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Note on geodesics of cotangent bundle with Berger-type
deformed Sasaki metric over standard Kähler manifold

Abderrahim Zagane

Abstract. In this paper, first, we introduce the Berger-type deformed Sasaki met-
ric on the cotangent bundle T ∗M over a standard Kähler manifold (M2m, J, g) and
investigate the Levi-Civita connection of this metric. Secondly, we present the unit
cotangent bundle equipped with Berger-type deformed Sasaki metric, and we inves-
tigate the Levi-Civita connection. Finally, we study the geodesics on the cotangent
bundle and the unit cotangent bundle concerning the Berger-type deformed Sasaki
metric.

1 Introduction

One can define natural Riemannian metrics on the cotangent bundle of a Riemannian
manifold. Their construction makes use of the Levi-Civita connection. Among them, the
so-called Sasaki metric is of particular interest. That is why A.A. Salimov and F. Agca
have studied the geometry of a cotangent bundle equipped with the Sasaki metric [7, 8],
A.A. Salimov and F. Ocak [9]. The rigidity of Sasaki metric has incited some researchers to
construct and study other metrics on the cotangent bundle. This is the reason why some
authors have attempted to search for different metrics on the cotangent bundle, which are
different deformations of the Sasaki metric. In this direction, some authors defined and
studied some metrics, which are called Cheeger-Gromoll metric [2] or g-Natural Metrics
[1, 19] or new metric in the cotangent bundle [6, 5] or a new class of metrics on the
cotangent bundle [12, 20]. In another direction, A. Zagane has introduced the notion of
Berger-type deformed Sasaki metric on the cotangent bundle over anti-paraKähler manifold
[13, 14, 17]. For deformations of the Sasaki metric or Cheeger-Gromoll metric, we also refer
to [3, 15, 16, 18].
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The main idea in this paper, firstly, we introduce the Berger-type deformed Sasaki met-
ric on the cotangent bundle T ∗M over a standard Kähler manifolds manifold (M2m, J, g)
and we investigate the formulas relating to its Levi-Civita connection (Theorem 3.5). Sec-
ondly, we present the unit cotangent bundle equipped with the Berger-type deformed
Sasaki metric, and we establish the formulas relating to the Levi-Civita connection of this
metric (Theorem 4.1). In the last section, we study the geodesics on the cotangent bundle
(Theorem 5.2, Corollary 5.3, Corollary 5.4 and Theorem 5.8) and on unit cotangent bundle
(Theorem 5.10, Theorem 5.11, Theorem 5.12 and Theorem 5.14).

2 Preliminaries

Let (Mm, g) be an m-dimensional Riemannian manifold, T ∗M be its cotangent bundle
and π : T ∗M → M the natural projection. A local chart (U, xi)i=1,m on M induces a

local chart (π−1(U), xi, xī = pi)ī=m+1,2m on T ∗M , where pi is the component of covector p
in each cotangent space T ∗

xM , x ∈ U with respect to the natural coframe {dxi}, denote
by ∂i =

∂
∂xi and ∂ī =

∂
∂xī . Let C∞(M) (resp. C∞(T ∗M)) be the ring of real-valued C∞

functions on M(resp. T ∗M) and ℑr
s(M) (resp. ℑr

s(T
∗M)) be the module over C∞(M)

(resp. C∞(T ∗M)) of C∞ tensor fields of type (r, s). Denote by Γk
ij the Christoffel symbols

of g and by ∇ the Levi-Civita connection of g.
The Levi Civita connection ∇ defines a direct sum decomposition

TT ∗M = V T ∗M ⊕HT ∗M (1)

of the tangent bundle to T ∗M at any (x, p) ∈ T ∗M into vertical subspace

V(x,p)T
∗M = ker(dπ(x,p)) = {ωi∂ī|(x,p), ωi ∈ R}, (2)

and the horizontal subspace

H(x,p)T
∗M = {X i∂i|(x,p) +X ipaΓ

a
hi∂h̄|(x,p), X i ∈ R}. (3)

Note that the map X → HX = X i∂i|(x,p) +X ipaΓ
a
hi∂h̄|(x,p) is an isomorphism between

the vector spaces TxM and H(x,p)T
∗M .

Similarly, the map ω → Vω = ωi∂ī|(x,p) is an isomorphism between the vector spaces
T ∗
xM and V(x,p)T

∗M . Obviously, each tangent vector Z ∈ T(x,p)T
∗M can be written in the

form Z = HX + Vω, where X ∈ TxM and ω ∈ T ∗
xM are uniquely determined.

Let X = X i∂i and ω = ωidx
i be local expressions in (U, xi)i=1,m, of a vector and

covector (1-form) field X ∈ ℑ1
0(M) and ω ∈ ℑ0

1(M), respectively. Then the horizontal lift
HX ∈ ℑ1

0(T
∗M) of X ∈ ℑ1

0(M) and the vertical lift Vω ∈ ℑ1
0(T

∗M) of ω ∈ ℑ0
1(M) are

defined, respectively by

HX = X i∂i + phΓ
h
ijX

j∂ī, (4)
Vω = ωi∂ī, (5)
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with respect to the natural frame {∂i, ∂ī}, (see [11] for more details).
From (4) and (5) we see that H(∂i) and

V(dxi) have respectively local expressions of the
form

H(∂i) = ∂i + paΓ
a
hi∂h̄, (6)

V(dxi) = ∂ī. (7)

The set of vector fields {H(∂i)} on π−1(U) define a local frame for HT ∗M over π−1(U) and
the set of vector fields {V(dxi)} on π−1(U) define a local frame for V T ∗M over π−1(U).
The set {H(∂i), V(dxi)} define a local frame on T ∗M , adapted to the direct sum decompo-
sition (1).

