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Note on geodesics of cotangent bundle with Berger-type
deformed Sasaki metric over standard Kahler manifold

Abderrahim Zagane

Abstract. In this paper, first, we introduce the Berger-type deformed Sasaki met-
ric on the cotangent bundle T*M over a standard Kihler manifold (M?™, J, g) and
investigate the Levi-Civita connection of this metric. Secondly, we present the unit
cotangent bundle equipped with Berger-type deformed Sasaki metric, and we inves-
tigate the Levi-Civita connection. Finally, we study the geodesics on the cotangent
bundle and the unit cotangent bundle concerning the Berger-type deformed Sasaki
metric.

1 Introduction

One can define natural Riemannian metrics on the cotangent bundle of a Riemannian
manifold. Their construction makes use of the Levi-Civita connection. Among them, the
so-called Sasaki metric is of particular interest. That is why A.A. Salimov and F. Agca
have studied the geometry of a cotangent bundle equipped with the Sasaki metric [7, 8],
A.A. Salimov and F. Ocak [9]. The rigidity of Sasaki metric has incited some researchers to
construct and study other metrics on the cotangent bundle. This is the reason why some
authors have attempted to search for different metrics on the cotangent bundle, which are
different deformations of the Sasaki metric. In this direction, some authors defined and
studied some metrics, which are called Cheeger-Gromoll metric [2] or g-Natural Metrics
[1, 19] or new metric in the cotangent bundle [6, 5] or a new class of metrics on the
cotangent bundle [12, 20]. In another direction, A. Zagane has introduced the notion of
Berger-type deformed Sasaki metric on the cotangent bundle over anti-paraKahler manifold
[13, 14, 17]. For deformations of the Sasaki metric or Cheeger-Gromoll metric, we also refer
to [3, 15, 16, 18].
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The main idea in this paper, firstly, we introduce the Berger-type deformed Sasaki met-
ric on the cotangent bundle T*M over a standard Kéahler manifolds manifold (M?™,.J, g)
and we investigate the formulas relating to its Levi-Civita connection (Theorem 3.5). Sec-
ondly, we present the unit cotangent bundle equipped with the Berger-type deformed
Sasaki metric, and we establish the formulas relating to the Levi-Civita connection of this
metric (Theorem 4.1). In the last section, we study the geodesics on the cotangent bundle
(Theorem 5.2, Corollary 5.3, Corollary 5.4 and Theorem 5.8) and on unit cotangent bundle
(Theorem 5.10, Theorem 5.11, Theorem 5.12 and Theorem 5.14).

2 Preliminaries

Let (M™, g) be an m-dimensional Riemannian manifold, 7% M be its cotangent bundle
and m : T*M — M the natural projection. A local chart (U,x");_;; on M induces a
local chart (7='(U), 2!, 2" = Pi)iemiiam on 1" M, where p; is the component of covector p
in each cotangent space TM, x € U with respect to the natural coframe {dz'}, denote
by 0; = 5% and 0; = 325. Let C®°(M) (resp. C°(T*M)) be the ring of real-valued C'*
functions on M (resp. T*M) and S%(M) (resp. S%L(T*M)) be the module over C*°(M)
(resp. C(T*M)) of C* tensor fields of type (r,s). Denote by I'}; the Christoffel symbols
of g and by V the Levi-Civita connection of g.

The Levi Civita connection V defines a direct sum decomposition

TT"M =VT*M & HT*M (1)
of the tangent bundle to T*M at any (x,p) € T*M into vertical subspace
ViepT"M = ker(dm(yp)) = {wi|(zp), wi € R}, (2)
and the horizontal subspace
H ) T"M = {X'0}|2.p) + X'l 3,08z, X' € R} (3)

Note that the map X — X = X i6i|(x7p) + X ipafzi(‘?ﬂ(xm) is an isomorphism between
the vector spaces T, M and H, 1™ M.

Similarly, the map w — "w = w;0|(zp) 1s an isomorphism between the vector spaces
T M and Vi, ,)T*M. Obviously, each tangent vector Z € T{, ,,T* M can be written in the
form Z = #X + Vw, where X € T,M and w € T} M are uniquely determined.

