

ε2qε2p1p2q,
√
ε2p2qε2p1p2q ∈ EK1EK2EK3 .

By a case by case study, we obtain

EK0 = 〈√ε2p1q or
√
ε2qε2p1q,

√
εp1p2 , EK1EK2EK3〉.
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ii. If p1(x ± 1) is a square in N, then
√
ε2q,
√
ε2p2q,

√
ε2p1p2q /∈ EK0 , By Lemma 4.1, we

have

√
εp1p2 /∈ EK1EK2EK3 ,√

ε2qε2p1q,
√
ε2p1q /∈ EK1EK2EK3 ,√

ε2qεp1p2ε2p1p2q,
√
ε2p2qε2p1p2q ∈ EK1EK2EK3 .

Thus we obtain

EK0 = 〈√ε2p1q or
√
ε2qε2p1q,

√
εp1p2 , EK1EK2EK3〉.

iii. If 2p1(x±1) is a square in N, then
√
ε2q,
√
ε2p2q /∈ EK0 and

√
ε2qε2p2q ∈ EK0 , by Lemma

4.1,
√
εp1p2 ,

√
ε2p1p2q ∈ EK1EK2EK3 , from which we deduce that

EK0 = 〈√ε2p1q or
√
ε2qε2p1q,

√
ε2qε2p2q, EK1EK2EK3〉.

In the three cases we get q(K0/k) = 4, so it suffices to apply Corollary 2.9 to obtain the
results.

Example 5.5. Keep the notation of Example 5.3. For the case p1(x ± 1) is a square,
p1(z ± 1) is not a square, (α = −1 or s = −1) and t1 6= t2, we have

d = p1p2q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
51798 = 2 · 97 · 89 · 3 2 1 2 −1 1 1 −1 8 8 8 8 16 [2]
64862 = 2 · 113 · 41 · 7 2 1 2 −1 1 1 −1 8 8 8 8 16 [6]
113734 = 2 · 73 · 41 · 19 2 1 2 1 −1 −1 1 8 8 8 8 16 [6]

5.2.2 Case 2:
(

2
p1

)
=
(

2
p2

)
=
(

q
p1

)
=
(

q
p2

)
= −

(
p1

p2

)
= 1

Lemma 5.6. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be three positive prime integers satisfying(
2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= −

(
p1
p2

)
= 1. Then the rank of the 2-class group of

K0 = Q(
√
p1,
√
p2,
√

2q) equals 3.

Proof. As
(
p1
p2

)
= −1, it is well known (cf. [21]) that the class number of k0 = Q(

√
p1,
√
p2)

is odd. Consider the extension K0/k0. Then according to [18], the rank of the 2-class group
of K0 is given by the formula:

rank(Cl2(K0)) = r − e− 1,

where r is the number of finite and infinite primes of k0 that ramify in K0/k0 and e is
defined by 2e = [Ek0 : Ek0 ∩NK0/k0(K∗0)] ≤ 24. As r = 8 (4 primes above 2 and 4 above q),
rank(Cl2(K0)) = r − e − 1 = 8 − e − 1 ≥ 3. On the other hand, the Schreier’s inequality
implies that rank(Cl2(K0)) ≤ 3, concluding the proof.
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Theorem 5.7. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be three positive prime integers satisfying(
2
p1

)
=
(

2
p2

)
=
(
q
p1

)
=
(
q
p2

)
= −

(
p1
p2

)
= 1. Then

rank(Cl2(k
(1)
2 )) ≥ 2.

Proof. Suppose that rank(Cl2(k
(1)
2 )) = 1, then, by Lemma 2.2, the proof of Theorem 5.1

and class field theory, the Galois groups Gal(k
(2)
2 /K1) and Gal(k

(2)
2 /K2) are metacyclic,

and since K0 is an unramified quadratic extension of K1, then Lemma 2.1 implies that
rank(Cl2(K0)) ≤ 2, which contradicts Lemma 5.6.

Example 5.8. For d = 47158 = 2 · 73 · 17 · 19, we have Cl2(k
(1)
2 ) is of type (2, 4), and for

d = 59942 = 2 · 17 · 41 · 43, we have Cl2(k
(1)
2 ) is of type (2, 4).

5.2.3 Case 3:
(

2
p1

)
= −

(
2
p2

)
=
(

p1

p2

)
=
(

q
p1

)
= −

(
q
p2

)
= 1

Using similar arguments as above, we prove the following two theorems.

Theorem 5.9. Let δ ∈ {2p1, 2p2, q} be such that δ(x ± 1) is a square in N. The group

Cl2(k
(1)
2 ) ' Gal(k

(2)
2 /k

(1)
2 ) is cyclic non-elementary if and only if one of the following two

conditions is satisfied:

I. i. δ 6= 2p2 and δ(z ± 1) is not a square in N, and

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1, and

iii. either

a. δ = q and
(
p1
p2

)
4

=
(
p2
p1

)
4
, or

b. δ 6= q and
(
p1
p2

)
4

=
(
p2
p1

)
4

= 1

II. i. δ = 2p2 or δ(z ± 1) is a square in N or
(
A
p1

)
=
(

2q
p1

)
4

= 1, and

ii. either

a. δ = q and
(
p1
p2

)
4
6=
(
p2
p1

)
4
, or

b. δ 6= q and one of
(
p1
p2

)
4
,
(
p2
p1

)
4

is equal to −1.
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Example 5.10. Keep the notation of Example 5.3. For the case 2p2(x± 1) is a square and
t1 = −1 or t2 = −1, we have

d = 2p1p2q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
17630 = 2 · 41 · 5 · 43 2 2 2 1 1 1 −1 8 8 32 8 32 [8]
29614 = 2 · 17 · 13 · 67 2 2 2 1 −1 −1 1 8 8 16 8 32 [4]
34238 = 2 · 17 · 53 · 19 2 2 1 1 1 −1 −1 8 8 32 8 16 [8]
41830 = 2 · 89 · 5 · 47 2 2 1 −1 −1 −1 −1 16 16 32 16 16 [4]
59630 = 2 · 89 · 5 · 67 2 2 1 −1 1 −1 −1 8 8 16 8 16 [4]
69782 = 2 · 41 · 37 · 23 2 2 2 1 −1 −1 1 8 8 16 8 32 [4]
91078 = 2 · 113 · 13 · 31 2 2 2 −1 −1 1 −1 16 16 32 16 32 [12]