In particular, we have the vertical spray Vp on T ∗M defined by

Vp = pi
V(dxi) = pi∂ī, (8)

Vp is also called the canonical or Liouville vector field on T ∗M .

Lemma 2.1 ([11]). Let (Mm, g) be a Riemannian manifold, ∇ be the Levi-Civita connec-
tion, and R be the Riemannian curvature tensor. Then the Lie bracket of the cotangent
bundle T ∗M of M satisfies the following

(1) [Vω, Vθ] = 0,

(2) [HX, Vθ] = V(∇Xθ),

(3) [HX,HY ] = H[X, Y ] + V(pR(X, Y )),

for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), such that pR(X, Y ) = paR
a
ijkX

iY j dxk, where
Ra

ijk are local components of R on (Mm, g).

Let (Mm, g) be a Riemannian manifold, we define the map

ℑ0
1(M) → ℑ1

0(M)
ω 7→ ω̃

by g(ω̃, X) = ω(X),

for all X ∈ ℑ1
0(M). Locally if ω = ωidx

i ∈ ℑ0
1(M), we have

ω̃ = gijωi∂j, (9)

where (gij) is the inverse matrix of the matrix (gij).
The scalar product g−1 = (gij) is defined on the cotangent space T ∗

xM by

g−1(ω, θ) = g(ω̃, θ̃) = gijωiθj,

for all x ∈ M and ω, θ ∈ ℑ0
1(M). In this case we have ω̃ = g−1 ◦ ω.

We also define the map

ℑ1
0(M) → ℑ0

1(M)

X 7→ X̃
by X̃(Y ) = g(X, Y ),
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for all Y ∈ ℑ1
0(M). Locally if X = X i∂i ∈ ℑ1

0(M), we have

X̃ = gijX
idxj, (10)

we also write X̃ = g ◦X.

Lemma 2.2 ([14]). Let (M, g) be a Riemannian manifold, then we have the following:

˜̃ω = ω ,
˜̃
X = X, (11)

g−1(ω, θJ) = g(Jω̃, θ̃), (12)

∇X ω̃ = ∇̃Xω, (13)

Xg−1(ω, θ) = g−1(∇Xω, θ) + g−1(ω,∇Xθ), (14)

ωR(X, Y )̃ = R(Y,X)ω̃, (15)

for all X, Y ∈ ℑ1
0(M), ω, θ ∈ ℑ0

1(M) and J ∈ ℑ1
1(M), where ∇ is the Levi-Civita connec-

tion of (M, g).

3 Berger-type deformed Sasaki metric

Let M r be an r-dimensional differentiable manifold. An almost complex structure J
on M is a (1, 1)-tensor field on M such that J2 = −I, (I is the (1, 1)-identity tensor
field on M. The pair (M r, J) is called an almost complex manifold. Since every almost
complex manifold is even dimensional, We will take r = 2m. Also, note that every complex
manifold (Topological space endowed with a holomorphic atlas) carries a natural almost
complex structure [4]. The integrability of a complex structure J on M is equivalent to
the vanishing of the Nijenhuis tensor NJ :

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ] (16)

for all vector fields X, Y on M .
On an almost complex manifold (M2m, J), a Hermitian metric is a Riemannian metric

g on M such that

g(JX, Y ) = −g(X, JY ) ⇔ g(JX, JY ) = g(X, Y ), (17)

or from (12) equivalently

g−1(ωJ, θ) = −g−1(ω, θJ) ⇔ g−1(ωJ, θJ) = g−1(ω, θ), (18)

for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M).
The almost complex manifold (M2m, J) having the Hermitian metric g is called an

almost Hermitian manifold. Let (M2m, J, g) be an almost Hermitian manifold. We define
the fundamental or Kähler 2-form Ω on M by

Ω(X, Y ) = g(X, JY ), (19)
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for any vector fieldsX and Y onM . A Hermitian metric g on an almost Hermitian manifold
M2m is called a standard Kähler metric if the fundamental 2-form Ω is closed, i.e., dΩ = 0.
In this case, the triple (M2m, J, g) is called an almost standard Kähler manifold. If the
almost complex structure is integrable, then the triple (M2m, J, g) is called a standard
Kähler manifold. Moreover, the following conditions are equivalent

1. ∇J = 0,

2. ∇Ω = 0,

3. NJ = 0 and dΩ = 0,

where ∇ is the Levi-Civita connection of g [4].
As a result, the almost Hermitian manifold (M2m, J, g) is a standard Kähler manifold

if and only if ∇J = 0. Using the formula

ω(∇XJ) = ∇X(ωJ)− (∇Xω)J. (20)

Also, the almost Hermitian manifold (M2m, J, g) is a standard Kähler manifold if and only
if

∇X(ωJ) = (∇Xω)J. (21)

for all X ∈ ℑ1
0(M), ω ∈ ℑ0

1(M). The Riemannian curvature tensor R of a standard Kähler
manifold possess the following properties:

R(Y, Z)J = JR(Y, Z),
R(JY, JZ) = R(Y, Z),
R(JY, Z) = −R(Y, JZ),

(22)

for all Y, Z ∈ ℑ1
0(M).

Lemma 3.1. Let (M2m, J, g) be an almost Hermitian manifold. We have the following:

ω̃J = −Jω̃, (23)

for any ω ∈ ℑ0
1(M).

Definition 3.2. Let (M2m, J, g) be an almost Hermitian manifold and T ∗M be its cotangent
bundle. A fiber-wise Berger-type deformation of the Sasaki metric noted BSg is defined on
T ∗M by

BSg(HX,HY ) = g(X, Y ),
BSg(HX, Vθ) = 0,
BSg(Vω, Vθ) = g−1(ω, θ) + δ2g−1(ω, pJ)g−1(θ, pJ),

for all X, Y ∈ ℑ1
0(M), ω, θ ∈ ℑ0

1(M), where δ is some constant [13],[14],[17], for version
tangent bundle see [10].
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In the following, we put λ = 1 + δ2r2 and r2 = g−1(p, p) = |p|2. where |.| denote the
norm with respect to g−1.

