Communications in Mathematics **32** (2024), no. 1, 157–173 DOI: https://doi.org/10.46298/cm.10983 ©2024 A. Azizi, M. Rezzougui and A. Zekhnini This is an open access article licensed under the CC BY-SA 4.0

Cyclicity of the 2-class group of the first Hilbert 2-class field of some number fields

A. Azizi, M. Rezzougui and A. Zekhnini

Abstract. Let k be a real quadratic number field. Denote by $\operatorname{Cl}_2(\Bbbk)$ its 2-class group and by $\Bbbk_2^{(1)}$ (resp. $\Bbbk_2^{(2)}$) its first (resp. second) Hilbert 2-class field. The aim of this paper is to study, for a real quadratic number field whose discriminant is divisible by one prime number congruent to 3 modulo 4, the metacyclicity of $G = \operatorname{Gal}(\Bbbk_2^{(2)}/\Bbbk)$ and the cyclicity of $\operatorname{Gal}(\Bbbk_2^{(2)}/\Bbbk_2^{(1)})$ whenever the rank of $\operatorname{Cl}_2(\Bbbk)$ is 2, and the 4-rank of $\operatorname{Cl}_2(\Bbbk)$ is 1.

1 Introduction

Let k be an algebraic number field and $\operatorname{Cl}_2(\mathbb{k})$ its 2-class group, that is, the 2-Sylow subgroup of its ideal class group $\operatorname{Cl}(\mathbb{k})$. Let $\mathbb{k}_2^{(1)}$ be the Hilbert 2-class field of k, that is, the maximal abelian extension of k everywhere unramified of 2-power degree over k. Put $\mathbb{k}_2^{(0)} = \mathbb{k}$ and let $\mathbb{k}_2^{(i+1)}$ denote the Hilbert 2-class field of $\mathbb{k}_2^{(i)}$ for any integer $i \geq 0$. Then the sequence of fields

$$\mathbb{k} = \mathbb{k}_2^{(0)} \subseteq \mathbb{k}_2^{(1)} \subseteq \mathbb{k}_2^{(2)} \subseteq \cdots \subseteq \mathbb{k}_2^{(i)} \subseteq \cdots,$$

is called the 2-class field tower of \Bbbk .

MSC 2020: Primary 11R29, 11R11, 11R20, 11R32, 11R37; Secondary 20D15

Abdelmalek Azizi – Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco

E-mail: abdelmalekazizi@yahoo.fr

Mohammed Rezzougui – Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco

E-mail: morez2100@hotmail.fr

Abdelkader Zekhnini – Mohammed First University, Sciences Faculty, Mathematics Department, Oujda, Morocco

Keywords: quadratic field, Hilbert 2-class field, 2-class group, metacyclic 2-group, metabelian 2-group *Affiliation:*

E-mail: zekha1@yahoo.fr

If, for all $i \ge 0$, we have $\mathbb{k}_2^{(i)} \neq \mathbb{k}_2^{(i+1)}$, the tower is said to be infinite. Otherwise, the tower is said to be finite, and the minimal integer i such that $\mathbb{k}_2^{(i)} = \mathbb{k}_2^{(i+1)}$ is called the length of the tower. Unfortunately, there is no known method to decide whether or not a 2-class field tower of a number field is infinite. However, it is known that if the rank of $\operatorname{Cl}_2(\mathbb{k}_2^{(1)})$ is at most 2, then the tower is finite and its length is at most 3 (cf. [14]); it is also known that if the rank of $\operatorname{Cl}_2(\mathbb{k}_2^{(1)})$ is equal to 3, then there are fields \mathbb{k} with infinite 2-class field tower (cf. [24]). Therefore, it is interesting to determine all fields such that $\operatorname{rank}(\operatorname{Cl}_2(\mathbb{k}_2^{(1)})) \le 2$. That is why Benjamin et al. started a project which aims to characterize all quadratic fields \mathbb{k} satisfying the last condition (cf. [6], [7], [8], [9], [11], [12], [13], [16]). Our present paper as well as our previous one (see [3]) are part of this project.

We aim to study the cyclicity of $\operatorname{Cl}_2(\mathbb{k}_2^{(1)})$ of real quadratic fields \mathbb{k} such that $\operatorname{Cl}_2(\mathbb{k})$ is of the form $(2^n, 2^m)$ for some $n \ge 1$ and $m \ge 2$, and their discriminants $d_{\mathbb{k}}$ are divisible by primes congruent to 3 modulo 4. In this paper, which is a continuation of [3], we consider the field $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$, where $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ are primes and $\operatorname{Cl}_2(\mathbb{k}) \simeq (2, 2^n)$, with $n \ge 2$. We determine complete criteria for $G = \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k})$ to be metacyclic and complete criteria for $\operatorname{Cl}_2(\mathbb{k}_2^{(1)})$ to be cyclic whenever G is not metacyclic.

2 Preliminary results

We begin by collecting some results that will be useful later. We recall that a 2-group G is said to be metacyclic if there exists a normal cyclic subgroup N of G such that G/N is cyclic. It is known that if G is metacyclic, then the minimal number of its generators is less or equal to 2; this number is called the rank of G and will be denoted by d(G). On the other hand, if d(G) = 2, then G/G' is of type $(2^n, 2^m)$ with n and $m \in \mathbb{N}^*$, where G' is the commutator subgroup of G. If n = m = 1, then it is known that G is dihedral, semi-dihedral, quaternionic or abelian of type (2, 2) (cf. [20], [17]). In these cases, G admits a cyclic maximal subgroup, and thus is metacyclic. By Blackburn [15], we know that the metacyclicity of a 2-group G is characterized by the rank of its maximal subgroups, and we have the following lemmas.

Lemma 2.1 ([3]). Let G be a finite 2-group such that G/G' is of type $(2^n, 2^m)$, where $n \ge 1$ and $m \ge 2$. Denote by H_i (i = 1, 2, 3), the three maximal subgroups of G. Then G is metacyclic if and only if $d(H_i) \le 2$ for all i = 1, 2, 3.

Lemma 2.2 ([7]). Let G be a non-metacyclic 2-group such that G/G' is of type $(2, 2^m)$, where $m \ge 2$. Then G admits two maximal subgroups H_1 and H_2 such that H_1/G' and H_2/G' are cyclic. Moreover, if G' is cyclic, then H_1 and H_2 are metacyclic.