Let X = X'0; and w = w;dz" be local expressions in (U, z');,_1;, of a vector and
covector (1-form) field X € S3(M) and w € SY(M), respectively. Then the horizontal lift
HX € SH(T*M) of X € I4(M) and the vertical lift Yw € SHT*M) of w € SY(M) are
defined, respectively by

Vw = wok, (5)
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with respect to the natural frame {0;, 0;}, (see [11] for more details).
From (4) and (5) we see that (9;) and Y(dz*) have respectively local expressions of the
form

H(az) = 0+ pal'}y;0n, (6)
V') = o (7)

The set of vector fields {(9;)} on 771 (U) define a local frame for HT*M over 7—'(U) and
the set of vector fields {¥(dx?)} on #~1(U) define a local frame for VT*M over 7~ (U).
The set {#(9;),"(dz")} define a local frame on T*M, adapted to the direct sum decompo-
sition (1).
In particular, we have the vertical spray "p on T*M defined by
'p = pi¥(da’) = i, (8)

Vp is also called the canonical or Liouville vector field on T*M.

Lemma 2.1 ([11]). Let (M™, g) be a Riemannian manifold, V be the Levi-Civita connec-
tion, and R be the Riemannian curvature tensor. Then the Lie bracket of the cotangent
bundle T*M of M satisfies the following

(1) [Vw7 VQ] =0,
(2) ["X,V0] = V(Vx0),
(3) [HXv HY] = H[Xv Y] + V(pR(X7 Y>>7

for all XY € S{(M) and w,0 € IYM), such that pR(X,Y) = p,R?

e XY da®, where
R, are local components of R on (M™, g).

Let (M™, g) be a Riemannian manifold, we define the map

SUM) = So(M) ~ _
w — I by g(waX) - W(X)7
for all X € Y(M). Locally if w = w;dz’ € SY(M), we have

W = gijwiaju (9)

where (¢/) is the inverse matrix of the matrix (g;;).
The scalar product g=' = (¢*) is defined on the cotangent space T M by

97 (w,0) = 9(&,0) = gYwib;,
for all z € M and w,6 € IY(M). In this case we have w = g~ o w.
We also define the map
So(M)
X

R VI (i R )
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for all Y € S} (M). Locally if X = X'0; € S} (M), we have
X = gy X'da?, (10)
we also write X = goX.

Lemma 2.2 ([14]). Let (M, g) be a Riemannian manifold, then we have the following:

G-w , X=X, (11)
7 w.0)) = g(J.0), (12)

Vi = Vxw, (13)
Xg ' (w,0) = g7(Vxw,0) +g ' (w, Vxb), (14)
WR(X,Y) = R(Y,X), (15)

for all X, Y € S{M), w,0 € SYM) and J € ${(M), where V is the Levi-Civita connec-
tion of (M, g).

3 Berger-type deformed Sasaki metric

Let M" be an r-dimensional differentiable manifold. An almost complex structure .J
on M is a (1,1)-tensor field on M such that J? = —I, (I is the (1, 1)-identity tensor
field on M. The pair (M",J) is called an almost complex manifold. Since every almost
complex manifold is even dimensional, We will take » = 2m. Also, note that every complex
manifold (Topological space endowed with a holomorphic atlas) carries a natural almost
complex structure [4]. The integrability of a complex structure J on M is equivalent to
the vanishing of the Nijenhuis tensor N;:

Ny(X,Y)=[JX,JY] = J[JX,Y] = J[X,JY] - [X,Y] (16)

for all vector fields X,Y on M.
On an almost complex manifold (M?™, .J), a Hermitian metric is a Riemannian metric
g on M such that

or from (12) equivalently
g (W) 0) = =g (w,0]) & g (w],0]) = g (w, 0), (18)

for all X|Y € 33(M) and w,6 € I9(M).

The almost complex manifold (M?™, J) having the Hermitian metric g is called an
almost Hermitian manifold. Let (M?™,.J, g) be an almost Hermitian manifold. We define
the fundamental or Kéhler 2-form 2 on M by

QX,Y)=g(X,JY), (19)
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for any vector fields X and Y on M. A Hermitian metric g on an almost Hermitian manifold
M?™ is called a standard Kahler metric if the fundamental 2-form € is closed, i.e., dQ = 0.
In this case, the triple (M?™, J, g) is called an almost standard Kéhler manifold. If the
almost complex structure is integrable, then the triple (M?™, J, g) is called a standard
Kéhler manifold. Moreover, the following conditions are equivalent