Lemma 3.3. Let (M2m, J, g) be a standard Kähler manifold and f : R → R a smooth
function, we have the following:

1. HX(f(r2)) = 0,

2. Vθ(f(r2)) = 2f ′(r2)g−1(θ, p),

3. HXg−1(ω, p) = g−1(∇Xω, p),

4. Vθg−1(ω, p) = g−1(ω, θ),

5. HXg−1(ω, pJ) = g−1(∇Xω, pJ),

6. Vθg−1(ω, pJ) = g−1(ω, θJ),

for all X ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), where r2 = g−1(p, p), see [12],[14].

Lemma 3.4. Let (M2m, J, g) be a standard Kähler manifold and T ∗M its cotangent bundle
equipped with the Berger-type deformed Sasaki metric BSg, we have the following:

(1) HXBSg(Vω, Vθ) = BSg(V(∇Xω),
Vθ) + BSg(Vω, V(∇Xθ)),

(2) VηBSg(Vω, Vθ) = δ2g−1(ω, ηJ)g−1(θ, pJ) + δ2g−1(ω, pJ)g−1(θ, ηJ),

for all X ∈ ℑ1
0(M) and ω, θ, η ∈ ℑ0

1(M), see as well [14]

We shall calculate the Levi-Civita connection BS∇ of T ∗M with Berger-type deformed
Sasaki metric BSg. The Koszul formula characterizes this connection:

2BSg(BS∇UV,W ) = UBSg(V,W ) + V BSg(W,U)−WBSg(U, V )

+BSg(W, [U, V ]) + BSg(V, [W,U ])− BSg(U, [V,W ]), (24)

for all U, V,W ∈ ℑ1
0(T

∗M).

Theorem 3.5. Let (M2m, J, g) be a standard Kähler manifold and T ∗M its cotangent bun-
dle equipped with the Berger-type deformed Sasaki metric BSg, then we have the following
formulas:

(i) BS∇HX
HY = H(∇XY ) +

1

2
V(pR(X, Y )),

(ii) BS∇HX
Vθ = V(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X)− δ2g−1(θ, pJ)H(R(p̃, Jp̃)X)

)
,

(iii) BS∇Vω
HY =

1

2

(
H(R(p̃, ω̃)Y )− δ2g−1(ω, pJ)H(R(p̃, Jp̃)Y )

)
,

(iv) BS∇Vω
Vθ = δ2

(
g−1(ω, pJ)V(θJ) + g−1(θ, pJ)V(ωJ)

)
−δ4

λ

(
g−1(ω, pJ)g−1(θ, p) + g−1(ω, p)g−1(θ, pJ)

)
V(pJ),
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for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), where ∇ is the Levi-Civita connection of
(M2m, J, g) and R is its curvature tensor, (for anti-paraKähler manifold, see [14]).

Proof. The proof of Theorem 3.5 follows directly from Kozul formula (24), Lemma 2.1,
Definition 3.2 and Lemma 3.4.

(1) Direct calculations give

2BSg(BS∇HX
HY,HZ) = HXBSg(HY,HZ) + HY BSg(HZ,HX)− HZBSg(HX,HY )

+BSg(HZ, [HX,HY ]) + BSg(HY, [HZ,HX])− BSg(HX, [HY,HZ])

= Xg(Y, Z) + Y g(Z,X)− Zg(X, Y ) + g(Z, [X, Y ])

+g(Y, [Z,X])− g(X, [Y, Z])

= 2g(∇XY, Z)

= 2BSg(H(∇XY ),HZ),
BSg(BS∇HX

HY, Vη) = HXBSg(HY, Vη) + HY BSg(Vη,HX)− VηBSg(HX,HY )

+BSg(Vη, [HX,HY ]) + BSg(HY, [Vη,HX])− BSg(HX, [HY, Vη])

= BSg(Vη, [HX,HY ])

= BSg(V(pR(X, Y )), Vη),

Thus, we find

BS∇HX
HY = H(∇XY ) +

1

2
V(pR(X, Y )).

(2) In a similar way,

2BSg(BS∇HX
Vθ,HZ) = HXBSg(Vθ,HZ) + VθBSg(HZ,HX)− HZBSg(HX, Vθ)

+BSg(HZ, [HX, Vθ]) + BSg(Vθ, [HZ,HX])− BSg(HX, [Vθ,HZ])

= BSg(Vθ, [HZ,HX])

= BSg(V(pR(Z,X)), Vθ)

= g−1(pR(Z,X), θ) + δ2g−1(pR(Z,X), pJ)g−1(θ, pJ),

From (15), we have

g−1(pR(Z,X), θ) = g(pR(Z,X)̃, θ̃) = g(R(X,Z)p̃, θ̃) = g(R(p̃, θ̃)X,Z)

= BSg(H(R(p̃, θ̃)X),HZ).

On the other hand, using (12), (15) and (22), we have

g−1(pR(Z,X), pJ) = g(J(pR(Z,X)̃), p̃) = g(JR(X,Z)p̃, p̃)

= g(R(X,Z)Jp̃, p̃) = g(R(Jp̃, p̃)X,Z)

= BSg(H(R(Jp̃, p̃)X),HZ),
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then,

2BSg(BS∇HX
Vθ,HZ) = BSg(H(R(p̃, θ̃)X)− δ2g−1(θ, pJ)H(R(p̃, Jp̃)X),HZ),

and also with direct calculations, we obtain

2BSg(BS∇HX
Vθ, Vη) = HXBSg(Vθ, Vη) + VθBSg(Vη,HX)− VηBSg(HX, Vθ)

+BSg(Vη, [HX, Vθ]) + BSg(Vθ, [Vη,HX])− BSg(HX, [Vθ, Vη])

= HXBSg(Vθ, Vη) + BSg(Vη, [HX, Vθ]) + BSg(Vθ, [Vη,HX]).