We continue by fixing some notation. For a number field \mathbb{k} , denote by $\operatorname{Cl}_2(\mathbb{k})$ its 2-class group in the ordinary sense, denote by $h_2(\mathbb{k})$ the order of $\operatorname{Cl}_2(\mathbb{k})$, denote by $\mathbb{k}_2^{(1)}$ the Hilbert 2-class field of \mathbb{k} , and denote by $\mathbb{k}_2^{(2)}$ the Hilbert 2-class field of $\mathbb{k}_2^{(1)}$. If $G = \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k})$, then it is well known from class field theory that $G' = \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k}_2^{(1)}) \simeq \operatorname{Cl}_2(\mathbb{k}_2^{(1)})$ and $G/G' = \operatorname{Gal}(\mathbb{k}_2^{(1)}/\mathbb{k}) \simeq \operatorname{Cl}_2(\mathbb{k})$. Note that if $\operatorname{Cl}_2(\mathbb{k})$ is of type $(2, 2^n)$, with $n \ge 2$, then \mathbb{k} admits three unramified quadratic extensions within $\mathbb{k}_2^{(1)}$, which will be denoted by \mathbb{K}_i (i = 1, 2, 3). We suppose that \mathbb{K}_3 is included in the three unramified biquadratic extensions of \mathbb{k} within $\mathbb{k}_2^{(1)}$. The following result was shown in our earlier paper [4].

Theorem 2.3. Keep the notations above and assume G/G' is of type $(2, 2^n)$, where $n \ge 2$. Then

1. G is abelian or modular if and only if

$$\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_i)) = 1 \ (i = 1, 2) \ and \ \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 2.$$

2. G is metacyclic non-abelian non-modular if and only if

$$\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_i)) = 2 \text{ for all } i = 1, 2, 3.$$

3. G is non-metacyclic non-abelian if and only if

$$\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_i)) = 2 \ (i = 1, 2) \ and \ \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 3.$$

Let $\mathbb{k} = \mathbb{Q}(\sqrt{d})$ be an arbitrary quadratic number field with a square-free integer d, and $d_{\mathbb{k}}$ be its discriminant. For a prime number p, define:

$$p^* = \begin{cases} (-1)^{\frac{p-1}{2}}p, & \text{if } p \neq 2; \\ -4, & \text{if } p = 2 \text{ and } d \equiv 3 \pmod{4}; \\ 8, & \text{if } p = 2 \text{ and } d \equiv 2 \pmod{8}; \\ -8, & \text{if } p = 2 \text{ and } d \equiv -2 \pmod{8}. \end{cases}$$

Then, let $d_{\mathbb{k}} = p_1^* \dots p_s^* p_{s+1}^* \dots p_{s+t}^*$ such that p_1^*, \dots, p_s^* are positive and $p_{s+1}^*, \dots, p_{s+t}^*$ are negative. The Rédei matrix $R_{\mathbb{k}}$ is defined to be the matrix in $M_{(s+t)\times(s+t)}(\mathbb{Z}/2\mathbb{Z})$ with entries $a_{i,j}$ given by: $(-1)^{a_{i,j}} = \left(\frac{p_i^*}{p_j}\right)$ if $i \neq j$ and $(-1)^{a_{i,j}} = \left(\frac{d_{\mathbb{k}}/p_i^*}{p_i}\right)$ if i = j, where $\begin{pmatrix} \bullet \\ \bullet \end{pmatrix}$ is the Legendre symbol. Then the 4-rank of $\mathrm{Cl}^+(\mathbb{k})$, the class group of \mathbb{k} in the narrow sense, is given by:

Theorem 2.4 ([23]). Let \Bbbk be a quadratic number field, then

$$4\operatorname{-rank}(\operatorname{Cl}^+(\Bbbk)) = s + t - 1 - \operatorname{rank}(R_{\Bbbk}).$$

Remark 2.5. If $d_{\mathbb{k}}$ is divisible by a prime congruent to 3 modulo 4, then

$$\operatorname{Cl}_{2}^{+}(\Bbbk)) \simeq \mathbb{Z}/2\mathbb{Z} \times \operatorname{Cl}_{2}(\Bbbk) \quad \text{and} \quad 4\operatorname{-rank}(\operatorname{Cl}^{+}(\Bbbk)) = 4\operatorname{-rank}(\operatorname{Cl}(\Bbbk)),$$

where $\operatorname{Cl}_{2}^{+}(\mathbb{k})$ is the 2-class group of k in the narrow sense.

We make use of the well known Kuroda Class Number Formula, which we state as the following theorem.

Theorem 2.6 ([22]). Let \mathbb{K}/\mathbb{k} be an arbitrary normal quartic extension of number fields with Galois group of type (2,2), and let \mathbb{K}_j (j = 1, 2, 3) denote the quadratic subextensions. Then the class number of \mathbb{K} satisfies

$$h(\mathbb{K}) = 2^{d-\kappa-2-\nu} \frac{q(\mathbb{K}/\mathbb{k})h(\mathbb{K}_1)h(\mathbb{K}_2)h(\mathbb{K}_3)}{(h(\mathbb{k}))^2},$$

where $q(\mathbb{K}/\mathbb{k}) = [E_{\mathbb{K}} : E_1 E_2 E_3]$ denotes the unit index of \mathbb{K}/\mathbb{k} (with E_j = the unit group of \mathbb{K}_j), d is the number of infinite primes in \mathbb{k} that ramify in \mathbb{K} , κ is the \mathbb{Z} -rank of the unit group $E_{\mathbb{k}}$ of \mathbb{k} , and v = 0 except when $\mathbb{K} \subseteq \mathbb{k}(\sqrt{E_{\mathbb{k}}})$, in which case v = 1.

To prove our main theorems, we also need the following results.

Theorem 2.7 ([6]). Let k be a number field such that $\operatorname{Cl}_2(\mathbb{k}) \simeq (2, 2^n)$, where $n \geq 2$. Denote by \mathbb{K}_i (i = 1, 2, 3), the three unramified quadratic extensions of k. Then the 2class group of $\mathbb{k}_2^{(1)}$ is a non-elementary cyclic group if and only if $h_2(\mathbb{K}_i) \geq 2h_2(\mathbb{k})$ and $h_2(\mathbb{K}_j) = h_2(\mathbb{K}_m) = h_2(\mathbb{k})$ for some $\{i, j, m\} = \{1, 2, 3\}$.

Lemma 2.8 ([6]). Let \Bbbk be a number field such that $\operatorname{Cl}_2(\Bbbk) \simeq (2^m, 2^n)$, $m \ge 1$, $n \ge 1$. Denote by \mathbb{K}_i (i = 1, 2, 3), the three unramified quadratic extensions of \Bbbk . Then $h_2(\Bbbk_2^{(1)}) = 2$ if and only if $h_2(\mathbb{K}_0) = (1/2)h_2(\Bbbk)$ where $\mathbb{K}_0 = \mathbb{K}_1\mathbb{K}_2\mathbb{K}_3$.

Corollary 2.9 ([6]). Let k be a real quadratic number field such that $\operatorname{Cl}_2(\mathbb{k}) \simeq (2^m, 2^n)$, $m \ge 1$, $n \ge 1$. Denote by \mathbb{K}_i (i = 1, 2, 3), the three unramified quadratic extensions of k. Then $h_2(\mathbb{k}_2^{(1)}) = 2$ if and only if $h_2(\mathbb{K}_1) = h_2(\mathbb{K}_2) = h_2(\mathbb{K}_3) = h_2(\mathbb{k})$ and $q(\mathbb{K}_0/\mathbb{k}) = 4$, where $\mathbb{K}_0 = \mathbb{K}_1 \mathbb{K}_2 \mathbb{K}_3$.

