Cyclicity of the 2-class group of the first Hilbert 2-class field of some number fields

A. Azizi, M. Rezzougui and A. Zekhnini

Abstract

Let \mathbb{k} be a real quadratic number field. Denote by $\mathrm{Cl}_{2}(\mathbb{k})$ its 2-class group and by $\mathbb{k}_{2}^{(1)}$ (resp. $\mathbb{k}_{2}^{(2)}$) its first (resp. second) Hilbert 2-class field. The aim of this paper is to study, for a real quadratic number field whose discriminant is divisible by one prime number congruent to 3 modulo 4 , the metacyclicity of $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ and the cyclicity of $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}_{2}^{(1)}\right)$ whenever the rank of $\mathrm{Cl}_{2}\left(\mathbb{k}_{\mathrm{k}}\right)$ is 2 , and the 4-rank of $\mathrm{Cl}_{2}(\mathbb{k})$ is 1 .

1 Introduction

Let \mathbb{k} be an algebraic number field and $\mathrm{Cl}_{2}(\mathbb{k})$ its 2-class group, that is, the 2-Sylow subgroup of its ideal class group $\mathrm{Cl}(\mathbb{k})$. Let $\mathbb{k}_{2}^{(1)}$ be the Hilbert 2-class field of \mathbb{k}, that is, the maximal abelian extension of \mathbb{k} everywhere unramified of 2-power degree over \mathbb{k}. Put $\mathbb{k}_{2}^{(0)}=\mathbb{k}$ and let $\mathbb{k}_{2}^{(i+1)}$ denote the Hilbert 2-class field of $\mathbb{k}_{2}^{(i)}$ for any integer $i \geq 0$. Then the sequence of fields

$$
\mathbb{k}=\mathbb{k}_{2}^{(0)} \subseteq \mathbb{k}_{2}^{(1)} \subseteq \mathbb{k}_{2}^{(2)} \subseteq \cdots \subseteq \mathbb{k}_{2}^{(i)} \subseteq \cdots
$$

is called the 2 -class field tower of \mathfrak{k}.

[^0]If, for all $i \geq 0$, we have $\mathbb{k}_{2}^{(i)} \neq \mathbb{k}_{2}^{(i+1)}$, the tower is said to be infinite. Otherwise, the tower is said to be finite, and the minimal integer i such that $\mathbb{k}_{2}^{(i)}=\mathbb{k}_{2}^{(i+1)}$ is called the length of the tower. Unfortunately, there is no known method to decide whether or not a 2-class field tower of a number field is infinite. However, it is known that if the rank of $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)$ is at most 2, then the tower is finite and its length is at most 3 (cf. [14]); it is also known that if the rank of $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)$ is equal to 3 , then there are fields \mathbb{k} with infinite 2 -class field tower (cf. [24]). Therefore, it is interesting to determine all fields such that $\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)\right) \leq 2$. That is why Benjamin et al. started a project which aims to characterize all quadratic fields \mathfrak{k} satisfying the last condition (cf. [6], [7], [8], [9], [11], [12], [13], [16]). Our present paper as well as our previous one (see [3]) are part of this project.

We aim to study the cyclicity of $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)$ of real quadratic fields \mathbb{k} such that $\mathrm{Cl}_{2}(\mathbb{k})$ is of the form $\left(2^{n}, 2^{m}\right)$ for some $n \geq 1$ and $m \geq 2$, and their discriminants d_{k} are divisible by primes congruent to 3 modulo 4 . In this paper, which is a continuation of [3], we consider the field $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$, where $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ are primes and $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2,2^{n}\right)$, with $n \geq 2$. We determine complete criteria for $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ to be metacyclic and complete criteria for $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)$ to be cyclic whenever G is not metacyclic.

2 Preliminary results

We begin by collecting some results that will be useful later. We recall that a 2-group G is said to be metacyclic if there exists a normal cyclic subgroup N of G such that G / N is cyclic. It is known that if G is metacyclic, then the minimal number of its generators is less or equal to 2 ; this number is called the rank of G and will be denoted by $d(G)$. On the other hand, if $d(G)=2$, then G / G^{\prime} is of type $\left(2^{n}, 2^{m}\right)$ with n and $m \in \mathbb{N}^{*}$, where G^{\prime} is the commutator subgroup of G. If $n=m=1$, then it is known that G is dihedral, semi-dihedral, quaternionic or abelian of type (2,2) (cf. [20], [17]). In these cases, G admits a cyclic maximal subgroup, and thus is metacyclic. By Blackburn [15], we know that the metacyclicity of a 2 -group G is characterized by the rank of its maximal subgroups, and we have the following lemmas.

Lemma 2.1 ([3]). Let G be a finite 2 -group such that G / G^{\prime} is of type $\left(2^{n}, 2^{m}\right)$, where $n \geq 1$ and $m \geq 2$. Denote by $H_{i}(i=1,2,3)$, the three maximal subgroups of G. Then G is metacyclic if and only if $d\left(H_{i}\right) \leq 2$ for all $i=1,2,3$.

Lemma 2.2 ([7]). Let G be a non-metacyclic 2-group such that G / G^{\prime} is of type $\left(2,2^{m}\right)$, where $m \geq 2$. Then G admits two maximal subgroups H_{1} and H_{2} such that H_{1} / G^{\prime} and H_{2} / G^{\prime} are cyclic. Moreover, if G^{\prime} is cyclic, then H_{1} and H_{2} are metacyclic.

We continue by fixing some notation. For a number field \mathfrak{k}, denote by $\mathrm{Cl}_{2}(\mathbb{k})$ its 2-class group in the ordinary sense, denote by $h_{2}(\mathbb{k})$ the order of $\mathrm{Cl}_{2}(\mathbb{k})$, denote by $\mathbb{k}_{2}^{(1)}$ the Hilbert 2-class field of \mathbb{k}, and denote by $\mathbb{k}_{2}^{(2)}$ the Hilbert 2-class field of $\mathbb{k}_{2}^{(1)}$. If $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$, then it is well known from class field theory that $G^{\prime}=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}_{2}^{(1)}\right) \simeq \mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)$ and
$G / G^{\prime}=\operatorname{Gal}\left(\mathbb{k}_{2}^{(1)} / \mathbb{k}\right) \simeq \mathrm{Cl}_{2}(\mathbb{k})$. Note that if $\mathrm{Cl}_{2}(\mathbb{k})$ is of type $\left(2,2^{n}\right)$, with $n \geq 2$, then \mathbb{k} admits three unramified quadratic extensions within $\mathbb{k}_{2}^{(1)}$, which will be denoted by \mathbb{K}_{i} $(i=1,2,3)$. We suppose that \mathbb{K}_{3} is included in the three unramified biquadratic extensions of \mathbb{k} within $\mathbb{k}_{2}^{(1)}$. The following result was shown in our earlier paper [4].