Theorem 5.11. Let δ ∈ {2p1, 2p2, q} be such that δ(x ± 1) is a square in N. The order

#Cl2(k
(1)
2 ) = 2 if and only if the following conditions are satisfied:

i. δ 6= 2p2 and δ(z ± 1) is not a square in N,

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1,

iii.
(
p1
p2

)
4
6=
(
p2
p1

)
4
.

Example 5.12. Keep the notation of Example 5.3. For the case q(x±1) is a square, q(z+1)
and q(z − 1) are not squares, (α = −1 or s = −1) and t1 6= t2 we have

d = 2p1p2q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
9430 = 2 · 41 · 5 · 23 2 1 2 1 −1 1 −1 16 16 16 16 16 [2]

20774 = 2 · 17 · 13 · 47 2 1 2 1 −1 −1 1 8 8 8 8 16 [2]
94054 = 2 · 41 · 37 · 31 2 1 2 1 −1 −1 1 8 8 8 8 16 [2]
102638 = 2 · 73 · 37 · 19 2 1 2 1 −1 −1 1 8 8 8 8 16 [6]

5.2.4 Case 4:
(

2
p1

)
= −

(
2
p2

)
=
(

p1

p2

)
=
(

q
p1

)
=
(

q
p2

)
= 1

Using similar arguments as above, we prove the following two theorems.

Theorem 5.13. Let δ ∈ {2p1, p2, 2q} such that δ(x ± 1) is a square in N. The group

Cl2(k
(1)
2 ) ' Gal(k

(2)
2 /k

(1)
2 ) is cyclic non-elementary if and only if one of the following two

conditions is satisfied:

I. i. δ = p2 (resp. δ 6= p2) and (z ± 1) (resp. δ(z ± 1)) is not a square in N,

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1,

iii. either

a. δ = 2q and
(
p1
p2

)
4

=
(
p2
p1

)
4
, or

b. δ 6= 2q and
(
p1
p2

)
4

=
(
p2
p1

)
4

= 1.
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II. i. (z ± 1) (resp. δ(z ± 1)) is a square in N if δ = p2 (resp. δ 6= p2) or
(
A
p1

)
=(

2q
p1

)
4

= 1,

ii. either

a. δ = 2q and
(
p1
p2

)
4
6=
(
p2
p1

)
4
, or

b. δ 6= 2q and one of
(
p1
p2

)
4
,
(
p2
p1

)
4

is equal to −1.

Example 5.14. Keep the notation of Example 5.3. For the case p2(x±1) is a square, (z±1
is a square or (α = s = 1)) and (t1 = −1 or t2 = −1), we have

d = 2p1p2q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
84422 = 2 · 17 · 13 · 191 2 2 2 1 −1 −1 1 8 8 16 8 32 [12]
113102 = 2 · 97 · 53 · 11 2 1 2 1 1 1 −1 8 8 16 8 16 [4]
123710 = 2 · 89 · 5 · 139 2 1 1 1 1 −1 −1 8 8 16 8 16 [8]
139334 = 2 · 233 · 13 · 23 2 1 1 1 1 −1 −1 8 8 16 8 16 [8]
159310 = 2 · 89 · 5 · 179 2 1 1 1 1 −1 −1 8 8 32 8 16 [16]

Theorem 5.15. Let δ ∈ {2p1, p2, 2q} such that δ(x ± 1) is a square in N. The order

#Cl2(k
(1)
2 ) = 2 if and only if the following conditions are satisfied:

i. δ = p2 (resp. δ 6= p2) and (z ± 1) (resp. δ(z ± 1)) is not a square in N,

ii. at least one of the elements
{(

A
p1

)
,
(

2q
p1

)
4

}
equals −1,

iii.
(
p1
p2

)
4
6=
(
p2
p1

)
4
.

Example 5.16. Keep notations of Example 5.3. For the case: p2(x± 1) is a square, z + 1
and z − 1 are not squares, (α = −1 or s = −1) and t1 6= t2.

d = 2p1.p2.q q1 q2 q3 α s t1 t2 n n1 n2 n3 q0 c
45526 = 2 · 17 · 13 · 103 2 1 2 −1 −1 −1 1 8 8 8 8 16 [6]
53710 = 2 · 41 · 5 · 131 2 1 2 −1 1 1 −1 8 8 8 8 16 [2]
56134 = 2 · 17 · 13 · 127 2 1 2 −1 1 −1 1 16 16 16 16 16 [6]
63438 = 2 · 97 · 109 · 3 2 1 2 −1 1 1 −1 8 8 8 8 16 [2]
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[25] Scholz A.: Über die Löbarkeit der Gleichung t2 −Du2 = −4. Math. Z. 39 (1934) 95–111.

[26] The PARI Group: PARI/GP, Bordeaux, Version 2.9.1 (64 bit) (2016).

[27] Wada H.: On the class number and the unit group of certain algebraic number fields. Tokyo. U.
Fac. of. sc. J. Serie I 13 (1966) 201–209.

Received: October 15, 2019
Accepted for publication: February 28, 2022
Communicated by: Atilla Berczes


