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A recursive formula for the product of element orders of
finite abelian groups

Subhrajyoti Saha

Abstract. Let G be a finite group and let ¢(G) denote the sum of element orders
of G; later this concept has been used to define R(G) which is the product of the
element orders of G. Motivated by the recursive formula for 1(G), we consider a
finite abelian group G and obtain a similar formula for R(G).

1 Introduction

Let G be a finite group. For any non-empty subset S of G, let ¥(S) denote the
sum of element orders of S. This has been introduced in [2] and later in [4], the notion
R(G) was introduced which stands for the product of element orders of G. In the same
paper, a formula for computing R(G) when G is a finite abelian group was obtained.
In [3], [5], an explicit recursive formula for computing 1(G) were obtained in case G is
abelian. Motivated by these results, in this paper, we obtain a similar recursive formula
for computing R(G) when G is a finite abelian group.

Throughout this paper, we let ¢(n) denote the Euler totient function of the positive
integer n and let p denote a prime number. A cyclic group of order n will be denoted by
C,, whereas CIST) will denote the elementary abelian p -group of rank r. We always assume
G to be finite. For a group G and element = € G, the notation o(z) denotes the order of
x. For any group G, we take

zeG

For a group G, the notation exp(G) denotes the exponent of G which is the smallest
positive integer z such that g = 14 for all ¢ € G where 14 is the identity element of G;
without any ambiguity we will denote this identity element as 1.
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2 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formula for R(G) where G is a finite abelian
group. We present this in different cases starting from a finite cyclic group. This format is
inspired by [3, Section 2]. We will then consider the direct product of a finite cyclic p-group
and a (not necessarily abelian) p-group. Finally, we will consider a the most general case
of finite abelian groups. The proofs of our results in this section are motivated by the
methods used in [3]. We begin with the following important preliminary results.

Theorem 2.1 ([4, Proposition 1.1]). Let Gy, Gs,...,Gy be finite groups having co-prime
orders and G = Gy X Gy X +-- X Gi. Then

k k
R(G)=T[RG)™, where ni= [] 1G;l.i=1,2,... k.
=1 j=1,j#i

Lemma 2.2 ([3, Lemma 2.6]). Let H = Cpry X Cprs X -+ X Cpm where 1 < vy <1y for all
j with 2 < j <mn. Then for anyi € {1,...,r1}, there are (p*)" — (p")" elements of H of
order p'

The following lemma, motivated by [3, Lemma 1.1], follows easily from the fact that
C,, has exactly ¢(d) elements of order d for each divisor d of n.

Lemma 2.3. Let n be any positive integer. Then

V(C) =Y dp(d) and  R(C,)=[[a"®

dln dln

2.1 Finite Cyclic Groups
Let G be a cyclic group of order n. Then we know that G = C,,, x --- x Cy,,, where

mq, ..., my are co-prime to each other and n = my ... my.

Lemma 2.4. Let G be a cyclic group of order p™ where p is a prime number and n is a
(p+npn+2 —(nt+1)p"H1 )
p

p(p—1)

positive integer, then R(G) =
Proof. Using Lemma 2.3, we get R(G) = [/, p#?")" = pXr=1#(")" S0 we have R(G) = p?

where z =" r(p"—p" ) =(1— 119) S, rp". Now the sum )" rp” is an arithmetic-
geometric series with common difference 1 and common ration p. Thus

n

. P + npn+2 _ (77, + 1)pn+1
er - 2 :
(p—1)

r=1

ptnp" T2 (nt1)pntl! )

This shows that z = p+np”+;(;£n;)r1)pn+1. So we get R(G) = p( p(p=1)
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Lemma 2.5. Let G be a cyclic group of order s = pi* ... p,* where the p; are distinct primes
withr; > 1 fori=1,..., k. Then

p¢+rip —(r;+1)p;
p;(p;—1)

i rl+1>ni i
@ =11» com=p e
=1 j=1

Proof. We know that G = C; X e X C, i and p; are all distinct primes. Hence we can
apply Theorem 2.1. Thus by Lemma 2.4, We arrive at the required result. O

2.2 Direct product of a cyclic p-Group and a p-Group

In this section, we obtain a recursive formula for R(G) where G is a direct product
of a finite cyclic p-group and any p-group. We begin with the following lemma from [3,
Lemma 2.3].

Lemma 2.6. If H and K are p-groups, then o((xq,x2)) = max{o(z1),0(z2)} for all for
any r1 € H and x5 € K.

We now prove the following using techniques motivated by [3].

T

Proposition 2.7. Let G = C,r x H where r > 1, and H is a p-group with exp(H) > p.
Let N; be the number of elements in H that have order p’. Then

R(G) - 4R TIL, (M%) " s
PIR(H), ifr=1

Proof. Note that G is a finite group whose elements are of the form (z,y) where x € C,r
and y € H. We now partition GG based on the order of the elements in the first component.
In particular we have, G = J,_, Fx where F}, = { x1,29) € G| o(xy) = k} Since the
F,NF; _(Z)forz#j,wehaveR( ) = ITieo B (Fk). Now let 2y € Cpr with o(z;) = p' for
some 2' with 0 < ¢ < r. For each such z1, define F;,, = {(z1,22) | xz2 € H}. Then we have
F, = Umlecpr,o(xl):pi F, ., and R(F;) = H$160p7,70($1):p¢ R(F,,,) for i = 0,1,...,r. There

are (p' — p'~!) elements of order p’ in Cpr, see Lemma 2.2. As a result,
R(F) = R(F.)" ")

Taking ¢ = 0, we have Fy = Fj; and thus, R(Fy) = R(H). For ¢ = 1, each ele-
ment (xq,x2) in F} ,, has order same as o(xs) except for (z1,1) which has order p. Thus
R(F\;,) = pR(H). So R(F1) = (pR(H))"!