Theorem 2.3. Keep the notations above and assume G / G^{\prime} is of type $\left(2,2^{n}\right)$, where $n \geq 2$. Then

1. G is abelian or modular if and only if

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{i}\right)\right)=1(i=1,2) \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=2
$$

2. G is metacyclic non-abelian non-modular if and only if

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{i}\right)\right)=2 \text { for all } i=1,2,3
$$

3. G is non-metacyclic non-abelian if and only if

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{i}\right)\right)=2(i=1,2) \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=3
$$

Let $\mathbb{k}=\mathbb{Q}(\sqrt{d})$ be an arbitrary quadratic number field with a square-free integer d, and d_{k} be its discriminant. For a prime number p, define:

$$
p^{*}= \begin{cases}(-1)^{\frac{p-1}{2}} p, & \text { if } p \neq 2 \\ -4, & \text { if } p=2 \text { and } d \equiv 3(\bmod 4) \\ 8, & \text { if } p=2 \text { and } d \equiv 2(\bmod 8) \\ -8, & \text { if } p=2 \text { and } d \equiv-2(\bmod 8)\end{cases}
$$

Then, let $d_{\mathrm{k}}=p_{1}^{*} \ldots p_{s}^{*} p_{s+1}^{*} \ldots p_{s+t}^{*}$ such that $p_{1}^{*}, \ldots, p_{s}^{*}$ are positive and $p_{s+1}^{*}, \ldots, p_{s+t}^{*}$ are negative. The Rédei matrix R_{k} is defined to be the matrix in $M_{(s+t) \times(s+t)}(\mathbb{Z} / 2 \mathbb{Z})$ with entries $a_{i, j}$ given by: $(-1)^{a_{i, j}}=\left(\frac{p_{i}^{*}}{p_{j}}\right)$ if $i \neq j$ and $(-1)^{a_{i, j}}=\left(\frac{d_{\mathrm{k}} / p_{i}^{*}}{p_{i}}\right)$ if $i=j$, where $(\stackrel{\bullet}{\bullet})$ is the Legendre symbol. Then the 4 -rank of $\mathrm{Cl}^{+}(\mathbb{k})$, the class group of \mathbb{k} in the narrow sense, is given by:

Theorem 2.4 ([23]). Let \mathbb{k}_{k} be a quadratic number field, then

$$
4-\operatorname{rank}\left(\mathrm{Cl}^{+}(\mathbb{k})\right)=s+t-1-\operatorname{rank}\left(R_{\mathrm{k}}\right)
$$

Remark 2.5. If d_{k} is divisible by a prime congruent to 3 modulo 4 , then

$$
\left.\mathrm{Cl}_{2}^{+}(\mathbb{k})\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathrm{Cl}_{2}(\mathbb{k}) \quad \text { and } \quad 4-\operatorname{rank}\left(\mathrm{Cl}^{+}(\mathbb{k})\right)=4-\operatorname{rank}(\mathrm{Cl}(\mathbb{k}))
$$

where $\mathrm{Cl}_{2}^{+}(\mathbb{k})$ is the 2-class group of k in the narrow sense.

We make use of the well known Kuroda Class Number Formula, which we state as the following theorem.

Theorem 2.6 ([22]). Let \mathbb{K} / \mathbb{k} be an arbitrary normal quartic extension of number fields with Galois group of type $(2,2)$, and let $\mathbb{K}_{j}(j=1,2,3)$ denote the quadratic subextensions. Then the class number of \mathbb{K} satisfies

$$
h(\mathbb{K})=2^{d-\kappa-2-v} \frac{q(\mathbb{K} / \mathbb{k}) h\left(\mathbb{K}_{1}\right) h\left(\mathbb{K}_{2}\right) h\left(\mathbb{K}_{3}\right)}{(h(\mathbb{k}))^{2}}
$$

where $q(\mathbb{K} / \mathbb{k})=\left[E_{\mathbb{K}}: E_{1} E_{2} E_{3}\right]$ denotes the unit index of \mathbb{K} / \mathbb{k} (with $E_{j}=$ the unit group of \mathbb{K}_{j}), d is the number of infinite primes in \mathbb{k} that ramify in \mathbb{K}, κ is the \mathbb{Z}-rank of the unit group E_{k} of \mathbb{k}, and $v=0$ except when $\mathbb{K} \subseteq \mathbb{k}\left(\sqrt{E_{\mathrm{k}}}\right)$, in which case $v=1$.

To prove our main theorems, we also need the following results.
Theorem 2.7 ([6]). Let \mathbb{k} be a number field such that $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2,2^{n}\right)$, where $n \geq 2$. Denote by $\mathbb{K}_{i}(i=1,2,3)$, the three unramified quadratic extensions of \mathbb{k}. Then the 2 class group of $\mathbb{k}_{2}^{(1)}$ is a non-elementary cyclic group if and only if $h_{2}\left(\mathbb{K}_{i}\right) \geq 2 h_{2}(\mathbb{k})$ and $h_{2}\left(\mathbb{K}_{j}\right)=h_{2}\left(\mathbb{K}_{m}\right)=h_{2}(\mathbb{k})$ for some $\{i, j, m\}=\{1,2,3\}$.

Lemma 2.8 ([6]). Let \mathbb{k} be a number field such that $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2^{m}, 2^{n}\right), m \geq 1$, $n \geq 1$. Denote by $\mathbb{K}_{i}(i=1,2,3)$, the three unramified quadratic extensions of \mathbb{k}. Then $h_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$ if and only if $h_{2}\left(\mathbb{K}_{0}\right)=(1 / 2) h_{2}(\mathbb{k})$ where $\mathbb{K}_{0}=\mathbb{K}_{1} \mathbb{K}_{2} \mathbb{K}_{3}$.

Corollary 2.9 ([6]). Let \mathbb{k} be a real quadratic number field such that $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2^{m}, 2^{n}\right)$, $m \geq 1, n \geq 1$. Denote by $\mathbb{K}_{i}(i=1,2,3)$, the three unramified quadratic extensions of \mathbb{k}. Then $h_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$ if and only if $h_{2}\left(\mathbb{K}_{1}\right)=h_{2}\left(\mathbb{K}_{2}\right)=h_{2}\left(\mathbb{K}_{3}\right)=h_{2}(\mathbb{k})$ and $q\left(\mathbb{K}_{0} / \mathbb{k}\right)=4$, where $\mathbb{K}_{0}=\mathbb{K}_{1} \mathbb{K}_{2} \mathbb{K}_{3}$.