Theorem 2.10 ([6]). Let k be a real quadratic number field with $\operatorname{Cl}_2(\mathbb{k}) \simeq (2^m, 2^n)$, $m \ge 1$, $n \ge 2$, and $d_{\mathbb{k}} = d_1 d_2 r_1 r_2$ or $r_1 r_2 r_3 r_4$ be its discriminant, where d_1 and d_2 are positive prime discriminants and r_1 , r_2 , r_3 , r_4 are negative prime discriminants. Denote by \mathbb{K}_i (i = 1, 2, 3), the three unramified quadratic extensions of k. If $h_2(\mathbb{k}_2^{(1)}) = 2$ then $Q_{\mathbb{K}_i} = Q_{\mathbb{K}_j} = 2$, and $Q_{\mathbb{K}_s} = 1$ or 2 for some $\{i, j, s\} = \{1, 2, 3\}$, where $Q_{\mathbb{K}}$ denotes the unit index of \mathbb{K} .

3 The 4-rank of the 2-class group of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$.

Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be different positive prime integers and $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$. It is well known, by genus theory, that the 2-rank of the class group of \mathbb{k} is 2. The purpose of this section is to determine the 4-rank of the 2-class group of \mathbb{k} .

E. Benjamin and C. Snyder characterized real quadratic fields whose 2-class group is of type (2, 2) in [10]. In particular, they proved the following theorem.

Theorem 3.1. Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be different prime integers. Then the 2-class group of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$ is of type (2,2) (i.e. 4-rank(Cl₂(\mathbb{k})) = 0) if and only if one of the following conditions is satisfied.

1.
•
$$\left(\frac{p_1}{p_2}\right) = 1$$
, and
• $either\left(\frac{2}{p_1}\right) = -1$ or $\left(\frac{q}{p_1}\right) = -1$, and
• $either\left(\frac{2}{p_2}\right) = -1$ or $\left(\frac{q}{p_2}\right) = -1$, and
• $\left(\frac{2}{p_1}\right), \left(\frac{2}{p_2}\right), \left(\frac{q}{p_1}\right), \left(\frac{q}{p_2}\right)$ are not all equal.
2. $\left(\frac{p_1}{p_2}\right) = -1$ and $\left(\frac{2}{p_1}\right), \left(\frac{2}{p_2}\right), \left(\frac{q}{p_1}\right), \left(\frac{q}{p_2}\right)$ are not all equal.

In the following theorem, we give necessary and sufficient conditions for the 2-class group of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$ to be of type $(2, 2^n)$ or $(2^m, 2^n)$, where $n \ge 2$ and $m \ge 2$.

Theorem 3.2. Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be different prime integers. Then the 2-class group of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$ is of type $(2, 2^n)$, where $n \geq 2$, (i.e. 4-rank(Cl₂(\mathbb{k})) = 1) if and only if one of the following conditions is satisfied.

1.
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = 1 \text{ and } \left(\frac{q}{p_1}\right) \left(\frac{q}{p_2}\right) = -1.$$

2. $\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1 \text{ and } \left(\frac{p_1}{p_2}\right) = -1.$
3. $\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = 1 \text{ and } \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = 1.$

4. $\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -1.$

Moreover, 4-rank $(Cl_2(\mathbb{k})) = 2$ if and only if

$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1.$$

Proof. Proceeding as in [3], the results are deduced by applying Theorem 2.4 and Remark 2.5. $\hfill \Box$

4 The FSUs of certain biquadratic number fields

Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be different prime integers. Put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$. Consider the following three unramified quadratic extensions of \mathbb{k} :

$$\mathbb{K}_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2q}), \quad \mathbb{K}_2 = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1q}) \text{ and } \mathbb{K}_3 = \mathbb{Q}(\sqrt{2q}, \sqrt{p_1p_2}).$$

Let $\varepsilon_{2p_1p_2q} = x + y\sqrt{2p_1p_2q}$, $\varepsilon_{2p_1q} = z + t\sqrt{2p_1q}$ and $\varepsilon_{2p_2q} = a + b\sqrt{2p_2q}$ be the fundamental units of $\mathbb{Q}(\sqrt{2p_1p_2q})$, $\mathbb{Q}(\sqrt{2p_2q})$ and $\mathbb{Q}(\sqrt{2p_1q})$ respectively. The goal of this section is to determine a Fundamental System of Units (FSU) of \mathbb{K}_i basing on the conditions cited in Theorem 3.2.

Using similar arguments as in the proof of Lemma 4.1 of [3] (see also [5]), we get the following lemmas.

Lemma 4.1. Suppose that
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = -\left(\frac{q}{p_2}\right) = 1.$$

- 1. If $x \pm 1$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $z \pm 1$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_3 .
- 2. If $p_1(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $p_1(z \pm 1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{2q}\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.
- 3. If $2p_1(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $2p_1(z+1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.

Lemma 4.2. Suppose that $\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = -\left(\frac{q}{p_2}\right) = 1.$

- 1. If $2p_1(x+1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $2p_1(z+1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.
- 2. If $2p_2(x \pm 1)$ is a square in \mathbb{N} , then

- i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
- ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_2 .
- iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_q, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.
- 3. If $q(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according to whether q(z-1) is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_3 .

Lemma 4.3. Suppose that
$$\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1.$$

- 1. If $2p_1(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $2p_1(z\pm 1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.
- 2. If $p_2(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $(z \pm 1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{2q}\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_3 according to whether $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2})$ equals 1 or -1.
- 3. If $2q(x \pm 1)$ is a square in \mathbb{N} , then
 - i. $\{\varepsilon_{p_1}, \varepsilon_{2p_2q}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_1 .
 - ii. $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \sqrt{\varepsilon_{2p_1q}\varepsilon_{2p_1p_2q}}\}$ or $\{\varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q}\}$ is a FSU of \mathbb{K}_2 according as $2q(z\pm 1)$ is or not a square in \mathbb{N} .
 - iii. $\{\varepsilon_{2q}, \varepsilon_{p_1p_2}, \sqrt{\varepsilon_{2q}\varepsilon_{2p_1p_2q}}\}$ is a FSU of \mathbb{K}_3 .

5 The structure of the group $Gal(k_2^{(2)}/k)$.

In this section we consider the field $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$, where $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$, and the three unramified quadratic extensions

$$\mathbb{K}_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2q}), \mathbb{K}_2 = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1q}) \text{ and } \mathbb{K}_3 = \mathbb{Q}(\sqrt{2q}, \sqrt{p_1p_2}).$$

Let $Cl_2(\mathbb{K}_i)$ denote the 2-class group of \mathbb{K}_i (i = 1, 2, 3).