Using the first formula of Lemma 3.4 we have:

2BSg(BS∇HX
Vθ, Vη) = BSg(V(∇Xθ),

Vη) + BSg(Vθ, V(∇Xη))

+BSg(Vη, V(∇Xθ))− BSg(Vθ, V(∇Xη))

= 2BSg(V(∇Xθ),
Vη).

Which gives the formula

BS∇HX
Vθ = V(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X)− g−1(θ, pJ)H(R(p̃, Jp̃)X)

)
.

Similar calculations obtain the other formulas.

As a consequence of Theorem 3.5, we get the following Lemma.

Lemma 3.6. Let (Mn, J, g) be a standard Kähler manifold and (T ∗M, BSg) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric, then

BS∇HX
Vp = 0,

BS∇Vp
HX = 0,

BS∇Vω
Vp = Vω +

δ2

λ
g−1(ω, pJ)V(pJ),

BS∇Vp
Vω =

δ2

λ
g−1(ω, pJ)V(pJ),

BS∇Vp
Vp = Vp,

for all X ∈ ℑ1
0(M) and ω ∈ ℑ0

1(M).

4 Unit cotangent bundle with Berger-type deformed Sasaki metric

The unit cotangent (sphere) bundle over a standard Kähler manifold (Mn, J, g), is the
hyper-surface

T ∗
1M =

{
(x, p) ∈ T ∗M, g−1(p, p) = 1

}
. (25)
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The unit normal vector field to T ∗
1M is given by

N : T ∗M → T (T ∗M)

(x, p) 7→ N(x,p) =
Vp. (26)

The tangential lift Tω with respect to BSg of a covector ω ∈ T ∗
xM to (x, p) ∈ T ∗

1M as
the tangential projection of the vertical lift of ω to (x, p) with respect to N , that is

Tω = Vω − BSg(x,p)(
Vω,N(x,p))N(x,p) =

Vω − g−1
x (ω, p)Vp(x,p).

For the sake of notational clarity, we will use ω = ω − g−1(ω, p)p, then Tω = Vω.
From the above, we get the direct sum decomposition

T(x,p)T
∗M = T(x,p)T

∗
1M ⊕ span{N(x,p)} = T(x,p)T

∗
1M ⊕ span{Vp(x,p)}, (27)

where (x, p) ∈ T ∗
1M .

Indeed, if W ∈ T(x,p)T
∗M , then they exist X ∈ TxM and ω ∈ T ∗

xM , such that

W = HX + Vω

= HX + Tω + BSg(x,p)(
Vω,N(x,p))N(x,p)

= HX + Tω + g−1
x (ω, p)Vp(x,p). (28)

From the (28) we can say that the tangent space T(x,p)T
∗
1M of T ∗

1M at (x, p) is given by

T(x,p)T
∗
1M = {HX + Tω /X ∈ TxM,ω ∈ {p}⊥ ⊂ T ∗

xM},
where {p}⊥ =

{
ω ∈ T ∗

xM, g−1(ω, p) = 0
}
. Hence T(x,p)T

∗
1M is spanned by vectors of the

form HX and Tω.
Given a covector field ω on M , the tangential lift Tω of ω is given by

Tω(x,p) =
(
Vω − BSg(Vω,N )N

)
(x,p)

= Vω(x,p) − g−1
x (ωx, p)

Vp(x,p). (29)

If BSĝ is the Riemannian metric on T ∗
1M induced by BSg, then the Levi-Civita connec-

tion BS∇̂ of (T ∗
1M, BSĝ) is characterized by the formula:

BS∇̂UV = BS∇UV − BSg(BS∇UV,N )N , (30)

for all U, V ∈ ℑ1
0(T

∗M).

Theorem 4.1. Let (Mn, J, g) be a standard Kähler manifold and (T ∗
1M, BSĝ) its unit cotan-

gent bundle equipped with the Berger-type deformed Sasaki metric, then we have the fol-
lowing formulas:

BS∇̂HX
HY = H(∇XY ) +

1

2
T(pR(X, Y )),

BS∇̂HX
Tθ = T(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X)− δ2g−1(θ, pJ)H(R(p̃, Jp̃)X)

)
,

BS∇̂Tω
HY =

1

2

(
H(R(p̃, ω̃)Y )− δ2g−1(ω, pJ)H(R(p̃, Jp̃)Y )

)
,

BS∇̂Tω
Tθ = −g−1(θ, p)Tω + δ2

(
g−1(ω, pJ)T(θJ) + g−1(θ, pJ)T(ωJ)

)
−δ2

(
g−1(ω, pJ)g−1(θ, p) + g−1(ω, p)g−1(θ, pJ)

)
T(pJ),
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for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), where ∇ is the Levi-Civita connection and R is
its curvature tensor.

Proof. In the proof, we will use the Theorem 3.5, Lemma 3.6 and the formula (30).
1. By direct calculation, we have

BS∇̂HX
HY = BS∇HX

HY − BSg(BS∇HX
HY,N )N

= H(∇XY ) +
1

2
V(pR(X, Y ))− BSg(

1

2
V(pR(X, Y )),N )N

= H(∇XY ) +
1

2
T(pR(X, Y )).

2. We have BS∇̂HX
Tθ = BS∇HX

Tθ − BSg(BS∇HX
Tθ,N )N , by direct calculation, we get

BS∇HX
Tθ = T(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X) + δ2g−1(θ, pJ)H(R(Jp̃, p̃)X)

)
and

BSg(BS∇HX
Tθ,N )N = 0.