Theorem 2.10 ([6]). Let \mathfrak{k} be a real quadratic number field with $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2^{m}, 2^{n}\right), m \geq 1$, $n \geq 2$, and $d_{\mathrm{k}}=d_{1} d_{2} r_{1} r_{2}$ or $r_{1} r_{2} r_{3} r_{4}$ be its discriminant, where d_{1} and d_{2} are positive prime discriminants and $r_{1}, r_{2}, r_{3}, r_{4}$ are negative prime discriminants. Denote by $\mathbb{K}_{i}(i=1,2,3)$, the three unramified quadratic extensions of k. If $h_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$ then $Q_{\mathbb{K}_{i}}=Q_{\mathbb{K}_{j}}=2$, and $Q_{\mathbb{K}_{s}}=1$ or 2 for some $\{i, j, s\}=\{1,2,3\}$, where $Q_{\mathbb{K}}$ denotes the unit index of \mathbb{K}.

3 The 4 -rank of the 2 -class group of $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$.

Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be different positive prime integers and $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$. It is well known, by genus theory, that the 2 -rank of the class group of \mathbb{k} is 2 . The purpose of this section is to determine the 4 -rank of the 2-class group of \mathbb{k}.
E. Benjamin and C. Snyder characterized real quadratic fields whose 2-class group is of type $(2,2)$ in $[10]$. In particular, they proved the following theorem.

Theorem 3.1. Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be different prime integers. Then the 2-class group of $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$ is of type $(2,2)$ (i.e. $4-\operatorname{rank}\left(\mathrm{Cl}_{2}(\mathbb{k})\right)=0$) if and only if one of the following conditions is satisfied.

1. $\cdot\left(\frac{p_{1}}{p_{2}}\right)=1$, and

- either $\left(\frac{2}{p_{1}}\right)=-1$ or $\left(\frac{q}{p_{1}}\right)=-1$, and
- either $\left(\frac{2}{p_{2}}\right)=-1$ or $\left(\frac{q}{p_{2}}\right)=-1$, and
- $\left(\frac{2}{p_{1}}\right),\left(\frac{2}{p_{2}}\right),\left(\frac{q}{p_{1}}\right),\left(\frac{q}{p_{2}}\right)$ are not all equal.

2. $\left(\frac{p_{1}}{p_{2}}\right)=-1$ and $\left(\frac{2}{p_{1}}\right),\left(\frac{2}{p_{2}}\right),\left(\frac{q}{p_{1}}\right),\left(\frac{q}{p_{2}}\right)$ are not all equal.

In the following theorem, we give necessary and sufficient conditions for the 2-class group of $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$ to be of type $\left(2,2^{n}\right)$ or $\left(2^{m}, 2^{n}\right)$, where $n \geq 2$ and $m \geq 2$.

Theorem 3.2. Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be different prime integers. Then the 2 -class group of $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$ is of type $\left(2,2^{n}\right)$, where $n \geq 2$, (i.e. $4-\operatorname{rank}\left(\mathrm{Cl}_{2}(\mathbb{k})\right)=1$) if and only if one of the following conditions is satisfied.

1. $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=1$ and $\left(\frac{q}{p_{1}}\right)\left(\frac{q}{p_{2}}\right)=-1$.
2. $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$ and $\left(\frac{p_{1}}{p_{2}}\right)=-1$.
3. $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=1$ and $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=1$.
4. $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$.

Moreover, 4-rank $\left(\mathrm{Cl}_{2}(\mathbb{k})\right)=2$ if and only if

$$
\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1 .
$$

Proof. Proceeding as in [3], the results are deduced by applying Theorem 2.4 and Remark 2.5.

4 The FSUs of certain biquadratic number fields

Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be different prime integers. Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$. Consider the following three unramified quadratic extensions of \mathbb{k} :

$$
\mathbb{K}_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2} q}\right), \quad \mathbb{K}_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1} q}\right) \text { and } \mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{2 q}, \sqrt{p_{1} p_{2}}\right)
$$

Let $\varepsilon_{2 p_{1} p_{2} q}=x+y \sqrt{2 p_{1} p_{2} q}, \varepsilon_{2 p_{1} q}=z+t \sqrt{2 p_{1} q}$ and $\varepsilon_{2 p_{2} q}=a+b \sqrt{2 p_{2} q}$ be the fundamental units of $\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right), \mathbb{Q}\left(\sqrt{2 p_{2} q}\right)$ and $\mathbb{Q}\left(\sqrt{2 p_{1} q}\right)$ respectively. The goal of this section is to determine a Fundamental System of Units (FSU) of \mathbb{K}_{i} basing on the conditions cited in Theorem 3.2.

Using similar arguments as in the proof of Lemma 4.1 of [3] (see also [5]), we get the following lemmas.

Lemma 4.1. Suppose that $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=-\left(\frac{q}{p_{2}}\right)=1$.

1. If $x \pm 1$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $z \pm 1$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{3}.
2. If $p_{1}(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $p_{1}(z \pm 1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{2 q} \varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1 .
3. If $2 p_{1}(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $2 p_{1}(z+1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1 .

Lemma 4.2. Suppose that $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=-\left(\frac{q}{p_{2}}\right)=1$.

1. If $2 p_{1}(x+1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $2 p_{1}(z+1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1 .
2. If $2 p_{2}(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{2}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1 .
3. If $q(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according to whether $q(z-1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{3}.

Lemma 4.3. Suppose that $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$.

1. If $2 p_{1}(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $2 p_{1}(z \pm 1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1.
2. If $p_{2}(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $(z \pm 1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{2 q} \varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{3} according to whether $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)$ equals 1 or -1 .
3. If $2 q(x \pm 1)$ is a square in \mathbb{N}, then
i. $\left\{\varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ is a FSU of \mathbb{K}_{1}.
ii. $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \sqrt{\varepsilon_{2 p_{1} q} \varepsilon_{2 p_{1} p_{2} q}}\right\}$ or $\left\{\varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\}$ is a FSU of \mathbb{K}_{2} according as $2 q(z \pm 1)$ is or not a square in \mathbb{N}.
iii. $\left\{\varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} p_{2 q}}}\right\}$ is a FSU of \mathbb{K}_{3}.

5 The structure of the group $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$.

In this section we consider the field $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$, where $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$, and the three unramified quadratic extensions

$$
\mathbb{K}_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2} q}\right), \mathbb{K}_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1} q}\right) \text { and } \mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{2 q}, \sqrt{p_{1} p_{2}}\right) .
$$

Let $\mathrm{Cl}_{2}\left(\mathbb{K}_{i}\right)$ denote the 2 -class group of $\mathbb{K}_{i}(i=1,2,3)$.