5.1 The metacyclic case

Theorem 5.1. Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be different prime integers, and $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2q})$. Assume $\operatorname{Gal}(\mathbb{k}_2^{(1)}/\mathbb{k})$ is a non-elementary 2-group. Then $G = \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k})$ is metacyclic if and only if

$$\left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = \left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = -1.$$

More precisely,

- i. if $\left(\frac{p_1}{p_2}\right) = 1$, then G is a metacyclic non-abelian non-modular 2-group,
- ii. if $\binom{p_1}{p_2} = -1$, then G is a modular or abelian 2-group according as $2p_1p_2(x+1)$ is a square or not in \mathbb{N} .

Proof. According to Theorems 3.1 and 3.2, there are five cases to distinguish. By [1] and [2] we have:

1. If
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1$$
, then
 $\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_1)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_2)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 3.$

2. If
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = 1$$
 and $\left(\frac{q}{p_1}\right) = -\left(\frac{q}{p_2}\right) = 1$, then
rank $(\operatorname{Cl}_2(\mathbb{K}_1)) = 3$ and rank $(\operatorname{Cl}_2(\mathbb{K}_2)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 2$.

3. If
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1$$
 and $\left(\frac{p_1}{p_2}\right) = -1$, then
rank $(\operatorname{Cl}_2(\mathbb{K}_1)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_2)) = 2$ and rank $(\operatorname{Cl}_2(\mathbb{K}_3)) = 3$.

4. If
$$\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = 1$$
 and $\left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = 1$, then
rank $(\operatorname{Cl}_2(\mathbb{K}_1)) = 3$ and rank $(\operatorname{Cl}_2(\mathbb{K}_2)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 2$.

5. If
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -1$$
, then
i. If $\left(\frac{p_1}{p_2}\right) = 1$, then
 $\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_1)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_2)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_3)) = 2.$

ii. If
$$\left(\frac{p_1}{p_2}\right) = -1$$
, then
rank $(\operatorname{Cl}_2(\mathbb{K}_1)) = \operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_2)) = 1$ and rank $(\operatorname{Cl}_2(\mathbb{K}_3)) = 2$.

Hence the results are deduced from Theorem 2.3, Lemma 2.1 and [8, Theorem 2]. \Box

5.2 The non-metacyclic case

Assuming $\operatorname{Cl}_2(\mathbb{k}) \simeq (2, 2^n)$, $n \geq 2$, for the non-metacyclic case we have four cases to distinguish, according to Theorems 3.2 and 5.1. For simplicity, we will denote by q_i the unit index of the field \mathbb{K}_i (i = 1, 2, 3). In all that follows, we use the notations of [19, page 336]. Put $p_1 = 2e^2 + (-1)^{\gamma}d^2$, $q = 2r^2 + (-1)^{\gamma}s^2$ and $A = sd + 2er + 2\gamma(es + dr)$ according as $\left(\frac{2}{q}\right) = (-1)^{\gamma+1}$, where $\gamma \in \{0, 1\}$.

5.2.1 Case 1:
$$\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = -\left(\frac{q}{p_2}\right) = 1$$

Theorem 5.2 Let $\delta \in \{1, p_1, 2p_1\}$ be such that $\delta(x+1)$ is a

Theorem 5.2. Let $\delta \in \{1, p_1, 2p_1\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N} . The group $\operatorname{Cl}_2(\mathbb{k}_2^{(1)}) \simeq \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k}_2^{(1)})$ is non-elementary cyclic if and only if one of the two following assertions holds:

I. i. $\delta(z \pm 1)$ is not a square in \mathbb{N} ,

ii. at least one of the elements
$$\left\{ \left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4 \right\}$$
 equals -1 , and

iii. either

a.
$$\delta = 1$$
 and $\left(\frac{p_1}{p_2}\right)_4 = \left(\frac{p_2}{p_1}\right)_4$, or
b. $\delta \neq 1$ and $\left(\frac{p_1}{p_2}\right)_4 = \left(\frac{p_2}{p_1}\right)_4 = 1$.

II. i.
$$\delta(z \pm 1)$$
 is a square in \mathbb{N} or $\left(\frac{A}{p_1}\right) = \left(\frac{2q}{p_1}\right)_4 = 1$, and

11. either

a.
$$\delta = 1$$
 and $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$, or
b. $\delta \neq 1$ and one of $\left(\frac{p_1}{p_2}\right)_4$, $\left(\frac{p_2}{p_1}\right)_4$ is equal to -1

Proof. Form Theorem 2.7, we must calculate the 2-class numbers of \mathbb{K}_i .

• By [19], if $\left(\frac{q}{p_2}\right) = -1$, then $h_2(2p_2q) = 2$, and, according to Lemma 4.1, $q_1 = 2$. In this case, the 2-class number of \mathbb{K}_1 is given by [27]:

$$h_2(\mathbb{K}_1) = \frac{1}{4}q_1h_2(p_1)h_2(2p_2q)h_2(2p_1p_2q) = h_2(2p_1p_2q).$$

• If $\left(\frac{2}{p_1}\right) = \left(\frac{q}{p_1}\right) = 1$, then, by [19], $h_2(2p_1q) \ge 4$. More precisely, $h_2(2p_1q) = 4$ if and only if at least one of the elements $\left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4$ equals -1. The 2-class number of \mathbb{K}_2 is given by:

$$h_2(\mathbb{K}_2) = \frac{1}{4}q_2h_2(p_2)h_2(2p_1q)h_2(2p_1p_2q) = \frac{1}{4}q_2h_2(2p_1q)h_2(2p_1p_2q),$$

so $h_2(\mathbb{K}_2) = h_2(2p_1p_2q)$ if and only if $q_2 = 1$ and $h_2(2p_1q) = 4$. On the other hand, by Lemma 4.1, $q_2 = 1$ if and only if $\delta(z \pm 1)$ is not a square in \mathbb{N} .

• Similarly, the 2-class number of \mathbb{K}_3 is given by:

$$h_2(\mathbb{K}_3) = \frac{1}{4}q_3h_2(2q)h_2(p_1p_2)h_2(2p_1p_2q) = \frac{1}{4}q_3h_2(p_1p_2)h_2(2p_1p_2q),$$

so $h_2(\mathbb{K}_3) = h_2(2p_1p_2q)$ if and only if either $q_3 = 1$ and $h_2(p_1p_2) = 4$, or $q_3 = 2$ and $h_2(p_1p_2) = 2$. In this case, according to [21] (see also [25]) and Lemma 4.1, $h_2(\mathbb{K}_3) = h_2(2p_1p_2q)$ if and only if one of the two following conditions is satisfied:

1. $\delta = 1$ and $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$. 2. $\delta \neq 1$ and either $\left(\frac{p_1}{p_2}\right)_4 = -1$ or $\left(\frac{p_2}{p_1}\right)_4 = -1$.

Using Theorem 2.7, we get the results.