Hence

BS∇̂HX
Tθ = T(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X) + δ2g−1(θ, pJ)H(R(Jp̃, p̃)X)

)
.

3. Also, we have BS∇̂Tω
HY = BS∇Tω

HY − BSg(BS∇Tω
HY,N )N , by direct calculation,

we get

BS∇Tω
HY =

1

2

(
H(R(p̃, ω̃)Y ) + δ2g−1(ω, pJ)H(R(Jp̃, p̃)Y )

)
and

BSg(BS∇Tω
HY,N )N = 0.

Hence

BS∇̂Tω
HX =

1

2

(
H(R(p̃, ω̃)Y ) + δ2g−1(ω, pJ)H(R(Jp̃, p̃)Y )

)
.

4. In the same way above, we have BS∇̂Tω
Tθ = BS∇Tω

Tθ − BSg(BS∇Tω
Tθ,N )N ,

BS∇Tω
Tθ = δ2

(
g−1(ω, pJ)V(θJ) + g−1(θ, pJ)V(ωJ)

)
− δ2

(
g−1(ω, pJ)g−1(θ, p)

+g−1(ω, p)g−1(θ, pJ)
)
V(pJ)− g−1(θ, p)Vω − g−1(ω, θ)Vp

+2g−1(ω, p)g−1(θ, p)Vp,
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and

BSg(BS∇Tω
Tθ,N )N = δ2

(
g−1(ω, Jp)g−1(θJ, p) + g−1(θ, Jp)g−1(ωJ, p)

)
Vp

−g−1(ω, θ)Vp+ g−1(ω, p)g−1(θ, p)Vp.

Hence

BS∇̂Tω
Tθ = −g−1(θ, p)Tω + δ2

(
g−1(ω, pJ)T(θJ) + g−1(θ, pJ)T(ωJ)

)
−δ2

(
g−1(ω, pJ)g−1(θ, p) + g−1(ω, p)g−1(θ, pJ)

)
T(pJ).

5 Geodesics of the Berger-type deformed Sasaki metric

Let γ : I → M be a curve on M , I is an open interval of R and C be a curve on T ∗M
expressed by C = (γ(t), ϑ(t)), for all t ∈ I, where ϑ(t) ∈ T ∗M i.e. ϑ(t) is a covector field
along γ.

Lemma 5.1 ([12]). Let (M, g) be a Riemannian manifold, and ∇ denote the Levi-Civita
connection of (M, g). If C = (γ(t), ϑ(t)) is a curve on T ∗M , then

Ċ = γ̇H + (∇γ̇ϑ)
V ,

where γ̇ = d γ
d t

and Ċ = dC
d t
.

Subsequently we denote γ′ = d x
d t
, γ′′ = ∇γ′γ′, ϑ′ = ∇γ′ϑ, ϑ′′ = ∇γ′ϑ′ and C ′ = dC

d t
.

Then
C ′ = Hγ′ + Vϑ′. (31)

Theorem 5.2. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M, BSg) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric. The curve C = (γ(t), ϑ(t))
is a geodesic on T ∗M if and only if γ′′ = R(ϑ̃′, ϑ̃)γ′

ϑ′′ = 2δ2g−1(ϑ′, ϑJ)(
δ2

λ
g−1(ϑ′, ϑ)ϑJ − ϑ′J),

(32)

where R(ϑ̃′, ϑ̃) = R(ϑ̃′, ϑ̃) + δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃) and R is the curvature tensor of the
manifold (M2m, J, g).
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Proof. From formula (31) and Theorem 3.5, we obtain

BS∇C′C ′ = BS∇
(Hγ′ + Vϑ′)

(Hγ′ + Vϑ′)

= BS∇Hγ′
Hγ′ + BS∇Hγ′

Vϑ′ + BS∇Vϑ′
Hγ′ + BS∇Vϑ′

Vϑ′

= Hγ′′ + H(R(ϑ̃, ϑ̃′)γ′ − δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃)γ′)) + Vϑ′′

+2δ2g−1(ϑ′, ϑJ)V(ϑ′J)− 2δ4

λ
g−1(ϑ′, ϑ)g−1(ϑ′, Jϑ)V(ϑJ)

= H
(
γ′′ +R(ϑ̃, ϑ̃′)γ′ − δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃)γ′)

+V
(
ϑ′′ + 2δ2g−1(ϑ′, ϑJ)(ϑ′J − δ2

λ
g−1(ϑ′, ϑ)ϑJ)

)
= H

(
γ′′ − (R(ϑ̃′, ϑ̃)γ′ + δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃)γ′)

)
+V

(
ϑ′′ − 2δ2g−1(ϑ′, ϑJ)(

δ2

λ
g−1(ϑ′, ϑ)ϑJ − ϑ′J)

)
.

If we put BS∇C′C ′ equal to zero, we find (32).

A curve C = (γ(t), ϑ(t)) on T ∗M is said to be a horizontal lift of the curve γ on M if
and only if ϑ′ = 0 [11]. Thus, we have

Corollary 5.3. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M, BSg) its cotangent
bundle equipped with the Berger-type deformed Sasaki metric. The horizontal lift of any
geodesic on (M2m, J, g) is a geodesic on (T ∗M, BSg).

Corollary 5.4. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M, BSg) its cotangent

bundle equipped with the Berger-type deformed Sasaki metric. The curve C = (γ(t), γ̃′(t))
is a geodesic on T ∗M if and only if γ is a geodesic on (M2m, J, g).

Proof. We have, γ′(t) ∈ TM , then ϑ(t) = γ̃′(t) ∈ T ∗M . From (11) and (13), we get

ϑ′ = ∇γ′ϑ =
˜̃∇γ′ϑ = ∇̃γ′ϑ̃ = ∇̃γ′γ′ = γ̃′′, then γ is a geodesic on M equivalent to C is a

horizontal lift of the curve γ on M . Using Corollary 5.3, we deduce the result.