5.1 The metacyclic case

Theorem 5.1. Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be different prime integers, and $\mathbb{k}=$ $\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q}\right)$. Assume $\operatorname{Gal}\left(\mathbb{k}_{2}^{(1)} / \mathbb{k}\right)$ is a non-elementary 2 -group. Then $\mathrm{G}=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ is metacyclic if and only if

$$
\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1 .
$$

More precisely,
i. if $\left(\frac{p_{1}}{p_{2}}\right)=1$, then G is a metacyclic non-abelian non-modular 2-group,
ii. if $\left(\frac{p_{1}}{p_{2}}\right)=-1$, then G is a modular or abelian 2-group according as $2 p_{1} p_{2}(x+1)$ is a square or not in \mathbb{N}.

Proof. According to Theorems 3.1 and 3.2, there are five cases to distinguish. By [1] and [2] we have:

1. If $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=3
$$

2. If $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=1$ and $\left(\frac{q}{p_{1}}\right)=-\left(\frac{q}{p_{2}}\right)=1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=3 \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=2
$$

3. If $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$ and $\left(\frac{p_{1}}{p_{2}}\right)=-1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=2 \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=3
$$

4. If $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=1$ and $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=3 \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=2
$$

5. If $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then
i. If $\left(\frac{p_{1}}{p_{2}}\right)=1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=2
$$

ii. If $\left(\frac{p_{1}}{p_{2}}\right)=-1$, then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{1}\right)\right)=\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{2}\right)\right)=1 \text { and } \operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{3}\right)\right)=2
$$

Hence the results are deduced from Theorem 2.3, Lemma 2.1 and [8, Theorem 2].

5.2 The non-metacyclic case

Assuming $\mathrm{Cl}_{2}(\mathbb{k}) \simeq\left(2,2^{n}\right), n \geq 2$, for the non-metacyclic case we have four cases to distinguish, according to Theorems 3.2 and 5.1. For simplicity, we will denote by q_{i} the unit index of the field $\mathbb{K}_{i}(i=1,2,3)$. In all that follows, we use the notations of [19, page 336]. Put $p_{1}=2 e^{2}+(-1)^{\gamma} d^{2}, q=2 r^{2}+(-1)^{\gamma} s^{2}$ and $A=s d+2 e r+2 \gamma(e s+d r)$ according as $\left(\frac{2}{q}\right)=(-1)^{\gamma+1}$, where $\gamma \in\{0,1\}$.
5.2.1 Case 1: $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=-\left(\frac{q}{p_{2}}\right)=1$

Theorem 5.2. Let $\delta \in\left\{1, p_{1}, 2 p_{1}\right\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N}. The group $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right) \simeq \operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}_{2}^{(1)}\right)$ is non-elementary cyclic if and only if one of the two following assertions holds:
I. i. $\delta(z \pm 1)$ is not a square in \mathbb{N},
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 , and
iii. either

> a. $\delta=1$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
> b. $\delta \neq 1$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}=1$.
II. i. $\delta(z \pm 1)$ is a square in \mathbb{N} or $\left(\frac{A}{p_{1}}\right)=\left(\frac{2 q}{p_{1}}\right)_{4}=1$, and
ii. either
a. $\delta=1$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
b. $\delta \neq 1$ and one of $\left(\frac{p_{1}}{p_{2}}\right)_{4},\left(\frac{p_{2}}{p_{1}}\right)_{4}$ is equal to -1.

Proof. Form Theorem 2.7, we must calculate the 2-class numbers of \mathbb{K}_{i}.

- By [19], if $\left(\frac{q}{p_{2}}\right)=-1$, then $h_{2}\left(2 p_{2} q\right)=2$, and, according to Lemma 4.1, $q_{1}=2$. In this case, the 2 -class number of \mathbb{K}_{1} is given by [27]:

$$
h_{2}\left(\mathbb{K}_{1}\right)=\frac{1}{4} q_{1} h_{2}\left(p_{1}\right) h_{2}\left(2 p_{2} q\right) h_{2}\left(2 p_{1} p_{2} q\right)=h_{2}\left(2 p_{1} p_{2} q\right) .
$$

- If $\left(\frac{2}{p_{1}}\right)=\left(\frac{q}{p_{1}}\right)=1$, then, by [19], $h_{2}\left(2 p_{1} q\right) \geq 4$. More precisely, $h_{2}\left(2 p_{1} q\right)=4$ if and only if at least one of the elements $\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}$ equals -1 . The 2 -class number of \mathbb{K}_{2} is given by:

$$
h_{2}\left(\mathbb{K}_{2}\right)=\frac{1}{4} q_{2} h_{2}\left(p_{2}\right) h_{2}\left(2 p_{1} q\right) h_{2}\left(2 p_{1} p_{2} q\right)=\frac{1}{4} q_{2} h_{2}\left(2 p_{1} q\right) h_{2}\left(2 p_{1} p_{2} q\right)
$$

so $h_{2}\left(\mathbb{K}_{2}\right)=h_{2}\left(2 p_{1} p_{2} q\right)$ if and only if $q_{2}=1$ and $h_{2}\left(2 p_{1} q\right)=4$. On the other hand, by Lemma $4.1, q_{2}=1$ if and only if $\delta(z \pm 1)$ is not a square in \mathbb{N}.

- Similarly, the 2-class number of \mathbb{K}_{3} is given by:

$$
h_{2}\left(\mathbb{K}_{3}\right)=\frac{1}{4} q_{3} h_{2}(2 q) h_{2}\left(p_{1} p_{2}\right) h_{2}\left(2 p_{1} p_{2} q\right)=\frac{1}{4} q_{3} h_{2}\left(p_{1} p_{2}\right) h_{2}\left(2 p_{1} p_{2} q\right)
$$

so $h_{2}\left(\mathbb{K}_{3}\right)=h_{2}\left(2 p_{1} p_{2} q\right)$ if and only if either $q_{3}=1$ and $h_{2}\left(p_{1} p_{2}\right)=4$, or $q_{3}=2$ and $h_{2}\left(p_{1} p_{2}\right)=2$. In this case, according to [21] (see also [25]) and Lemma 4.1, $h_{2}\left(\mathbb{K}_{3}\right)=h_{2}\left(2 p_{1} p_{2} q\right)$ if and only if one of the two following conditions is satisfied:

1. $\delta=1$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$.
2. $\delta \neq 1$ and either $\left(\frac{p_{1}}{p_{2}}\right)_{4}=-1$ or $\left(\frac{p_{2}}{p_{1}}\right)_{4}=-1$.

Using Theorem 2.7, we get the results.
Example 5.3. Put $\alpha=\left(\frac{A}{p_{1}}\right), s=\left(\frac{2 q}{p_{1}}\right)_{4}, t_{1}=\left(\frac{p_{1}}{p_{2}}\right)_{4}, t_{2}=\left(\frac{p_{2}}{p_{1}}\right)_{4}, c=\operatorname{Cl}\left(\mathbb{k}_{2}^{(1)}\right), n=h_{2}(\mathbb{k})$, $n_{i}=h_{2}\left(\mathbb{K}_{i}\right)(i=1,2,3)$ and $q_{0}=q\left(\mathbb{K}_{0} / \mathbb{k}\right)$, and by using PARI/GP [26], we get the following examples for the case: $x \pm 1$ is a square, $z+1$ and $z-1$ are not squares, $(\alpha=-1$ or $s=-1$) and $t_{1}=t_{2}$.