1. V.J =0,
2. VQ =0,
3. Ny =0 and dQ =0,

where V is the Levi-Civita connection of ¢ [4].
As a result, the almost Hermitian manifold (M?™, J, g) is a standard Kahler manifold
if and only if VJ = 0. Using the formula

W(VXJ) :Vx(wj)—(va)J. (20)

Also, the almost Hermitian manifold (M?™, J, g) is a standard Kahler manifold if and only
if

VX(WJ) = (VXCU)J (21)
for all X € (M), w € SY(M). The Riemannian curvature tensor R of a standard Kahler

manifold possess the following properties:

R(Y,Z)J =JR(Y,Z),
R(JY,JZ) =R(Y,Z2), (22)
R(JY,Z) =-R(Y,JZ),

for all Y, Z € S (M).

Lemma 3.1. Let (M*™,J,g) be an almost Hermitian manifold. We have the following:

wJ = —Jw, (23)
for any w € SY(M).

Definition 3.2. Let (M?™, J, g) be an almost Hermitian manifold and 7* M be its cotangent
bundle. A fiber-wise Berger-type deformation of the Sasaki metric noted #° is defined on
T*M by
(X Y) = ¢(X.Y),
P(X,Y9) = 0,
P("w,"0) = g7 M w,0) +0%g  (w,p])g (0, p]),

for all X|Y € S{(M), w,0 € SY(M), where 6 is some constant [13],[14],[17], for version
tangent bundle see [10].
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In the following, we put A = 1+ 6*r% and 72 = g~ '(p,p) = |p|>. where |.| denote the

norm with respect to g1

Lemma 3.3. Let (M?™,J g) be a standard Kdhler manifold and f : R — R a smooth
function, we have the following:

HX(f(r?) =0,

YO(f(r?)) =2f'(r*)g" (0, p),

X g w,p) = g7 (Vxw, p),

g (w,p) = g7 (w,0),

X g~ w,pJ) = g7 (Vxw,pJ),

g (w,pJ) = g~ (w, 0]),

for all X € SH(M) and w,8 € SU(M), where 1> = g~ (p,p), see [12],[14].

~

S & e e

Lemma 3.4. Let (M?™,J, g) be a standard Kihler manifold and T*M its cotangent bundle
equipped with the Berger-type deformed Sasaki metric 5, we have the following:

(1) "XP("w. ') = P("(Vxw),"0) + "%("w, (Vx0)),
(2) "™("w, ') = %97 (w,nT)gT (0.p]) + 6% (w,pJ)g ™ (0,n]),
for all X € (M) and w,0,m € SY(M), see as well [1/]

We shall calculate the Levi-Civita connection 29V of T* M with Berger-type deformed
Sasaki metric #%. The Koszul formula characterizes this connection:

25% (P3N V. W) = UP5(V, W) + VE%(W,U) = W5%(U, V)
+%(W, [U, V) + P2V, W, U]) = 5% (U, [V, W), (24)
for all U, V,W € S{(T*M).
Theorem 3.5. Let (M*™, ], g) be a standard Kdhler manifold and T*M its cotangent bun-

dle equipped with the Berger-type deformed Sasaki metric 2%, then we have the following
formulas:

(i) PVuxfy = H(VXY)+%V(pR(X,Y)),

(i) P5Vints = V(Vx0) + 5 ((REHX) ~ %97 (0.p)) (R, T5)X)),
(i) PV = (RGE)Y) — 897 (w,p)) (RE TDY)),
(iv) P5V,"0 = &*(g " (w,p])"(0J) + g " (0,p])" (w]))

—%(g‘l(w,pJ)g‘l(&p) + 9 (w,p)g ' (0,p]))"(p)),
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for all XY € S§(M) and w,0 € IY(M), where V is the Levi-Civita connection of
(M*™ J,g) and R is its curvature tensor, (for anti-paraKdihler manifold, see [1/]).