Remark 5.5. If γ is a geodesic on M locally we have:

γ′′ = 0 ⇔ γ′′
h +

2m∑
i,j=1

Γh
ij(γ

′)i(γ′)j = 0, h = 1, 2m.

If C such that C(t) = (γ(t), ϑ(t)) is a horizontal lift of the curve γ, locally we have:

ϑ′ = 0 ⇔ ϑ′
h −

2m∑
i,j=1

Γi
jhϑi(γ

′)j = 0, h = 1, 2m.
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Example 5.6. Let R2 be endowed with the structure standard Kähler (J, g) defined by

g = x2dx2 + y2dy2.

and
J∂x = −x

y
∂y , J∂y =

y

x
∂x.

The non-null Christoffel symbols of the Riemannian connection are:

Γ1
11 =

1

x
, Γ2

22 =
1

y
.

The geodesics γ such that γ(t) = (x(t), y(t)), γ(0) = (a, b) and γ′(0) = (α, β) ∈ R2 satisfy
the system of equations,

γ′′
h +

2∑
i,j=1

Γh
ij(γ

′)i(γ′)j = 0 ⇔


x′′ +

(x′)2

x
= 0

y′′ +
(y′)2

y
= 0

⇔


x(t) =

√
2aαt+ a2

y(t) =
√

2bβt+ b2

Hence γ′(t) =
aα√

2aαt+ a2
∂x +

bβ√
2bβt+ a2

∂y, γ(t) = (
√
2aαt+ a2,

√
2bβt+ b2).

1) Let C1 = (γ(t), ϑ(t)) be a horizontal lift of the geodesic γ then,

ϑ′
h −

2∑
i,j=1

Γi
jhϑi(γ

′)j = 0 ⇔


ϑ′
1 −

x′

x
ϑ1 = 0

ϑ′
2 −

y′

y
ϑ2 = 0

⇔


ϑ1(t) = k1

√
2aαt+ a2

ϑ2(t) = k2
√

2bβt+ b2

Hence ϑ(t) = k1
√
2aαt+ a2dx + k2

√
2bβt+ b2dy, where k1, k2 ∈ R. From Corollary 5.3,

the curve C1 is a geodesic on T ∗R2.

2) Let C2 = (γ(t), γ̃′(t)) be a curve on T ∗R2, from (10), we have

γ̃′(t) =
2∑

i,j=1

gij(γ
′)j(t)dxi = aα

√
2aαt+ a2dx+ bβ

√
2bβt+ b2dy.

From Corollary 5.4, the curve C2 is a geodesic on T ∗R2.

Corollary 5.7. Let (M2m, J, g) be a flat standard Kähler manifold and (T ∗M, BSg) its
cotangent bundle equipped with the Berger-type deformed Sasaki metric. Then the curve
C = (γ(t), ϑ(t)) is a geodesic on T ∗M if and only if γ is a geodesic on (M2m, J, g) and

ϑ′′ = 2δ2g−1(ϑ′, ϑJ)(
δ2

λ
g−1(ϑ′, ϑ)ϑJ − ϑ′J).
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Let C be a curve on T ∗M , the cure γ = π ◦C is called the projection (projected curve)
of the curve C on M .

Theorem 5.8. Let (M2m, φ, g) be a standard Kähler locally symmetric manifold, (T ∗M,BSg)
be its cotangent bundle equipped with the Berger-type deformed Sasaki metric, and C be a
geodesic on T ∗M . Then R(ϑ̃′, ϑ̃) is parallel along the projected curve γ = π ◦ C.

Proof. Using (14), (21) and (22) we have

(R(ϑ̃′, ϑ̃))′ = (R(ϑ̃′, ϑ̃))′ + δ2(g−1(ϑ′, ϑJ))′R(ϑ̃, Jϑ̃) + δ2g−1(ϑ′, ϑJ)(R(ϑ̃, Jϑ̃))′

= R′(ϑ̃′, ϑ̃) +R(ϑ̃′′, ϑ̃) +R(ϑ̃′, ϑ̃′) + δ2g−1(ϑ′′, ϑJ)R(ϑ̃, Jϑ̃)

+δ2g−1(ϑ′, ϑ′J)R(ϑ̃, Jϑ̃) + δ2g−1(ϑ′, ϑJ)R′(ϑ̃, Jϑ̃)

+δ2g−1(ϑ′, ϑJ)R(ϑ̃′, Jϑ̃) + δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃′)

= R(ϑ̃′′, ϑ̃) + δ2g−1(ϑ′′, ϑJ)R(ϑ̃, Jϑ̃) + δ2g−1(ϑ′, ϑJ)R(ϑ̃′, Jϑ̃)

+δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃′),

from second equation of (32) and (23) we get

(R(ϑ̃′, ϑ̃))′ =
2δ4

λ
g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)R(ϑ̃J, ϑ̃)− 2δ2g−1(ϑ′, ϑJ)R(ϑ̃′J, ϑ̃)

+
2δ6

λ
g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)g−1(ϑJ, ϑJ)R(ϑ̃, Jϑ̃)

−2δ4g−1(ϑ′, ϑJ)g−1(ϑ′J, ϑJ)R(ϑ̃, Jϑ̃) + 2δ2g−1(ϑ′, ϑJ)R(ϑ̃′, Jϑ̃)

=
2δ4

λ
g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)R(ϑ̃, Jϑ̃)

+
2δ4(λ− 1)

λ
g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)R(ϑ̃, Jϑ̃)

−2δ4g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)R(ϑ̃, Jϑ̃)

= (
2δ4

λ
+

2δ4(λ− 1)

λ
− 2δ4)g−1(ϑ′, ϑJ)g−1(ϑ′, ϑ)R(ϑ̃, Jϑ̃)

= 0.