$d=2 p_{1} p_{2} q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$38982=2 \cdot 73 \cdot 89 \cdot 3$	2	1	2	-1	-1	1	1	8	8	8	16	16	$[4]$
$60006=2 \cdot 73 \cdot 137 \cdot 3$	2	1	2	-1	-1	1	1	8	8	8	64	16	$[16]$
$298862=2 \cdot 73 \cdot 89 \cdot 23$	2	1	2	-1	-1	1	1	8	8	8	16	16	$[12]$

Theorem 5.4. Let $\delta \in\left\{1, p_{1}, 2 p_{1}\right\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N}. Then $\# \mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$ if and only if the following conditions are satisfied:
i. $\delta(z \pm 1)$ is not a square in \mathbb{N},
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 .
iii. $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$.

Proof. Suppose that $\# \mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$. Then, according to Corollary 2.9, $h_{2}\left(\mathbb{K}_{i}\right)=h_{2}(\mathbb{k})$ for all $i=1,2,3$. By the proof of Theorem 5.2 , the equality $h_{2}\left(\mathbb{K}_{2}\right)=h_{2}(\mathbb{k})$ implies the two first conditions and $q_{2}=1$. On the other hand, as $q_{1}=2$, from Theorem 2.10 we infer $q_{3}=2$. Accordingly, $h_{2}\left(p_{1} p_{2}\right)=2$ and $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=1$, which is equivalent to $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$ (see [25]).

Reciprocally, suppose the three conditions (i), (ii) and (iii) are satisfied. Applying results of the proof of Theorem 5.2 , we get $h_{2}\left(\mathbb{K}_{i}\right)=h_{2}(\mathbb{k})$ for all $i=1,2,3$. Let $\mathbb{K}_{0}=\mathbb{K}_{1} \mathbb{K}_{2} \mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{2 q}\right)$, and denote by $E_{\mathbb{K}_{i}}$ the unit group of \mathbb{K}_{i} and by $q\left(\mathbb{K}_{0} / \mathbb{k}\right)=\left[E_{\mathbb{K}_{0}}: E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}\right]$ the unit index of $\mathbb{K}_{0} / \mathbb{k}$. Hence, by Corollary 2.9, it remains to prove only $q\left(\mathbb{K}_{0} / \mathbb{k}\right)=4$. According to Lemma 4.1, we have:

1. $E_{\mathbb{K}_{1}}=\left\langle-1, \varepsilon_{p_{1}}, \varepsilon_{2 p_{2} q}, \varepsilon\right\rangle$, where $\varepsilon=\sqrt{\varepsilon_{2 p_{1} p_{2} q}}$ or $\sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}}$ according to $2 p_{1}(x \pm 1)$ is or not a square in \mathbb{N},
2. $E_{\mathbb{K}_{2}}=\left\langle-1, \varepsilon_{p_{2}}, \varepsilon_{2 p_{1} q}, \varepsilon_{2 p_{1} p_{2} q}\right\rangle$,
3. $E_{\mathbb{K}_{3}}=\left\langle-1, \varepsilon_{2 q}, \varepsilon_{p_{1} p_{2}}, \varepsilon^{\prime}\right\rangle$, where $\varepsilon^{\prime}=\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} p_{2} q}}, \sqrt{\varepsilon_{2 q} \varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}$ or $\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}$ according to $(x \pm 1), p_{1}(x \pm 1)$ or $2 p_{1}(x \pm 1)$ is a square in \mathbb{N}.

Put

$$
\begin{aligned}
A & =\varepsilon_{p_{1}}^{a_{1}} \varepsilon_{2 p_{2} q}^{a_{2}} \varepsilon^{a_{3}}, \quad a_{1}, a_{2}, a_{3} \in\{0,1\}, \\
B & =\varepsilon_{p_{2}}^{b_{1}} \varepsilon_{2 p_{1} q}^{b_{2}} \varepsilon_{2 p_{1} p_{2} q}^{b_{3}}, \quad b_{1}, b_{2}, b_{3} \in\{0,1\}, \\
C & =\varepsilon_{2 q}^{c_{1}} \varepsilon_{p_{1} p_{2}}^{c_{2}} \varepsilon^{\prime c_{3}}, \quad c_{1}, c_{2}, c_{3} \in\{0,1\}, \\
\eta^{2} & = \pm \text { A.B.C. }
\end{aligned}
$$

So

$$
\begin{aligned}
& N_{\mathbb{K}_{0} / \mathbb{K}_{1}}\left(\eta^{2}\right)=(-1)^{b_{1}}\left(\pm \varepsilon_{2 p_{1} p_{2} q}\right)^{c_{3}}\left(\varepsilon_{2 p_{1} p_{2} q}^{b_{3}} A\right)^{2}, \\
& N_{\mathbb{K}_{0} / \mathbb{K}_{2}}\left(\eta^{2}\right)=(-1)^{a_{1}}\left(\pm \varepsilon_{2 p_{1} p_{2} q}\right)^{a_{3}}\left(\pm \varepsilon_{2 p_{1} p_{2} q}\right)^{c_{3}} B^{2}, \\
& N_{\mathbb{K}_{0} / \mathbb{K}_{3}}\left(\eta^{2}\right)=(-1)^{a_{1}}(-1)^{b_{1}}\left(\pm \varepsilon_{2 p_{1} p_{2} q}\right)^{a_{3}}\left(\varepsilon_{2 p_{1} p_{2} q}^{b_{3}} C\right)^{2} .
\end{aligned}
$$

Assume $\eta \in \mathbb{K}_{0}$, if $a_{3} \neq 0$ or $c_{3} \neq 0$, then $\sqrt{\varepsilon_{2 p_{1} p_{2} q}} \in \mathbb{K}_{2}$ or $\sqrt{\varepsilon_{2 p_{1} p_{2} q}} \in \mathbb{K}_{3}$, which contradicts Lemma 4.1. On the other hand, if $a_{3}=c_{3}=0$ and ($a_{1}=1$ or $b_{1}=1$), then $N_{\mathbb{K}_{0} / \mathbb{K}_{1}}\left(\eta^{2}\right)<0$ or $N_{\mathbb{K}_{0} / \mathbb{K}_{2}}\left(\eta^{2}\right)<0$, which contradicts the fact that $N_{\mathbb{K}_{0} / \mathbb{K}_{i}}\left(\eta^{2}\right)>0$. Therefore, $a_{1}=b_{1}=a_{3}=c_{3}=0$ and we get

$$
\eta^{2}= \pm \varepsilon_{2 p_{2} q}^{a_{2}} \varepsilon_{2 p_{1} q}^{b_{2}} \varepsilon_{2 p_{1} p_{2} q}^{b_{3}} \varepsilon_{2 q}^{c_{1}} \varepsilon_{p_{1} p_{2}}^{c_{2}} .
$$