Example 5.3. Put $\alpha = \left(\frac{A}{p_1}\right)$, $s = \left(\frac{2q}{p_1}\right)_4$, $t_1 = \left(\frac{p_1}{p_2}\right)_4$, $t_2 = \left(\frac{p_2}{p_1}\right)_4$, $c = \operatorname{Cl}(\mathbb{k}_2^{(1)})$, $n = h_2(\mathbb{k})$, $n_i = h_2(\mathbb{K}_i)$ (i = 1, 2, 3) and $q_0 = q(\mathbb{K}_0/\mathbb{k})$, and by using PARI/GP [26], we get the following examples for the case: $x \pm 1$ is a square, z + 1 and z - 1 are not squares, $(\alpha = -1 \text{ or } s = -1)$ and $t_1 = t_2$.

$d = 2p_1 p_2 q$	q_1	q_2	q_3	α	s	t_1	t_2	n	n_1	n_2	n_3	q_0	с
$38982 = 2 \cdot 73 \cdot 89 \cdot 3$	2	1	2	-1	-1	1	1	8	8	8	16	16	[4]
$60006 = 2 \cdot 73 \cdot 137 \cdot 3$	2	1	2	-1	-1	1	1	8	8	8	64	16	[16]
$298862 = 2 \cdot 73 \cdot 89 \cdot 23$	2	1	2	-1	-1	1	1	8	8	8	16	16	[12]

Theorem 5.4. Let $\delta \in \{1, p_1, 2p_1\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N} . Then $\#Cl_2(\mathbb{k}_2^{(1)}) = 2$ if and only if the following conditions are satisfied:

- i. $\delta(z \pm 1)$ is not a square in \mathbb{N} ,
- ii. at least one of the elements $\left\{ \left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4 \right\}$ equals -1.

iii.
$$\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$$
.

Proof. Suppose that $\#\operatorname{Cl}_2(\mathbb{k}_2^{(1)}) = 2$. Then, according to Corollary 2.9, $h_2(\mathbb{K}_i) = h_2(\mathbb{k})$ for all i = 1, 2, 3. By the proof of Theorem 5.2, the equality $h_2(\mathbb{K}_2) = h_2(\mathbb{k})$ implies the two first conditions and $q_2 = 1$. On the other hand, as $q_1 = 2$, from Theorem 2.10 we infer $q_3 = 2$. Accordingly, $h_2(p_1p_2) = 2$ and $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2}) = 1$, which is equivalent to $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$ (see [25]).

Reciprocally, suppose the three conditions (i), (ii) and (iii) are satisfied. Applying results of the proof of Theorem 5.2, we get $h_2(\mathbb{K}_i) = h_2(\mathbb{k})$ for all i = 1, 2, 3. Let $\mathbb{K}_0 = \mathbb{K}_1 \mathbb{K}_2 \mathbb{K}_3 = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \sqrt{2q})$, and denote by $E_{\mathbb{K}_i}$ the unit group of \mathbb{K}_i and by $q(\mathbb{K}_0/\mathbb{k}) = [E_{\mathbb{K}_0} : E_{\mathbb{K}_1} E_{\mathbb{K}_2} E_{\mathbb{K}_3}]$ the unit index of \mathbb{K}_0/\mathbb{k} . Hence, by Corollary 2.9, it remains to prove only $q(\mathbb{K}_0/\mathbb{k}) = 4$. According to Lemma 4.1, we have:

- 1. $E_{\mathbb{K}_1} = \langle -1, \varepsilon_{p_1}, \varepsilon_{2p_2q}, \varepsilon \rangle$, where $\varepsilon = \sqrt{\varepsilon_{2p_1p_2q}}$ or $\sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}}$ according to $2p_1(x \pm 1)$ is or not a square in \mathbb{N} ,
- 2. $E_{\mathbb{K}_2} = \langle -1, \varepsilon_{p_2}, \varepsilon_{2p_1q}, \varepsilon_{2p_1p_2q} \rangle,$
- 3. $E_{\mathbb{K}_3} = \langle -1, \varepsilon_{2q}, \varepsilon_{p_1p_2}, \varepsilon' \rangle$, where $\varepsilon' = \sqrt{\varepsilon_{2q}\varepsilon_{2p_1p_2q}}$, $\sqrt{\varepsilon_{2q}\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}$ or $\sqrt{\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2q}}$ according to $(x \pm 1)$, $p_1(x \pm 1)$ or $2p_1(x \pm 1)$ is a square in N.

Put

$$A = \varepsilon_{p_1}^{a_1} \varepsilon_{2p_2q}^{a_2} \varepsilon^{a_3}, \quad a_1, a_2, a_3 \in \{0, 1\},$$

$$B = \varepsilon_{p_2}^{b_1} \varepsilon_{2p_1q}^{b_2} \varepsilon_{2p_1p_2q}^{b_3}, \quad b_1, b_2, b_3 \in \{0, 1\},$$

$$C = \varepsilon_{2q}^{c_1} \varepsilon_{p_1p_2}^{c_2} \varepsilon'^{c_3}, \quad c_1, c_2, c_3 \in \{0, 1\},$$

$$\eta^2 = \pm A.B.C.$$

So

$$N_{\mathbb{K}_0/\mathbb{K}_1}(\eta^2) = (-1)^{b_1} (\pm \varepsilon_{2p_1p_2q})^{c_3} (\varepsilon_{2p_1p_2q}^{b_3}A)^2,$$

$$N_{\mathbb{K}_0/\mathbb{K}_2}(\eta^2) = (-1)^{a_1} (\pm \varepsilon_{2p_1p_2q})^{a_3} (\pm \varepsilon_{2p_1p_2q})^{c_3} B^2,$$

$$N_{\mathbb{K}_0/\mathbb{K}_3}(\eta^2) = (-1)^{a_1} (-1)^{b_1} (\pm \varepsilon_{2p_1p_2q})^{a_3} (\varepsilon_{2p_1p_2q}^{b_3}C)^2.$$

Assume $\eta \in \mathbb{K}_0$, if $a_3 \neq 0$ or $c_3 \neq 0$, then $\sqrt{\varepsilon_{2p_1p_2q}} \in \mathbb{K}_2$ or $\sqrt{\varepsilon_{2p_1p_2q}} \in \mathbb{K}_3$, which contradicts Lemma 4.1. On the other hand, if $a_3 = c_3 = 0$ and $(a_1 = 1 \text{ or } b_1 = 1)$, then $N_{\mathbb{K}_0/\mathbb{K}_1}(\eta^2) < 0$ or $N_{\mathbb{K}_0/\mathbb{K}_2}(\eta^2) < 0$, which contradicts the fact that $N_{\mathbb{K}_0/\mathbb{K}_i}(\eta^2) > 0$. Therefore, $a_1 = b_1 = a_3 = c_3 = 0$ and we get

$$\eta^2 = \pm \varepsilon_{2p_2q}^{a_2} \varepsilon_{2p_1q}^{b_2} \varepsilon_{2p_1p_2q}^{b_3} \varepsilon_{2q}^{c_1} \varepsilon_{p_1p_2}^{c_2}$$