Proof. The proof of Theorem 3.5 follows directly from Kozul formula (24), Lemma 2.1,
Definition 3.2 and Lemma 3.4.
(1) Direct calculations give

QBSg(BSVHXH}/’ Hz) — HXBSg(HY, Hz) + HYBSg(HZ, HX) _ HZBSg(HX, Hy)
+5% ("2, ("X, 1Y) + P (MY, M2, X)) — P (X [y, P Z])
= Xg(Y,2)+Y9(Z,X) - Zg(X,Y) + 9(Z,[X,Y])
+9(Y,[Z, X]) — g(X,[Y, Z])
— 29(VxY,Z)
— QBSg(H(va)7 Hz)’
BSg(BSVHXHY7 V,r]) — HXBSg(HY7 Vn) + HYBSg(VT], HX) . VT]BSg(HX, Hy)
+5% (Y, (71X, 1Y]) + P (M, [V, X)) — PR (X MY, Vi)
= (", "X, 1Y)
= P("(pR(X,Y)),"n),

Thus, we find
1
BS ux My = H(VxY) + §V(pR(X, Y)).
(2) In a similar way,
9BSG(BS 1 V0, Hz) = HXBSy(Vy, Hy) 4 VeBsy(tiz Hx) — HzBSy(Hx Vp)
+5% ("2, 17X, V0)) + P59 ("0, [12, X)) — P (UX, [16,112))
= P%("0,["2,7X])

= "%("(pR(Z,X)),"0)
= ¢ '(PR(Z,X),0) + 69 (pR(Z, X),pJ)g (0, pJ]),

From (15), we have

) = g(R(X, 2)p,0) = g(R(p,0)X, Z)
)X),"Z).

D

g (pR(Z,X),0) = g(PR(ZX),
= P%("(R(p,

On the other hand, using (12), (15) and (22), we have

™

g (PR(Z,X),pJ) = g(J(R(ZX)),P) = g(JR(X, Z)j, )
= g(R(X,Z)Jﬁ,ﬁ):g(R(Jﬁ,ﬁ)X,Z)
= BSy(H(R(J5.5)X),Z),
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then,
25% (PN ux'0,72) = P("(R(p, 0)X) — 6% (0.p.)"(R(p, Jp) X)), "Z),
and also with direct calculations, we obtain
25% (P Vux "0, n) = HXP%("0, V) + V05%(Yn, X)) = (X, )
+5%(Yn, [7X,V0) + P V0, ["n, X)) — Po("X, V0, Vi)
= X7, ) + (Y, [7X,V0)) + P (Y0, [V, X).
Using the first formula of Lemma 3.4 we have:

255V, M) = P("(Vx0), ") + Pg(*0, V(Vxn))
+7%("n, "(Vx0)) — P9 ("0,"(V xn))
= 25%("(Vx0), "n).
Which gives the formula

PV = V(Y x) + 5 (R )X) — 970,07 (R, T)X)).

Similar calculations obtain the other formulas. O]

As a consequence of Theorem 3.5, we get the following Lemma.

Lemma 3.6. Let (M™, J,g) be a standard Kdhler manifold and (T*M,B%) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric, then

By = 0,

BSwEX = 0,

0% _
PV = et g w,p)) (0)),
6
Ve = S (@ pd) (e ),

BSvaVp — Vp7

for all X € S{(M) and w € SY(M).

4 Unit cotangent bundle with Berger-type deformed Sasaki metric

The unit cotangent (sphere) bundle over a standard Ké&hler manifold (M", J, g), is the
hyper-surface

M = {(z,p) €T"M, g '(p,p) = 1}. (25)
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The unit normal vector field to 77 M is given by
N :T"M — T(T*M)
($>p) = jv(:]c,p) = Vp- (26)

The tangential lift Zw with respect to #°g of a covector w € T*M to (z,p) € Ty M as
the tangential projection of the vertical lift of w to (z,p) with respect to A/, that is

Tw="w- BSg(x,p)(Vwa'/v(x,p) )Mx,p) ="w - g:p_l(va)vp(x7p)'

For the sake of notational clarity, we will use @ = w — ¢~ *(w, p)p, then Tw = V.

From the above, we get the direct sum decomposition
T T"M = Tio )Ty M ® spard{ Ny} = T Ty M @ span{“py b, (27)

where (x,p) € Ty M.
Indeed, if W € T(, ;T M, then they exist X € T, M and w € Ty M, such that

W o= X+ %
= X+ w0+ P (0, N Nia )
= "X+ + g (w,0) Py (28)
From the (28) we can say that the tangent space T{, Ty M of T} M at (x,p) is given by
TapTiM ={"X +"w /X € T,M,w € {p}* C T; M},

where {p}+ = {w eTM, g Hw,p) = O}. Hence T{, )T} M is spanned by vectors of the
form X and “w.
Given a covector field w on M, the tangential lift “w of w is given by

Tw(:r,p) = (Vw - BSg(Vw’N)N) (2.p) = Vw(x,p) - g:;l(wfup)vp(w,p)' (29)