We now study the geodesics on the unit cotangent bundle with respect to the Berger-
type deformed Sasaki metric.

Lemma 5.9. Let (M2m, φ, g) be a standard Kähler manifold, (T ∗
1M, BSĝ) its unit cotangent

bundle equipped with the Berger-type deformed Sasaki metric and C = (γ(t), ϑ(t)) be a
curve on T ∗

1M . Then we have
C ′ = Hγ′ + Tϑ′. (33)
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Proof. Using (31), we have

C ′ = Hγ′ + Vϑ′ = Hγ′ + Tϑ′ + g−1(ϑ′, ϑ)Vϑ.

Since C(t) = (γ(t), ϑ(t)) ∈ T ∗
1M then g−1(ϑ, ϑ) = 1, on the other hand

0 = (g−1(ϑ, ϑ))′ = 2g−1(ϑ′, ϑ),

hence

g−1(ϑ′, ϑ) = 0. (34)

The proof of the lemma is completed.

Subsequently, let t be an arc length parameter on C, From 33, we have

1 = |γ′|2 + |ϑ′|2 + δ2g−1(ϑ′, ϑJ)2. (35)

Theorem 5.10. Let (M2m, φ, g) be a standard Kähler manifold, (T ∗
1M, BSĝ) its unit cotan-

gent bundle equipped with the Berger-type deformed Sasaki metric and C = (γ(t), ϑ(t)) be
a curve on T ∗

1M . Let κ = |ϑ′| and µ = g−1(ϑ′, ϑJ). Then C is a geodesic on T ∗
1M if and

only if {
γ′′ = R(ϑ̃′, ϑ̃)γ′

ϑ′′ = −2δ2µϑ′J,
(36)

where R(ϑ̃′, ϑ̃) = R(ϑ̃′, ϑ̃) + δ2µR(ϑ̃, Jϑ̃). Moreover,{
|ϑ′| = κ
|γ′| =

√
1−K

(37)

where K = κ2 + δ2µ2 = const, 0 ≤ K ≤ 1, κ = const and µ = const.

Proof. Using formula (33) and Theorem 4.1, we compute the derivative ∇̂C′C ′.

∇̂C′C ′ = ∇̂
(Hγ′ + Tϑ′)

(Hγ′ + Tϑ′)

= ∇̂Hγ′
Hγ′ + ∇̂Hγ′

Tϑ′ + ∇̂Tϑ′
Hγ′ + ∇̂Tϑ′

Tϑ′

= Hγ′′ + Tϑ′′ + H(R(ϑ̃, ϑ̃′)γ′ − δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃)γ′))

+2δ2g−1(ϑ′, ϑJ)T(ϑ′J)

= Hγ′′ − H(R(ϑ̃′, ϑ̃)γ′ + δ2g−1(ϑ′, ϑJ)R(ϑ̃, Jϑ̃)γ′))

+Tϑ′′ + 2δ2g−1(ϑ′, ϑJ)T(ϑ′J)

= H
(
γ′′ −R(ϑ̃′, ϑ̃)γ′)+ T

(
ϑ′′ + 2δ2µϑ′J

)
.
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If we put ∇̂C′C ′ equal to zero, we find (36). Moreover, we have κ = |ϑ′|, then

(κ2)′ = 2g−1(ϑ′′, ϑ′),

from second equation of (36), we have g−1(ϑ′′, ϑ′) + 2δ2µg−1(ϑ′J, ϑ′) = 0, on the other
hand, from (18), we find g−1(ϑ′J, ϑ′) = 0, then g−1(ϑ′′, ϑ′) = 0, hence κ = const. We have,
µ = g−1(ϑ′, ϑJ), then µ′ = g−1(ϑ′′, ϑJ) + g−1(ϑ′, ϑ′J) = g−1(ϑ′′, ϑJ), from second equation
of (36), we have µ′ = g−1(ϑ′′, ϑJ) = 2δ2µg−1(ϑ′J, ϑJ), from (18), we find

g−1(ϑ′J, ϑJ) = g−1(ϑ′, ϑ) = 0,

hence µ = const. Using (35), we get 1 = |γ′|2 + κ2 + δ2µ2, then

|γ′| =
√

1− (κ2 + δ2µ2) =
√
1−K.

where, K = κ2 + δ2µ2 = const.

Theorem 5.11. Let (M2m, J, g) denote a standard Kähler locally symmetric manifold,
(T ∗

1M,BS ĝ) be its unit cotangent bundle equipped with the Berger-type deformed Sasaki

metric, and C be a geodesic on T ∗
1M . Then R(ϑ̃′, ϑ̃) is parallel along the projected curve

γ = π ◦ C.

Proof. Similarly, proving Theorem 5.8, using µ = g−1(ϑ′, ϑJ) and Theorem 5.10, we get
the result.

Theorem 5.12. Let (M2m, J, g) denote a standard Kähler locally symmetric manifold,
(T ∗

1M, BSĝ) be its unit tangent bundle equipped with Berger-type deformed Sasaki metric,
and C be a geodesic on T ∗

1M , then all Frenet curvatures of the projected curve γ = π ◦ C
are constants.

Proof. Using the first equation of (36), we have

γ′′ = R(ϑ̃′, ϑ̃)γ′ = R(ϑ̃′, ϑ̃)γ′ + δ2µR(ϑ̃, Jϑ̃)γ′.

Since (g(γ′, γ′))′ = 2g(γ′′, γ′) = 2g(R(ϑ̃′, ϑ̃)γ′, γ′) = 0, hence |γ′| = const.