From the proof of Lemma 4.1, we deduce that $\sqrt{\varepsilon_{2q}\varepsilon_{2p_iq}}$ or $\sqrt{\varepsilon_{2p_iq}} \in E_{\mathbb{K}_0}$ (i = 1, 2). According to our assumption, $N_{\mathbb{Q}(\sqrt{p_1p_2})/\mathbb{Q}}(\varepsilon_{p_1p_2}) = 1$, which implies that $\sqrt{\varepsilon_{p_1p_2}} \in E_{\mathbb{K}_0}$. We distinguish the following cases:

i. If $(x \pm 1)$ is a square in \mathbb{N} , then $\sqrt{\varepsilon_{2q}}, \sqrt{\varepsilon_{2p_2q}}, \sqrt{\varepsilon_{2p_1p_2q}} \notin E_{\mathbb{K}_0}$, and Lemma 4.1 implies that

$$\frac{\sqrt{\varepsilon_{p_1p_2}}}{\sqrt{\varepsilon_{2p_1q_2}}} \notin E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}, \\
\frac{\sqrt{\varepsilon_{2q}\varepsilon_{2p_1q_1}}}{\sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q_1}}} \notin E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}, \\
\sqrt{\varepsilon_{2q}\varepsilon_{2p_1p_2q_1}}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q_1}} \in E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}.$$

By a case by case study, we obtain

$$E_{\mathbb{K}_0} = \langle \sqrt{\varepsilon_{2p_1q}} \text{ or } \sqrt{\varepsilon_{2q}\varepsilon_{2p_1q}}, \sqrt{\varepsilon_{p_1p_2}}, E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3} \rangle.$$

ii. If $p_1(x \pm 1)$ is a square in \mathbb{N} , then $\sqrt{\varepsilon_{2q}}, \sqrt{\varepsilon_{2p_2q}}, \sqrt{\varepsilon_{2p_1p_2q}} \notin E_{\mathbb{K}_0}$, By Lemma 4.1, we have

$$\frac{\sqrt{\varepsilon_{p_1p_2}}}{\sqrt{\varepsilon_{2q}\varepsilon_{2p_1q}}} \notin E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}, \\
\frac{\sqrt{\varepsilon_{2q}\varepsilon_{2p_1q}}}{\sqrt{\varepsilon_{2q}\varepsilon_{2p_1p_2q}}}, \sqrt{\varepsilon_{2p_2q}\varepsilon_{2p_1p_2q}} \in E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}.$$

Thus we obtain

$$E_{\mathbb{K}_0} = \langle \sqrt{\varepsilon_{2p_1q}} \text{ or } \sqrt{\varepsilon_{2q}\varepsilon_{2p_1q}}, \sqrt{\varepsilon_{p_1p_2}}, E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3} \rangle.$$

iii. If $2p_1(x \pm 1)$ is a square in \mathbb{N} , then $\sqrt{\varepsilon_{2q}}$, $\sqrt{\varepsilon_{2p_2q}} \notin E_{\mathbb{K}_0}$ and $\sqrt{\varepsilon_{2q}\varepsilon_{2p_2q}} \in E_{\mathbb{K}_0}$, by Lemma 4.1, $\sqrt{\varepsilon_{p_1p_2}}$, $\sqrt{\varepsilon_{2p_1p_2q}} \in E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3}$, from which we deduce that

$$E_{\mathbb{K}_0} = \langle \sqrt{\varepsilon_{2p_1q}} \text{ or } \sqrt{\varepsilon_{2q}\varepsilon_{2p_1q}}, \sqrt{\varepsilon_{2q}\varepsilon_{2p_2q}}, E_{\mathbb{K}_1}E_{\mathbb{K}_2}E_{\mathbb{K}_3} \rangle.$$

In the three cases we get $q(\mathbb{K}_0/\mathbb{k}) = 4$, so it suffices to apply Corollary 2.9 to obtain the results.

Example 5.5. Keep the notation of Example 5.3. For the case $p_1(x \pm 1)$ is a square, $p_1(z \pm 1)$ is not a square, $(\alpha = -1 \text{ or } s = -1)$ and $t_1 \neq t_2$, we have

$d = p_1 p_2 q$	q_1	q_2	q_3	α	s	t_1	t_2	$\mid n$	n_1	n_2	n_3	q_0	С
$51798 = 2 \cdot 97 \cdot 89 \cdot 3$	2	1	2	-1	1	1	-1	8	8	8	8	16	[2]
$64862 = 2 \cdot 113 \cdot 41 \cdot 7$	2	1	2	-1	1	1	-1	8	8	8	8	16	[6]
$113734 = 2 \cdot 73 \cdot 41 \cdot 19$	2	1	2	1	-1	-1	1	8	8	8	8	16	[6]

5.2.2 Case 2: $\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -\left(\frac{p_1}{p_2}\right) = 1$

Lemma 5.6. Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be three positive prime integers satisfying $\binom{2}{p_1} = \binom{2}{p_2} = \binom{q}{p_1} = \binom{q}{p_2} = -\binom{p_1}{p_2} = 1$. Then the rank of the 2-class group of $\mathbb{K}_0 = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \sqrt{2q})$ equals 3.

Proof. As $\left(\frac{p_1}{p_2}\right) = -1$, it is well known (cf. [21]) that the class number of $\mathbb{k}_0 = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2})$ is odd. Consider the extension $\mathbb{K}_0/\mathbb{k}_0$. Then according to [18], the rank of the 2-class group of \mathbb{K}_0 is given by the formula:

$$\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_0)) = r - e - 1,$$

where r is the number of finite and infinite primes of \mathbb{k}_0 that ramify in $\mathbb{K}_0/\mathbb{k}_0$ and e is defined by $2^e = [E_{\mathbb{k}_0} : E_{\mathbb{k}_0} \cap N_{\mathbb{K}_0/\mathbb{k}_0}(\mathbb{K}_0^*)] \leq 2^4$. As r = 8 (4 primes above 2 and 4 above q), rank($\operatorname{Cl}_2(\mathbb{K}_0)$) = $r - e - 1 = 8 - e - 1 \geq 3$. On the other hand, the Schreier's inequality implies that rank($\operatorname{Cl}_2(\mathbb{K}_0)$) ≤ 3 , concluding the proof.

168

Theorem 5.7. Let $p_1 \equiv p_2 \equiv -q \equiv 1 \pmod{4}$ be three positive prime integers satisfying $\left(\frac{2}{p_1}\right) = \left(\frac{2}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -\left(\frac{p_1}{p_2}\right) = 1$. Then

$$\operatorname{rank}(\operatorname{Cl}_2(\mathbb{k}_2^{(1)})) \ge 2.$$

Proof. Suppose that $\operatorname{rank}(\operatorname{Cl}_2(\mathbb{k}_2^{(1)})) = 1$, then, by Lemma 2.2, the proof of Theorem 5.1 and class field theory, the Galois groups $\operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{K}_1)$ and $\operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{K}_2)$ are metacyclic, and since \mathbb{K}_0 is an unramified quadratic extension of \mathbb{K}_1 , then Lemma 2.1 implies that $\operatorname{rank}(\operatorname{Cl}_2(\mathbb{K}_0)) \leq 2$, which contradicts Lemma 5.6.