From the proof of Lemma 4.1, we deduce thet $\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{i} q}}$ or $\sqrt{\varepsilon_{2 p_{i} q}} \in E_{\mathbb{K}_{0}}(i=1,2)$. According to our assumption, $N_{\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=1$, which implies that $\sqrt{\varepsilon_{p_{1} p_{2}}} \in E_{\mathbb{K}_{0}}$. We distinguish the following cases:
i. If $(x \pm 1)$ is a square in \mathbb{N}, then $\sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{2 p_{2} q}}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}} \notin E_{\mathbb{K}_{0}}$, and Lemma 4.1 implies that

$$
\begin{aligned}
\sqrt{\varepsilon_{p_{1} p_{2}}} & \notin E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}, \\
\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} q}}, \sqrt{\varepsilon_{2 p_{1} q}} & \notin E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}, \\
\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} p_{2} q}}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}} & \in E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}} .
\end{aligned}
$$

By a case by case study, we obtain

$$
E_{\mathbb{K}_{0}}=\left\langle\sqrt{\varepsilon_{2 p_{1} q}} \text { or } \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} q}}, \sqrt{\varepsilon_{p_{1} p_{2}}}, E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}\right\rangle .
$$

ii. If $p_{1}(x \pm 1)$ is a square in \mathbb{N}, then $\sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{2 p_{2} q}}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}} \notin E_{\mathbb{K}_{0}}$, By Lemma 4.1, we have

$$
\begin{aligned}
\sqrt{\varepsilon_{p_{1} p_{2}}} & \notin E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}, \\
\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} q}}, \sqrt{\varepsilon_{2 p_{1} q}} & \notin E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}, \\
\sqrt{\varepsilon_{2 q} \varepsilon_{p_{1} p_{2}} \varepsilon_{2 p_{1} p_{2} q}}, \sqrt{\varepsilon_{2 p_{2} q} \varepsilon_{2 p_{1} p_{2} q}} & \in E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}} .
\end{aligned}
$$

Thus we obtain

$$
E_{\mathbb{K}_{0}}=\left\langle\sqrt{\varepsilon_{2 p_{1} q}} \text { or } \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} q}}, \sqrt{\varepsilon_{p_{1} p_{2}}}, E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}\right\rangle .
$$

iii. If $2 p_{1}(x \pm 1)$ is a square in \mathbb{N}, then $\sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{2 p_{2} q}} \notin E_{\mathbb{K}_{0}}$ and $\sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{2} q}} \in E_{\mathbb{K}_{0}}$, by Lemma 4.1, $\sqrt{\varepsilon_{p_{1} p_{2}}}, \sqrt{\varepsilon_{2 p_{1} p_{2} q}} \in E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}$, from which we deduce that

$$
E_{\mathbb{K}_{0}}=\left\langle\sqrt{\varepsilon_{2 p_{1} q}} \text { or } \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{1} q}}, \sqrt{\varepsilon_{2 q} \varepsilon_{2 p_{2} q}}, E_{\mathbb{K}_{1}} E_{\mathbb{K}_{2}} E_{\mathbb{K}_{3}}\right\rangle .
$$

In the three cases we get $q\left(\mathbb{K}_{0} / \mathbb{k}\right)=4$, so it suffices to apply Corollary 2.9 to obtain the results.

Example 5.5. Keep the notation of Example 5.3. For the case $p_{1}(x \pm 1)$ is a square, $p_{1}(z \pm 1)$ is not a square, $(\alpha=-1$ or $s=-1)$ and $t_{1} \neq t_{2}$, we have

$d=p_{1} p_{2} q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$51798=2 \cdot 97 \cdot 89 \cdot 3$	2	1	2	-1	1	1	-1	8	8	8	8	16	$[2]$
$64862=2 \cdot 113 \cdot 41 \cdot 7$	2	1	2	-1	1	1	-1	8	8	8	8	16	$[6]$
$113734=2 \cdot 73 \cdot 41 \cdot 19$	2	1	2	1	-1	-1	1	8	8	8	8	16	$[6]$

5.2.2 Case 2: $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-\left(\frac{p_{1}}{p_{2}}\right)=1$

Lemma 5.6. Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be three positive prime integers satisfying $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-\left(\frac{p_{1}}{p_{2}}\right)=1$. Then the rank of the 2-class group of $\mathbb{K}_{0}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{2 q}\right)$ equals 3 .

Proof. As $\left(\frac{p_{1}}{p_{2}}\right)=-1$, it is well known (cf. [21]) that the class number of $\mathbb{k}_{0}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$ is odd. Consider the extension $\mathbb{K}_{0} / \mathbb{K}_{0}$. Then according to [18], the rank of the 2 -class group of \mathbb{K}_{0} is given by the formula:

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{0}\right)\right)=r-e-1
$$

where r is the number of finite and infinite primes of \mathbb{k}_{0} that ramify in $\mathbb{K}_{0} / \mathbb{k}_{0}$ and e is defined by $2^{e}=\left[E_{\mathbb{k}_{0}}: E_{\mathbb{k}_{0}} \cap N_{\mathbb{K}_{0} / \mathrm{k}_{0}}\left(\mathbb{K}_{0}^{*}\right)\right] \leq 2^{4}$. As $r=8$ (4 primes above 2 and 4 above q), $\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{0}\right)\right)=r-e-1=8-e-1 \geq 3$. On the other hand, the Schreier's inequality implies that $\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{0}\right)\right) \leq 3$, concluding the proof.

Theorem 5.7. Let $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ be three positive prime integers satisfying $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-\left(\frac{p_{1}}{p_{2}}\right)=1$. Then

$$
\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)\right) \geq 2
$$

Proof. Suppose that $\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)\right)=1$, then, by Lemma 2.2, the proof of Theorem 5.1 and class field theory, the Galois groups $\operatorname{Gal}\left(\mathbb{K}_{2}^{(2)} / \mathbb{K}_{1}\right)$ and $\operatorname{Gal}\left(\mathbb{K}_{2}^{(2)} / \mathbb{K}_{2}\right)$ are metacyclic, and since \mathbb{K}_{0} is an unramified quadratic extension of \mathbb{K}_{1}, then Lemma 2.1 implies that $\operatorname{rank}\left(\mathrm{Cl}_{2}\left(\mathbb{K}_{0}\right)\right) \leq 2$, which contradicts Lemma 5.6.