If 55 is the Riemannian metric on 77 M induced by 2%, then the Levi-Civita connec-
tion SV of (T} M, B%) is characterized by the formula:

BSUuV =BV — BBV V, NN, (30)
for all U,V € S3(T*M).
Theorem 4.1. Let (M™, J, g) be a standard Kdihler manifold and (T; M, 5%) its unit cotan-

gent bundle equipped with the Berger-type deformed Sasaki metric, then we have the fol-
lowing formulas:

_ 1
VY = (VxY) + S pR(X,Y)),

2
55T = (Vx0)+ 5 ((RG,0)X) — %970, 0) (R, X)),
PG = (R E)Y) — 89w, p]) (R, TP)Y)),
BV = —g74(0,p)w + 0% (g7 (w, )1 (0T) + g7 (0, p) (w]))

~8*(g " (w,p)g " (0.p) + g~ (w,p)g~ " (0, p])) (p]),
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for all XY € S4(M) and w,0 € SV(M), where V is the Levi-Civita connection and R is
its curvature tensor.

Proof. In the proof, we will use the Theorem 3.5, Lemma 3.6 and the formula (30).
1. By direct calculation, we have

BS@HXHY _ BSVHXHY _ BSg(BSvHXHY’ NN
1 1
= HVxY) + 5 R Y)) = (G (pR(X,Y)), N

= H(vyY)+ %T(pR(X, Y)).

2. We have BSﬁHXTQ = BV u T — B (PSVux ™0, N)N, by direct calculation, we get

BIVuxh = T(VXG)+%(H(R(ﬁ,é)X)+529_1(9,pJ)H(R(J]5,15)X))

and
BSy(BSVux 0, \ YN = 0.
Hence
P5GuxTy = (Vxb) + 5 ((RG.O)X) + g™ (6,p)) (R, 5)X)).

3. Also, we have BSV 5 Hy = BSy, Hy _ BSg(BSV 1, Y, N)N/, by direct calculation,
we get

BIRY = 2(MR5)Y) + g w0 (RUBHY))
and
B3PV, Y, N)N = 0.
Hence
PSGLIX = S (UR)Y) + 87w, pT(RUIB DY),

4. In the same way above, we have 85V, 79 = BSvy, 19 — BSy(BS\., 19, NN,

PV = 6% (g (w,p))Y(0T) + g7 (0, p]) (W) — 6% (g~ (w, p)g~" (6, D)
+9  (w,p)g 1 (0,p)) " (p)) — g7 (0,p) w — g (w,0)"p
+29~  (w,p)g~ ' (0,p)"p,
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and

B(PoV 1,0, VN = 6*(g7 (w, Jp)g~" (8, p) + g~ (0, Jp)g~ " (w ], p))"p
—g " (w,0)"p+ g (w,p)g” " (0,p)"p.

Hence

B0 = —g (0, p)"w + 62 (g7 (w, ) (0]) + g7 (8, ) (w]))
—8* (g7 (w,p)g (0, p) + g~ (w,p)g~ " (6,p])) (pJ).

5 Geodesics of the Berger-type deformed Sasaki metric

Let v: I — M be a curve on M, [ is an open interval of R and C be a curve on T*M
expressed by C' = (y(t),9(t)), for all t € I, where ¥(t) € T*M i.e. ¥(t) is a covector field
along 7.

Lemma 5.1 ([12]). Let (M, g) be a Riemannian manifold, and V denote the Levi-Civita
connection of (M, g). If C = (y(t),9(t)) is a curve on T*M, then

C =4+ (V59)Y,

where"y:fl—z andC:%.

- Subsequently we denote 7/ = d—f, V' =V, =V, 0" =V, and C7 = %,
en
C/ — H’}/ + Vﬁ’. (31)

Theorem 5.2. Let (M?™, J, g) be a standard Kdhler manifold and (T* M, P%g) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric. The curve C = (vy(t),9(t))
is a geodesic on T*M if and only if

" = R(g’,ﬁ)y’
52 (32)
0" = 28271 (0 00) (g7 (0 9)9T —9')),

where R(V',9) = RV, 0) + 62g (¢, 9.J)R(9, JI) and R is the curvature tensor of the
manifold (M*™, J, g).
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Proof. From formula (31) and Theorem 3.5, we obtain
PV = BSV(HV/ n vﬁf)(HVI + ")