Example 5.8. For $d = 47158 = 2 \cdot 73 \cdot 17 \cdot 19$, we have $Cl_2(\mathbb{k}_2^{(1)})$ is of type (2,4), and for $d = 59942 = 2 \cdot 17 \cdot 41 \cdot 43$, we have $Cl_2(\mathbb{k}_2^{(1)})$ is of type (2,4).

5.2.3 Case 3:
$$\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = -\left(\frac{q}{p_2}\right) = 1$$

Using similar arguments as above, we prove the following two theorems.

Theorem 5.9. Let $\delta \in \{2p_1, 2p_2, q\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N} . The group $\operatorname{Cl}_2(\mathbb{k}_2^{(1)}) \simeq \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k}_2^{(1)})$ is cyclic non-elementary if and only if one of the following two conditions is satisfied:

I. i. $\delta \neq 2p_2$ and $\delta(z \pm 1)$ is not a square in \mathbb{N} , and ii. at least one of the elements $\left\{ \left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4 \right\}$ equals -1, and iii. either a. $\delta = q$ and $\left(\frac{p_1}{p_2}\right)_4 = \left(\frac{p_2}{p_1}\right)_4$, or

II. i. $\delta = 2p_2 \text{ or } \delta(z \pm 1)$ is a square in \mathbb{N} or $\left(\frac{A}{p_1}\right) = \left(\frac{2q}{p_1}\right)_4 = 1$, and

b. $\delta \neq q$ and $\left(\frac{p_1}{p_2}\right)_A = \left(\frac{p_2}{p_1}\right)_A = 1$

ii. either

a.
$$\delta = q \text{ and } \left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$$
, or
b. $\delta \neq q \text{ and one of } \left(\frac{p_1}{p_2}\right)_4$, $\left(\frac{p_2}{p_1}\right)_4$ is equal to -1 .

Example 5.10. Keep the notation of Example 5.3. For the case $2p_2(x \pm 1)$ is a square and $t_1 = -1$ or $t_2 = -1$, we have

$d = 2p_1 p_2 q$	q_1	q_2	q_3	α	s	t_1	t_2	n	n_1	n_2	n_3	q_0	c
$17630 = 2 \cdot 41 \cdot 5 \cdot 43$	2	2	2	1	1	1	-1	8	8	32	8	32	[8]
$29614 = 2 \cdot 17 \cdot 13 \cdot 67$	2	2	2	1	-1	-1	1	8	8	16	8	32	[4]
$34238 = 2 \cdot 17 \cdot 53 \cdot 19$	2	2	1	1	1	-1	-1	8	8	32	8	16	[8]
$41830 = 2 \cdot 89 \cdot 5 \cdot 47$	2	2	1	-1	-1	-1	-1	16	16	32	16	16	[4]
$59630 = 2 \cdot 89 \cdot 5 \cdot 67$	2	2	1	-1	1	-1	-1	8	8	16	8	16	[4]
$69782 = 2 \cdot 41 \cdot 37 \cdot 23$	2	2	2	1	-1	-1	1	8	8	16	8	32	[4]
$91078 = 2 \cdot 113 \cdot 13 \cdot 31$	2	2	2	-1	-1	1	-1	16	16	32	16	32	[12]

Theorem 5.11. Let $\delta \in \{2p_1, 2p_2, q\}$ be such that $\delta(x \pm 1)$ is a square in \mathbb{N} . The order $\#Cl_2(\mathbb{k}_2^{(1)}) = 2$ if and only if the following conditions are satisfied:

- i. $\delta \neq 2p_2$ and $\delta(z \pm 1)$ is not a square in \mathbb{N} ,
- ii. at least one of the elements $\left\{ \left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4 \right\}$ equals -1,
- iii. $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$.

Example 5.12. Keep the notation of Example 5.3. For the case $q(x\pm 1)$ is a square, q(z+1) and q(z-1) are not squares, $(\alpha = -1 \text{ or } s = -1)$ and $t_1 \neq t_2$ we have

$d = 2p_1 p_2 q$	q_1	q_2	q_3	α	s	t_1	t_2	n	n_1	n_2	n_3	q_0	С
$9430 = 2 \cdot 41 \cdot 5 \cdot 23$	2	1	2	1	-1	1	-1	16	16	16	16	16	[2]
$20774 = 2 \cdot 17 \cdot 13 \cdot 47$	2	1	2	1	-1	-1	1	8	8	8	8	16	[2]
$94054 = 2 \cdot 41 \cdot 37 \cdot 31$	2	1	2	1	-1	-1	1	8	8	8	8	16	[2]
$102638 = 2 \cdot 73 \cdot 37 \cdot 19$	2	1	2	1	-1	-1	1	8	8	8	8	16	[6]

5.2.4 Case 4:
$$\left(\frac{2}{p_1}\right) = -\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = 1$$

Using similar arguments as above, we prove the following two theorems.

Theorem 5.13. Let $\delta \in \{2p_1, p_2, 2q\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N} . The group $\operatorname{Cl}_2(\mathbb{k}_2^{(1)}) \simeq \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k}_2^{(1)})$ is cyclic non-elementary if and only if one of the following two conditions is satisfied:

- i. δ = p₂ (resp. δ ≠ p₂) and (z ± 1) (resp. δ(z ± 1)) is not a square in N,
 ii. at least one of the elements { (A/p₁), (2q/p₁)_A } equals -1,
 - iii. either

a.
$$\delta = 2q$$
 and $\left(\frac{p_1}{p_2}\right)_4 = \left(\frac{p_2}{p_1}\right)_4$, or
b. $\delta \neq 2q$ and $\left(\frac{p_1}{p_2}\right)_4 = \left(\frac{p_2}{p_1}\right)_4 = 1$

- II. i. $(z \pm 1)$ (resp. $\delta(z \pm 1)$) is a square in \mathbb{N} if $\delta = p_2$ (resp. $\delta \neq p_2$) or $\left(\frac{A}{p_1}\right) = \left(\frac{2q}{p_1}\right)_4 = 1$, ii. either
 - a. $\delta = 2q$ and $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$, or b. $\delta \neq 2q$ and one of $\left(\frac{p_1}{p_2}\right)_4$, $\left(\frac{p_2}{p_1}\right)_4$ is equal to -1.