Example 5.8. For $d=47158=2 \cdot 73 \cdot 17 \cdot 19$, we have $\mathrm{Cl}_{2}\left(\mathrm{k}_{2}^{(1)}\right)$ is of type $(2,4)$, and for $d=59942=2 \cdot 17 \cdot 41 \cdot 43$, we have $\mathrm{Cl}_{2}\left(\mathrm{k}_{2}^{(1)}\right)$ is of type $(2,4)$.
5.2.3 Case 3: $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=-\left(\frac{q}{p_{2}}\right)=1$

Using similar arguments as above, we prove the following two theorems.
Theorem 5.9. Let $\delta \in\left\{2 p_{1}, 2 p_{2}, q\right\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N}. The group $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right) \simeq \operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}_{2}^{(1)}\right)$ is cyclic non-elementary if and only if one of the following two conditions is satisfied:
I. i. $\delta \neq 2 p_{2}$ and $\delta(z \pm 1)$ is not a square in \mathbb{N}, and
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 , and
iii. either
a. $\delta=q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
b. $\delta \neq q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}=1$
II. i. $\delta=2 p_{2}$ or $\delta(z \pm 1)$ is a square in \mathbb{N} or $\left(\frac{A}{p_{1}}\right)=\left(\frac{2 q}{p_{1}}\right)_{4}=1$, and
ii. either
a. $\delta=q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
b. $\delta \neq q$ and one of $\left(\frac{p_{1}}{p_{2}}\right)_{4},\left(\frac{p_{2}}{p_{1}}\right)_{4}$ is equal to -1 .

Example 5.10. Keep the notation of Example 5.3. For the case $2 p_{2}(x \pm 1)$ is a square and $t_{1}=-1$ or $t_{2}=-1$, we have

$d=2 p_{1} p_{2} q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$17630=2 \cdot 41 \cdot 5 \cdot 43$	2	2	2	1	1	1	-1	8	8	32	8	32	$[8]$
$29614=2 \cdot 17 \cdot 13 \cdot 67$	2	2	2	1	-1	-1	1	8	8	16	8	32	$[4]$
$34238=2 \cdot 17 \cdot 53 \cdot 19$	2	2	1	1	1	-1	-1	8	8	32	8	16	$[8]$
$41830=2 \cdot 89 \cdot 5 \cdot 47$	2	2	1	-1	-1	-1	-1	16	16	32	16	16	$[4]$
$59630=2 \cdot 89 \cdot 5 \cdot 67$	2	2	1	-1	1	-1	-1	8	8	16	8	16	$[4]$
$69782=2 \cdot 41 \cdot 37 \cdot 23$	2	2	2	1	-1	-1	1	8	8	16	8	32	$[4]$
$91078=2 \cdot 113 \cdot 13 \cdot 31$	2	2	2	-1	-1	1	-1	16	16	32	16	32	$[12]$

Theorem 5.11. Let $\delta \in\left\{2 p_{1}, 2 p_{2}, q\right\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N}. The order $\# \mathrm{Cl}_{2}\left(\mathrm{k}_{2}^{(1)}\right)=2$ if and only if the following conditions are satisfied:
i. $\delta \neq 2 p_{2}$ and $\delta(z \pm 1)$ is not a square in \mathbb{N},
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 ,
iii. $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$.

Example 5.12. Keep the notation of Example 5.3. For the case $q(x \pm 1)$ is a square, $q(z+1)$ and $q(z-1)$ are not squares, $(\alpha=-1$ or $s=-1)$ and $t_{1} \neq t_{2}$ we have

$d=2 p_{1} p_{2} q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$9430=2 \cdot 41 \cdot 5 \cdot 23$	2	1	2	1	-1	1	-1	16	16	16	16	16	$[2]$
$20774=2 \cdot 17 \cdot 13 \cdot 47$	2	1	2	1	-1	-1	1	8	8	8	8	16	$[2]$
$94054=2 \cdot 41 \cdot 37 \cdot 31$	2	1	2	1	-1	-1	1	8	8	8	8	16	$[2]$
$102638=2 \cdot 73 \cdot 37 \cdot 19$	2	1	2	1	-1	-1	1	8	8	8	8	16	$[6]$

5.2.4 Case 4: $\left(\frac{2}{p_{1}}\right)=-\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$

Using similar arguments as above, we prove the following two theorems.
Theorem 5.13. Let $\delta \in\left\{2 p_{1}, p_{2}, 2 q\right\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N}. The group $\mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right) \simeq \operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}_{2}^{(1)}\right)$ is cyclic non-elementary if and only if one of the following two conditions is satisfied:
I. i. $\delta=p_{2}\left(\right.$ resp. $\left.\delta \neq p_{2}\right)$ and $(z \pm 1)($ resp. $\delta(z \pm 1))$ is not a square in \mathbb{N},
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 ,
iii. either
a. $\delta=2 q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
b. $\delta \neq 2 q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}=1$.
II. i. $(z \pm 1)($ resp. $\delta(z \pm 1))$ is a square in \mathbb{N} if $\delta=p_{2}\left(\right.$ resp. $\left.\delta \neq p_{2}\right)$ or $\left(\frac{A}{p_{1}}\right)=$ $\left(\frac{2 q}{p_{1}}\right)_{4}=1$,
ii. either
a. $\delta=2 q$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$, or
b. $\delta \neq 2 q$ and one of $\left(\frac{p_{1}}{p_{2}}\right)_{4},\left(\frac{p_{2}}{p_{1}}\right)_{4}$ is equal to -1 .

Example 5.14. Keep the notation of Example 5.3. For the case $p_{2}(x \pm 1)$ is a square, $(z \pm 1$ is a square or $(\alpha=s=1))$ and $\left(t_{1}=-1\right.$ or $\left.t_{2}=-1\right)$, we have

$d=2 p_{1} p_{2} q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$84422=2 \cdot 17 \cdot 13 \cdot 191$	2	2	2	1	-1	-1	1	8	8	16	8	32	$[12]$
$113102=2 \cdot 97 \cdot 53 \cdot 11$	2	1	2	1	1	1	-1	8	8	16	8	16	$[4]$
$123710=2 \cdot 89 \cdot 5 \cdot 139$	2	1	1	1	1	-1	-1	8	8	16	8	16	$[8]$
$139334=2 \cdot 233 \cdot 13 \cdot 23$	2	1	1	1	1	-1	-1	8	8	16	8	16	$[8]$
$159310=2 \cdot 89 \cdot 5 \cdot 179$	2	1	1	1	1	-1	-1	8	8	32	8	16	$[16]$

Theorem 5.15. Let $\delta \in\left\{2 p_{1}, p_{2}, 2 q\right\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N}. The order $\# \mathrm{Cl}_{2}\left(\mathbb{k}_{2}^{(1)}\right)=2$ if and only if the following conditions are satisfied:
i. $\delta=p_{2}\left(\right.$ resp. $\left.\delta \neq p_{2}\right)$ and $(z \pm 1)($ resp. $\delta(z \pm 1))$ is not a square in \mathbb{N},
ii. at least one of the elements $\left\{\left(\frac{A}{p_{1}}\right),\left(\frac{2 q}{p_{1}}\right)_{4}\right\}$ equals -1 ,
iii. $\left(\frac{p_{1}}{p_{2}}\right)_{4} \neq\left(\frac{p_{2}}{p_{1}}\right)_{4}$.