— BSVH,}//H")/ 4 BSVHVIVﬁ/ 4 BSVVg/H")/I + BSVVf}/Vl?/

= Y+ RO, — 6% (0 0T)R(@, D)) + 1"
+28%g7 1 (9, 9TV (' T) — 27549—1(19’, 9g (', JI9)Y(9J)

= (" + RW, )y — 8% (9, 0I)R(I, JI)Y)
+Y(9" +28%g7 (9, 9T) (P T — ijg—l(ﬁ’, 9)9.J))

= (7" = (R 0)y + 8%, 0N)R(D, 7))
+V(9" = 26%g~ (V' 19J)(5;g1(19’, DNIJ —9'J)).

If we put PV C’ equal to zero, we find (32). ]

A curve C = (y(t),9(t)) on T*M is said to be a horizontal lift of the curve v on M if
and only if ¥/ = 0 [11]. Thus, we have

Corollary 5.3. Let (M>™, ], g) be a standard Kdihler manifold and (T* M, B%) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric. The horizontal lift of any

geodesic on (M*™J, g) is a geodesic on (T*M,B%).

Corollary 5.4. Let (M>™, ], g) be a standard Kdihler manifold and (T*M,B%) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric. The curve C = (vy(t),~'(t))
is a geodesic on T*M if and only if v is a geodesic on (M*™ J,g).

—_—

Proof. We have, 7/(t) € TM, then J(t) = +'(t) € T*M. From (11) and (13), we get

—_~—

V= V7/19 = V7/19 = VV/{?V = VVWI = 7’7’, then ~y is a geodesic on M equivalent to C'is a
horizontal lift of the curve v on M. Using Corollary 5.3, we deduce the result. O

Remark 5.5. If v is a geodesic on M locally we have:

2m
V=0 & g+ THE)' Y =0, h=T2m.

ij=1

If C such that C(t) = (y(t),J(t)) is a horizontal lift of the curve =, locally we have:

2m
=0 & U,— ) T,di(y) =0, h=T172m.

ij=1
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Example 5.6. Let R? be endowed with the structure standard Kahler (J, g) defined by
g = z2dx® + yidy®.

and

X Y
J@x - —gﬁy 5 Jéy — ;535

The non-null Christoffel symbols of the Riemannian connection are:
1
==, T5=-.
nT o teTy
The geodesics 7y such that y(t) = (z(t),y(t)), ¥(0) = (a,b) and 7/(0) = (a, 8) € R? satisfy
the system of equations,

()?

2" + T =0 z(t) = v2aat + a?
+ZF YY =0e &
ij=1 St W) _, y(t) = \/2bBt + b2
Yy

H t 2aat 2.4/2b5t + b?
ence ' (t) = m \/723,, = (v2aat + a2, \/2bpt + b?).

1) Let C7 = (7(t),9(t)) be a horizontal lift of the geodesic 7 then,

:L,/
2 U1 - ;191 =0 V1 (t) = k1v2aat + a?
- Z [59:() =0 ) A
3,j=1 19/2 i y_192 -0 792(75) = k’g\/ Qbﬂt + b2

Y

Hence 9(t) = ki1v2aat + a?dx + kaor/205t + b?dy, where ki, ks € R. From Corollary 5.3,
the curve C] is a geodesic on T*R2.

2) Let Cy = (7(t),7(t)) be a curve on T*R2, from (10), we have

Z gi; (') (t)dz; = aav2aat + a’dx + b/ 2b5t + b2dy.

7,7=1
From Corollary 5.4, the curve Cy is a geodesic on T*R?.

Corollary 5.7. Let (M>™,.J,g) be a flat standard Kdhler manifold and (T*M,P%) its
cotangent bundle equipped with the Berger-type deformed Sasaki metric. Then the curve
C = (y(t),9(t)) is a geodesic on T*M if and only if v is a geodesic on (M*™, J,g) and

52

9" =287 (', 00) (59

gt 0T — 9 T).
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Let C be a curve on T*M, the cure v = wo C' is called the projection (projected curve)
of the curve C on M.

Theorem 5.8. Let (M?™ ¢, g) be a standard Kdihler locally symmetric manifold, (T* M ,P%g)
be its cotangent bundle equipped with the Berger-type deformed Sasaki metric, and C be a
geodesic on T*M. Then R(Y,9) is parallel along the projected curve v = mo C.