If = 1 then R(G) = R (Fy) R(Fy) = p" ' R(H)".

Now consider r > 1 and let ¢ € {2,...,r}. For (z1,79) € Fj,, with o(x) = p/, we have
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o((z1,29)) = p' if j < i and o((z1,72)) = p’ if j > 4. If v’ = exp(H) then

R(Fi) = [0 TT6)

Thus [[_, R(F;) = R(H)? P []_, <H;;11 (p'=7)Ni )p " and finally the result follows
from a direct calculation R(G) = R (Fy) Ry (Fy) [T, Ri (F;). O

2.3 Finite abelian groups

We can now state how to compute R(G) for any finite abelian group G. In view of
Theorem 2.1, the following is a direct application of Proposition 2.7 and Lemma 2.2.

Theorem 2.8. Let G be a finite abelian group with G = Hy X --- x Hj, where each H; is
an abelian p;-group and p; are distinct primes foriv=1,... k. Then

R(G) = R(H,)...R(H,)

where R (H;) fori=1,...,k are computed as follows:
a) .[f Hl = Cp;t then

(p i+npl T2 (n+1)p"+1>

P; (p;
R(H;) = p;

b) If H; ’ECpn XC'pfg X - XOp:n7 where 1 <ri <rg <---<ry,,andri+...+r,=7r
then R (H;) can be determined recursively as follows
i) If 1 > 1 then

T1 z—1 P;i—p;
R(H:) = P R(Gpe - G (H@:—j)”) ,

where N; = <(p{)n71 — (p{_l)Wl)
ii) If ry =1 then
R(H;) = p}" " R(Cyra X -+ X Gy )P
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3 Some Examples
In this final section we compute some examples using Theorem 2.8.

Example 3.1. We compute R(C’I(f) X Cyn) where n and r are positive integers. By part a)
of Theorem 2.8 we have

prnp T2 (ny1)p”t1 )

R(Cpn) — p( p(p—1)
Then by part b) of Theorem 2.8 we have

ptnp™ T2 (n41)p" 1 ) ( (p—1>2+<p+np"+2—<n+1>p”+1>)
=P

R(Cp % Cpn) _ pp—lpp( p(p—1) (p—1)

Similarly

(p—1>2<1+p>+p(p+np"+2—<n+1>p”+1))

R(C, x Cpy x Cpn) = p( =

Thus inductively it is easy to show that

(P*1)2(1+p+4.<+pr_1)+PT_1(p+npn+2*(n+1)p"+l))

R(C{) % Cpn) = p< @

Thus we have

(=1 =D +p" " (p+np" T2 —(n41)p" 1 )

R(ngr) X C’pn) — p( (p—1)

The next example is an application of Theorem 2.8 in the case where r; > 1.

Example 3.2. In this example we compute R(Cp2 x Cpn) where n is a positive integers. By
part a) of Theorem 2.8 we have

p4np" T2 —(n41)pn ! )

R(Cpn) — p( p(p—1)
Then by part b) of Theorem 2.8 we have

ptnp T2 (ny1)pntl

R(Cp2 X Cp") e pp_lpp2< p(p—1) )pP(P—l)(p"_l—l)'

This gives

<p—1>2<p”+1—p>+p<p+np"+2—(n+1>p”+1>)

R(Che x ) = p<

In the following example we compute R(C}gr) x Cp2 X Cpn) where n and r are positive
integers with n > 2.

Example 3.3. In example 3.2 we have computed R(C,2 X Cyn). Then by part b) of Theo-
rem 2.8 we have

(=12 (" +1-p)+p(p+np" T2 —(nt1)p" 1 ))

R(Cp x Cpz x Cyn) = pp_lpp( v
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This gives

» ( (=12 4p—p?+p" T ) 1 p% (p4np" T2~ (nt1)p" 1) ))
p—1

R(Cp X Cp2 X Cpn) =D

Then inductively one can show that

(=12 A4pt.tp”—p" T p" ) 4" (pnp T2 —(ng1)pnt1 ))

R(CY) x Cpa x Cyn) = p (

where n and r are integers with n > 2.

Note that formulas obtained in Examples 3.1, 3.2 and 3.3 are straightforward to
compute even when n and r are large. For any finite abelian p-group, an explicit for-
mula for computing R(G) was obtained in [4, Theorem 1.1]. By expanding and simpli-
fying the formula obtained in [4, Theorem 1.1] one can compare the computations for
R(C,gr) X Cpz X Cpn); the recursive formula used in Example 3.3 provides a more efficient

method for obtaining R(C}(;T) X Cpz x Cpn).
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