γ′′′ = (R(ϑ̃′, ϑ̃)γ′)′

= (R(ϑ̃′, ϑ̃)γ′)′ + δ2µ(R(ϑ̃, Jϑ̃)γ′)′

= R′(ϑ̃′, ϑ̃)γ′ +R(ϑ̃′′, ϑ̃)γ′ +R(ϑ̃′, ϑ̃′)γ′ +R(ϑ̃′, ϑ̃)γ′′

+δ2µ(R′(ϑ̃, Jϑ̃)γ′ +R(ϑ̃′, Jϑ̃)γ′ +R(ϑ̃, Jϑ̃′)γ′ +R(ϑ̃, Jϑ̃)γ′′)

= R(ϑ̃′′, ϑ̃)γ′ +R(ϑ̃′, ϑ̃)γ′′ + δ2µ(R(ϑ̃′, Jϑ̃)γ′ +R(ϑ̃, Jϑ̃′)γ′ +R(ϑ̃, Jϑ̃)γ′′)

= R(ϑ̃′′, ϑ̃)γ′ − 2δ2µR(Jϑ̃′, ϑ̃)γ′ +R(ϑ̃′, ϑ̃)γ′′

= R(ϑ̃′′, ϑ̃)γ′ + 2δ2µR(ϑ̃′J, ϑ̃)γ′ +R(ϑ̃′, ϑ̃)γ′′

= R(ϑ̃′′, ϑ̃)γ′ −R(ϑ̃′′, ϑ̃)γ′ +R(ϑ̃′, ϑ̃)γ′′

= R(ϑ̃′, ϑ̃)γ′′.
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Since (g(γ′′, γ′′))′ = 2g(x′′′, γ′′) = 2g(R(ϑ̃′, ϑ̃)γ′′, γ′′) = 0, hence |γ′′| = const.
Continuing the process by recurrence, we get

γ(p+1) = R(ϑ̃′, ϑ̃)γ(p), p ≥ 1

and
(g(γ(p), γ(p)))′ = 2g(γ(p+1), γ(p)) = 2g(R(ϑ̃′, ϑ̃)γ(p), γ(p)) = 0.

Thus, we get
|γ(p)| = const, p ≥ 1. (38)

Denote by s an arc length parameter on γ, i.e. (|γ′
s| = 1). Then γ′ = γ′

s
d s
dt
, and using (37),

we get
d s

dt
=

√
1−K = const. (39)

Let ν1 = γ′
s be the first vector in the Frenet frame ν1, . . . , ν2m−1 along γ and let k1, . . . , k2m−1

the Frenet curvatures of γ. Then the Frenet formulas verify
(ν1)

′
s = k1ν2

(νi)
′
s = −ki−1νi−1 + kiνi+1, 2 ≤ i ≤ 2m− 2

(ν2m−1)
′
s = −k2m−2ν2m−2

(40)

Using (39) and the Frenet formulas (40), we obtain

γ′ = γ′
s

d s

dt
=

√
1−K ν1.

γ′′ =
√
1−K(ν1)

′
t =

√
1−K(ν1)

′
s

d s

dt
= (1−K)k1ν2.

Now (38) implies k1 = const. Next, in a similar way, we have

γ′′′ = (1−K)k1(ν2)
′
t = (1−K)k1(ν2)

′
s

d s

dt
= (1−K)

√
1−Kk1(−k1ν1 + k2ν3).

and again (38) implies k2 = const. By continuing the process, we finish the proof.

Lemma 5.13. Let (M2m, J, g) be a standard Kähler manifold, (T ∗
1M, BSĝ) its unit cotangent

bundle equipped with Berger-type deformed Sasaki metric and C = (γ(t), ϑ(t)) be a curve
on T ∗

1M , we put ξ = ϑJ , then we have

1. Γ = (γ(t), ξ(t)) is a curve on T ∗
1M .

2. Γ is a geodesic on T ∗
1M if and only if C is a geodesic on T ∗

1M .

Proof. 1. Since we have ξ(t) = ϑJ(t), then g−1(ξ, ξ) = g−1(ϑJ, ϑJ) = g−1(ϑ, ϑ). Since
C = (γ(t), ϑ(t)) ∈ T ∗

1M we get g(ϑ, ϑ) = 1. Hence, g(ξ, ξ) = 1, which means that
Γ = (γ(t), ξ(t)) ∈ T ∗

1M .
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2. In a similar way proof of (36), we have

∇̂Γ′Γ′ = H
(
γ′′ −R(ξ̃′, ξ̃)γ′)+ T

(
ξ′′ + 2δ2µ ξ′J

)
,

since ξ′ = ϑ′J , ξ′′ = ϑ′′J and R(ξ̃′, ξ̃) = R(ϑ̃′, ϑ̃), we have

∇̂Γ′Γ′ = H
(
γ′′ −R(ϑ̃′, ϑ̃)γ′)+ T

(
(ϑ′′ + 2δ2µϑ′J)J

)
.

∇̂Γ′Γ′ = 0 ⇔
{

γ′′ −R(ϑ̃′, ϑ̃)γ′ = 0
ϑ′′ + 2δ2µϑ′J = 0

⇔
{

γ′′ = R(ϑ̃′, ϑ̃)γ′

ϑ′′ = −2δ2µϑ′J
⇔ ∇̂C′C ′ = 0.

From Theorem 5.12 and Lemma 5.13, we have the following theorem:

Theorem 5.14. Let (M2m, J, g) denote a standard Kähler locally symmetric manifold,
(T ∗

1M, BSĝ) be its unit cotangent bundle equipped with Berger-type deformed Sasaki metric,
and C = (γ(t), ϑ(t)) be a geodesic on T ∗

1M , we put ξ = ϑJ , then all Frenet curvatures of
the projected curve γ = π ◦ Γ are constants, where Γ = (γ(t), ξ(t)).
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