Example 5.16. Keep notations of Example 5.3. For the case: $p_{2}(x \pm 1)$ is a square, $z+1$ and $z-1$ are not squares, $(\alpha=-1$ or $s=-1)$ and $t_{1} \neq t_{2}$.

$d=2 p_{1} \cdot p_{2} \cdot q$	q_{1}	q_{2}	q_{3}	α	s	t_{1}	t_{2}	n	n_{1}	n_{2}	n_{3}	q_{0}	c
$45526=2 \cdot 17 \cdot 13 \cdot 103$	2	1	2	-1	-1	-1	1	8	8	8	8	16	$[6]$
$53710=2 \cdot 41 \cdot 5 \cdot 131$	2	1	2	-1	1	1	-1	8	8	8	8	16	$[2]$
$56134=2 \cdot 17 \cdot 13 \cdot 127$	2	1	2	-1	1	-1	1	16	16	16	16	16	$[6]$
$63438=2 \cdot 97 \cdot 109 \cdot 3$	2	1	2	-1	1	1	-1	8	8	8	8	16	$[2]$

References

[1] Azizi A. and Mouhib A.: Sur le rang du 2-groupe de classes de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$, où $m=2$ ou un premier $p \equiv 1 \bmod 4$. Trans. Amer. Math. Soc. 353 (7) (2001) 2741-2752.
[2] Azizi A. and Mouhib A.: Capitulation des 2-classes d'idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classes de Hilbert. Pacific. J. Math. 218 (1) (2005) 17-36.
[3] Azizi A., Rezzougui M., Taous M. and Zekhnini A.: On the Hilbert 2-class field of some quadratic number fields. Int. J. Number Theory. 15 (4) (2019) 807-824.
[4] Azizi A., Rezzougui M. and Zekhnini A.: On the maximal unramified pro-2-extension of certain cyclotomic \mathbb{Z}_{2}-extensions. Period. Math. Hung. 83 (2021) 54-66.
[5] Azizi A., Taous M. and Zekhnini A.: Capitulation in Abelian extensions of some fields $\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}, i\right)$. In: AIP Conf. Proc. 1705.2016 1-8.
[6] Benjamin E.: Some real quadratic number fields with their Hilbert 2-class field having cyclic 2-class group. J. Number. Theory. 173 (2017) 529-546.
[7] Benjamin E., Lemmermeyer F. and Snyder C.: Imaginary Quadratic Fields k with cyclic $\mathrm{Cl} 2\left(k^{1}\right)$. J. Number. Theory. 67 (1997) 229-245.
[8] Benjamin E., Lemmermeyer F. and Snyder C.: Real quadratic fields with abelian 2-class field tower. J. Number. Theory. 73 (1998) 182-194.
[9] Benjamin E., Lemmermeyer F. and Snyder C.: Imaginary Quadratic Fields k with $\mathrm{Cl}_{2}(k) \simeq\left(2,2^{n}\right)$ and rank $\mathrm{Cl}_{2}\left(k^{1}\right)=2$. Pacific. J. Math. 198 (1) (2001) 15-31.
[10] Benjamin E. and Snyder C.: Real quadratic fields with 2-class group of type (2, 2). Math. Scand. 76 (1995) 161-178.
[11] Benjamin E. and Snyder C.: Some Real Quadratic Number Fields whose 2-Class Fields have Class Number Congruent to 2 Modulo 4. Acta. Arith. 177 (2017) 375-392.
[12] Benjamin E. and Snyder C.: On the Rank of the 2-Class Group of the Hilbert 2-Class Field of some Quadratic Fields. Quart. J. Math. 69 (4) (2018) 1163-1193.
[13] Benjamin E. and Snyder C.: Classification of metabelian 2-groups G with $G^{a b} \simeq\left(2,2^{n}\right), n \geq 2$, and rank $d\left(G^{\prime}\right)=2$, Applications to real quadratic number fields. J. Pure. Appl. Algebra. 223 (2019) 108-130.
[14] Blackburn N.: On Prime-Power Groups in which the Derived Group has Two Generators. Proc. Camb. Phil. Soc. 53 (1957) 19-27.
[15] Blackburn N.: Generalizations of certain elementary theorems on p-groups. Proc. London Math. Soc. 11 (1961) 1-22.
[16] Couture R. and Derhem A.: Un problème de capitulation. C. R. Acad. Sci. Paris. Série I 314 (1992) 785-788.
[17] Gorenstein D.: Finite Groups. Harper \& Row, New York (1968).
[18] Gras G.: Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l. Ann. Inst. Fourier. Grenoble. 23 (3) (1973) 1-48.
[19] Kaplan P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976) 313-363.
[20] Kisilevsky H.: Number fields with class number congruent to 4 modulo 8 and Hilbert's Theorem 94. J. Number. Theory. 8 (1976) 271-279.
[21] Kučera R.: On the parity of the class number of biquadratic field. J. Number. Theory. 52 (1995) 43-52.
[22] Lemmermeyer F.: Kuroda's class number formula. Acta. Arith. 66 (3) (1994) 245-260.
[23] Rédei L.: Arithmandischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math. 171 (1935) 55-60.
[24] Schmithals B.: Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm. Arch. Math. 34 (1980) 307-312.
[25] Scholz A.: Über die Löbarkeit der Gleichung $t^{2}-D u^{2}=-4$. Math. Z. 39 (1934) 95-111.
[26] The PARI Group: PARI/GP, Bordeaux, Version 2.9.1 (64 bit) (2016).
[27] Wada H.: On the class number and the unit group of certain algebraic number fields. Tokyo. U. Fac. of. sc. J. Serie I 13 (1966) 201-209.

Received: October 15, 2019
Accepted for publication: February 28, 2022
Communicated by: Atilla Berczes

[^0]: MSC 2020: Primary 11R29, 11R11, 11R20, 11R32, 11R37; Secondary 20D15
 Keywords: quadratic field, Hilbert 2-class field, 2-class group, metacyclic 2-group, metabelian 2-group Affiliation:

 Abdelmalek Azizi - Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco
 E-mail: abdelmalekazizi@yahoo.fr
 Mohammed Rezzougui - Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco E-mail: morez2100@hotmail.fr
 Abdelkader Zekhnini - Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco
 E-mail: zekha1@yahoo.fr