Example 5.14. Keep the notation of Example 5.3. For the case $p_2(x \pm 1)$ is a square, $(z \pm 1)$ is a square or $(\alpha = s = 1)$ and $(t_1 = -1 \text{ or } t_2 = -1)$, we have

$d = 2p_1 p_2 q$	q_1	q_2	q_3	α	s	t_1	t_2	n	n_1	n_2	n_3	q_0	С
$84422 = 2 \cdot 17 \cdot 13 \cdot 191$	2	2	2	1	-1	-1	1	8	8	16	8	32	[12]
$113102 = 2 \cdot 97 \cdot 53 \cdot 11$	2	1	2	1	1	1	-1	8	8	16	8	16	[4]
$123710 = 2 \cdot 89 \cdot 5 \cdot 139$	2	1	1	1	1	-1	-1	8	8	16	8	16	[8]
$139334 = 2 \cdot 233 \cdot 13 \cdot 23$	2	1	1	1	1	-1	-1	8	8	16	8	16	[8]
$159310 = 2 \cdot 89 \cdot 5 \cdot 179$	2	1	1	1	1	-1	-1	8	8	32	8	16	[16]

Theorem 5.15. Let $\delta \in \{2p_1, p_2, 2q\}$ such that $\delta(x \pm 1)$ is a square in \mathbb{N} . The order $\#Cl_2(\mathbb{k}_2^{(1)}) = 2$ if and only if the following conditions are satisfied:

i. $\delta = p_2$ (resp. $\delta \neq p_2$) and $(z \pm 1)$ (resp. $\delta(z \pm 1)$) is not a square in \mathbb{N} ,

ii. at least one of the elements $\left\{ \left(\frac{A}{p_1}\right), \left(\frac{2q}{p_1}\right)_4 \right\}$ equals -1,

iii. $\left(\frac{p_1}{p_2}\right)_4 \neq \left(\frac{p_2}{p_1}\right)_4$.

Example 5.16. Keep notations of Example 5.3. For the case: $p_2(x \pm 1)$ is a square, z + 1 and z - 1 are not squares, ($\alpha = -1$ or s = -1) and $t_1 \neq t_2$.

$d = 2p_1 \cdot p_2 \cdot q$	q_1	q_2	q_3	α	s	t_1	t_2	n	n_1	n_2	n_3	q_0	c
$45526 = 2 \cdot 17 \cdot 13 \cdot 103$	2	1	2	-1	-1	-1	1	8	8	8	8	16	[6]
$53710 = 2 \cdot 41 \cdot 5 \cdot 131$	2	1	2	-1	1	1	-1	8	8	8	8	16	[2]
$56134 = 2 \cdot 17 \cdot 13 \cdot 127$	2	1	2	-1	1	-1	1	16	16	16	16	16	[6]
$63438 = 2 \cdot 97 \cdot 109 \cdot 3$	2	1	2	-1	1	1	-1	8	8	8	8	16	[2]

References

- [1] Azizi A. and Mouhib A.: Sur le rang du 2-groupe de classes de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$, où m = 2 ou un premier $p \equiv 1 \mod 4$. Trans. Amer. Math. Soc. 353 (7) (2001) 2741–2752.
- [2] Azizi A. and Mouhib A.: Capitulation des 2-classes d'idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classes de Hilbert. Pacific. J. Math. 218 (1) (2005) 17–36.

- [3] Azizi A., Rezzougui M., Taous M. and Zekhnini A.: On the Hilbert 2-class field of some quadratic number fields. Int. J. Number Theory. 15 (4) (2019) 807–824.
- [4] Azizi A., Rezzougui M. and Zekhnini A.: On the maximal unramified pro-2-extension of certain cyclotomic Z₂-extensions. *Period. Math. Hung.* 83 (2021) 54–66.
- [5] Azizi A., Taous M. and Zekhnini A.: Capitulation in Abelian extensions of some fields $\mathbb{Q}(\sqrt{p_1p_2q}, i)$. In: AIP Conf. Proc.1705.2016 1–8.
- [6] Benjamin E.: Some real quadratic number fields with their Hilbert 2-class field having cyclic 2-class group. J. Number. Theory. 173 (2017) 529–546.
- [7] Benjamin E., Lemmermeyer F. and Snyder C.: Imaginary Quadratic Fields k with cyclic Cl2(k¹).
 J. Number. Theory. 67 (1997) 229–245.
- [8] Benjamin E., Lemmermeyer F. and Snyder C.: Real quadratic fields with abelian 2-class field tower. J. Number. Theory. 73 (1998) 182–194.
- [9] Benjamin E., Lemmermeyer F. and Snyder C.: Imaginary Quadratic Fields k with $\operatorname{Cl}_2(k) \simeq (2, 2^n)$ and rank $\operatorname{Cl}_2(k^1) = 2$. Pacific. J. Math. 198 (1) (2001) 15–31.
- [10] Benjamin E. and Snyder C.: Real quadratic fields with 2-class group of type (2,2). Math. Scand. 76 (1995) 161–178.
- [11] Benjamin E. and Snyder C.: Some Real Quadratic Number Fields whose 2-Class Fields have Class Number Congruent to 2 Modulo 4. Acta. Arith. 177 (2017) 375–392.
- [12] Benjamin E. and Snyder C.: On the Rank of the 2-Class Group of the Hilbert 2-Class Field of some Quadratic Fields. Quart. J. Math. 69 (4) (2018) 1163–1193.
- [13] Benjamin E. and Snyder C.: Classification of metabelian 2-groups G with $G^{ab} \simeq (2, 2^n)$, $n \ge 2$, and rank d(G') = 2, Applications to real quadratic number fields. J. Pure. Appl. Algebra. 223 (2019) 108–130.
- [14] Blackburn N.: On Prime-Power Groups in which the Derived Group has Two Generators. Proc. Camb. Phil. Soc. 53 (1957) 19–27.
- [15] Blackburn N.: Generalizations of certain elementary theorems on p-groups. Proc. London Math. Soc. 11 (1961) 1–22.
- [16] Couture R. and Derhem A.: Un problème de capitulation. C. R. Acad. Sci. Paris. Série I 314 (1992) 785–788.
- [17] Gorenstein D.: Finite Groups. Harper & Row, New York (1968).
- [18] Gras G.: Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier *l*. Ann. Inst. Fourier. Grenoble. 23 (3) (1973) 1–48.
- [19] Kaplan P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976) 313–363.
- [20] Kisilevsky H.: Number fields with class number congruent to 4 modulo 8 and Hilbert's Theorem 94. J. Number. Theory. 8 (1976) 271–279.
- [21] Kučera R.: On the parity of the class number of biquadratic field. J. Number. Theory. 52 (1995) 43–52.
- [22] Lemmermeyer F.: Kuroda's class number formula. Acta. Arith. 66 (3) (1994) 245–260.

- [23] Rédei L.: Arithmandischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math. 171 (1935) 55-60.
- [24] Schmithals B.: Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm. Arch. Math. 34 (1980) 307–312.
- [25] Scholz A.: Über die Löbarkeit der Gleichung $t^2 Du^2 = -4$. Math. Z. 39 (1934) 95–111.
- [26] The PARI Group: PARI/GP, Bordeaux, Version 2.9.1 (64 bit) (2016).
- [27] Wada H.: On the class number and the unit group of certain algebraic number fields. Tokyo. U. Fac. of. sc. J. Serie I 13 (1966) 201–209.

Received: October 15, 2019 Accepted for publication: February 28, 2022 Communicated by: Atilla Berczes