Proof. Using (14), (21) and (22) we have

(R0, 9)) = (R(,9)) + 0% gV, DI R, JI) + 621 (0, 9T)(R(9, JI))
= R(U,9)+ RW",J)+ R, + 829~ (0", 0J)R(I, JV)

529-1 9 )R, JI) + 629~ (¢, 0T R (D, J9)
DIVR(V, Jﬁ)+52 Y 9J)R(9, JI')
- (0// + 827 (", 0T)R(I, JI) + 62, 9TV R(D', JI)

)

(
&g~ (Y

9) +
+82g7 1 (9 9TV R(, Jﬁ')

from second equation of (32) and (23) we get

~ ~ 254 —_ —
(R(¥,9)) = i LW 90)g (9, 9)R(VT,9) — 28%g~ 1 (', 9T)R(W' T, 9)

20° —1/.q —1/.q/ -1 9 7.9
—26%g (9, 00) g (' T, 0TV R(D, JI) + 26% (', 9T)R(D', JO)
204 ~ -

_ i W, 90)g (@ 0V R(D, J9)

204\ — 1 -
202D i 9y 0, 0) B, )
—28*g1 (', 9J)g ™ (9, 9)R(D, JD)

204 264\ —1 ~ ~

= AT U ot ) 0, 0) R I
= 0.

]

We now study the geodesics on the unit cotangent bundle with respect to the Berger-
type deformed Sasaki metric.

Lemma 5.9. Let (M?™, ¢, g) be a standard Kihler manifold, (T7 M,B%)) its unit cotangent
bundle equipped with the Berger-type deformed Sasaki metric and C = (y(t),0(t)) be a
curve on TY M. Then we have

C'="y + 1y (33)
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Proof. Using (31), we have
C' = Y4V = T+ g9
Since C(t) = (y(t),9(t)) € Ty M then g~ (9,9) = 1, on the other hand
0 = (97 (0,9) =29 (¢,9),
hence
g (¥, 9) =0. (34)
The proof of the lemma is completed. O
Subsequently, let ¢t be an arc length parameter on C, From 33, we have
L=|Y]?+ ) +6%g (9, 0T)> (35)

Theorem 5.10. Let (M*™ ¢, g) be a standard Kdhler manifold, (T} M,5%G) its unit cotan-
gent bundle equipped with the Berger-type deformed Sasaki metric and C' = (y(t),0(t)) be
a curve on Ty M. Let k = || and p = g~ (¢',9J). Then C is a geodesic on Ty M if and
only if

' = R(@,g)v’
{ 9 = —2629'J, (36)

where RV, 9) = R(V',9) + 62uR(9, JI). Moreover,

{ |19,| =K (37)
V= VI—E
where K = k% + 6?12 = const, 0 < K < 1, k = const and . = const.
Proof. Using formula (33) and Theorem 4.1, we compute the derivative \ed
VC/C, = V(H’}/ + Tﬂl) (H'Y, + Tﬁ/)
- %HW/H’}/ + ﬁH'Y/Tﬁ/ + ﬁTg/H’Y/ + §T19/T19,
= " T RO, 0 — 6T (0 0)R(D, J9))
+26%g (9, 90) (')
= ' =R, 0y + 829~ (0, 9T RV, JI)Y))
+19" + 262 (9, 9T) (0" T)
= " - R, 5)7’) + (0" +20° ' ).
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If we put VerC” equal to zero, we find (36). Moreover, we have k = ||, then
(I€2)/ — 29—1(19//, 19,)7

from second equation of (36), we have g=' (9", ¢') + 26%ug='(¢9'J,9') = 0, on the other
hand, from (18), we find ¢g7' (¢ J,%¢') = 0, then g~ }(”,9') = 0, hence x = const. We have,
p=g (¥, 9J), then p/ = g7 (9", 9J) + g~ (¥, J) = g~ (9", 9]), from second equation
of (36), we have y/ = g~ (¢, 9J) = 26*ug=*(¥'J,9J), from (18), we find

g I 9T) =g (W, 9) =
hence y1 = const. Using (35), we get 1 = |7/|? + k? + 622, then
V= V1= (82 +022) = VI- K
where, K = k% + 6?u® = const. O

Theorem 5.11. Let (M*™,J,g) denote a standard Kdhler locally symmetric manifold,
(Ty M,B5G) be its unit cotangent bundle equzpped with the Berger-type deformed Sasaki

metric, and C' be a geodesic on Ty M. Then R(ﬂ’ 19) 18 parallel along the projected curve
v=mo(C.

Proof. Similarly, proving Theorem 5.8, using u = ¢g~1(¢,9J) and Theorem 5.10, we get
the result. O

Theorem 5.12. Let (M*™,J,g) denote a standard Kdhler locally symmetric manifold,
(Ty M, P5G) be its unit tangent bundle equipped with Berger-type deformed Sasaki metric,
and C' be a geodesic on Ty M, then all Frenet curvatures of the projected curve v = moC
are constants.

Proof. Using the first equation of (36), we have
V' =R, 9)y = R, 9)y + 6*uR(I, JI)
Since (g(7,7))" = 29(v", ') = 29(R(, 9)+,7') = 0, hence |y/| = const.
'7,” _ (R(ﬁl,’lf;)’}/)/
= (R, 9)Y) + *u(R(9, JI9)')
= R(¥,9)y + R, 9)y + R, 9)Y + R, 9)y"
+O2 (R (0, JO)y + R, J9)y + R(J, J9)y + R(J, J9)y")
= R0 + R, 9" + 8*u(R(I', JO)Y + R, JI)Y + R(J, JI)")
= R, 00 —28°uR(JV,9)y + RV, 9)y"
R(V",9)y + 262 R(9'J,0)y + R, 0)"
(7,0 = R, 0 + R, D)y
(W, 9)7".

|
';U

|
2)
o8
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Since (g(7",7")) = 29(x",~") = 29(R(¥",9)7",7") = 0, hence |7"| = const.
Continuing the process by recurrence, we get

,y(p-i-l) — R(ﬁ’ 19) (p) p>1

and
(g, 4")) = 2g(y" T W) = 2g(R(,9)7P,4P) = 0.

Thus, we get
VP = const, p>1. (38)

Denote by s an arc length parameter on 7, i.e. (]7| =1). Then v/ = 7.%% and using (37),

we get

d
d_: =+V1— K = const. (39)

Let v; = v, be the first vector in the Frenet frame vy, . .., vo,,,—1 along v and let ky, . . ., kop—1
the Frenet curvatures of . Then the Frenet formulas verify

(1) = kily
(VZ); = _k:i—ll/i—l + k?il/i+1, 2 S 1 S 2m — 2 (40)
(Vmel)/S = —kom—2Vom—2

Using (39) and the Frenet formulas (40), we obtain

,ds
’Y_PYSdt Vl_K

¥ = VI R(m), = VI~ K(v >;j

Now (38) implies k1 = const. Next, in a similar way, we have

(1 — K)kfll/g.

ds
7/// = (1 — K)kj(I/g); = (1 — K)kl(VQ)S d == (1 — K)\/ 1-— Kkl(—k’ll/l + k’gl/g).
and again (38) implies ky = const. By continuing the process, we finish the proof. O

Lemma 5.13. Let (M?™,J, g) be a standard Kdihler manifold, (Ty M, B%) its unit cotangent
bundle equipped with Berger-type deformed Sasaki metric and C = (y(t),9(t)) be a curve
on Ty M, we put & =1J, then we have

1. T'= (y(¢),&(t)) is a curve on Ty M.
2. T" is a geodesic on TT M if and only iof C' is a geodesic on Ty M.

Proof. 1. Since we have £(t) = 9J(t), then g71(£,&) = g7 (9J,9J) = g~ 1(9,9). Since
C = (y(t),9(t)) € Ty M we get g(9,9) = 1. Hence, ¢g(§,&) = 1, which means that
I'=(y(t),&(t)) € TT M.
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2. In a similar way proof of (36), we have
Vel = Uy = R(E,) + (¢ +20°u €' T),
since & = 'J, € =9"J and R(£,€) = R(, V), we have

Vel = H = R@W,0)Y) + (9" +26°u9'J)J).

e Vel =0. O

V' 4+ 26%u'J =0 V= —262u'J
From Theorem 5.12 and Lemma 5.13, we have the following theorem:

Theorem 5.14. Let (M*™,J,g) denote a standard Kdhler locally symmetric manifold,
(Ty M, P5G) be its unit cotangent bundle equipped with Berger-type deformed Sasaki metric,
and C = (y(t),9(t)) be a geodesic on Ty M, we put & = VJ, then all Frenet curvatures of
the projected curve v = mol are constants, where I' = (y(t),&(t)).
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