A recursive formula for the product of element orders of finite abelian groups

Subhrajyoti Saha

Abstract

Let G be a finite group and let $\psi(G)$ denote the sum of element orders of G; later this concept has been used to define $R(G)$ which is the product of the element orders of G. Motivated by the recursive formula for $\psi(G)$, we consider a finite abelian group G and obtain a similar formula for $R(G)$.

1 Introduction

Let G be a finite group. For any non-empty subset S of G, let $\psi(S)$ denote the sum of element orders of S. This has been introduced in [2] and later in [4], the notion $R(G)$ was introduced which stands for the product of element orders of G. In the same paper, a formula for computing $R(G)$ when G is a finite abelian group was obtained. In [3], [5], an explicit recursive formula for computing $\psi(G)$ were obtained in case G is abelian. Motivated by these results, in this paper, we obtain a similar recursive formula for computing $R(G)$ when G is a finite abelian group.

Throughout this paper, we let $\varphi(n)$ denote the Euler totient function of the positive integer n and let p denote a prime number. A cyclic group of order n will be denoted by C_{n} whereas $C_{p}^{(r)}$ will denote the elementary abelian p-group of rank r. We always assume G to be finite. For a group G and element $x \in G$, the notation $o(x)$ denotes the order of x. For any group G, we take

$$
R(G)=\prod_{x \in G} o(x)
$$

For a group G, the notation $\exp (G)$ denotes the exponent of G which is the smallest positive integer z such that $g^{z}=1_{G}$ for all $g \in G$ where 1_{G} is the identity element of G; without any ambiguity we will denote this identity element as 1 .

[^0]
2 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formula for $R(G)$ where G is a finite abelian group. We present this in different cases starting from a finite cyclic group. This format is inspired by [3, Section 2]. We will then consider the direct product of a finite cyclic p-group and a (not necessarily abelian) p-group. Finally, we will consider a the most general case of finite abelian groups. The proofs of our results in this section are motivated by the methods used in [3]. We begin with the following important preliminary results.

Theorem 2.1 ([4, Proposition 1.1]). Let $G_{1}, G_{2}, \ldots, G_{k}$ be finite groups having co-prime orders and $G \cong G_{1} \times G_{2} \times \cdots \times G_{k}$. Then

$$
R(G)=\prod_{i=1}^{k} R\left(G_{i}\right)^{n_{i}}, \quad \text { where } \quad n_{i}=\prod_{j=1, j \neq i}^{k}\left|G_{j}\right|, i=1,2, \ldots, k
$$

Lemma 2.2 ([3, Lemma 2.6]). Let $H \cong C_{p^{r_{1}}} \times C_{p^{r_{2}}} \times \cdots \times C_{p^{r^{n}}}$ where $1 \leq r_{1} \leq r_{j}$ for all j with $2 \leq j \leq n$. Then for any $i \in\left\{1, \ldots, r_{1}\right\}$, there are $\left(p^{i}\right)^{n}-\left(p^{i-1}\right)^{n}$ elements of H of order p^{i}

The following lemma, motivated by [3, Lemma 1.1], follows easily from the fact that C_{n} has exactly $\varphi(d)$ elements of order d for each divisor d of n.

Lemma 2.3. Let n be any positive integer. Then

$$
\psi\left(C_{n}\right)=\sum_{d \mid n} d \varphi(d) \quad \text { and } \quad R\left(C_{n}\right)=\prod_{d \mid n} d^{\varphi(d)}
$$

2.1 Finite Cyclic Groups

Let G be a cyclic group of order n. Then we know that $G \cong C_{m_{1}} \times \cdots \times C_{m_{k}}$, where m_{1}, \ldots, m_{k} are co-prime to each other and $n=m_{1} \ldots m_{k}$.

Lemma 2.4. Let G be a cyclic group of order p^{n} where p is a prime number and n is a positive integer, then $R(G)=p^{\left(\frac{p+n p^{n+2}(-n+1) p^{n+1}}{p(p-1)}\right)}$.
Proof. Using Lemma 2.3, we get $R(G)=\prod_{r=1}^{n} p^{\varphi\left(p^{r}\right) r}=p^{\sum_{r=1}^{n} \varphi\left(p^{r}\right) r}$. So we have $R(G)=p^{z}$ where $z=\sum_{r=1}^{n} r\left(p^{r}-p^{r-1}\right)=\left(1-\frac{1}{p}\right) \sum_{r=1}^{n} r p^{r}$. Now the sum $\sum_{r=1}^{n} r p^{r}$ is an arithmeticgeometric series with common difference 1 and common ration p. Thus

$$
\sum_{r=1}^{n} r p^{r}=\frac{p+n p^{n+2}-(n+1) p^{n+1}}{(p-1)^{2}}
$$

This shows that $z=\frac{p+n p^{n+2}-(n+1) p^{n+1}}{p(p-1)}$. So we get $R(G)=p^{\left(\frac{p+n p^{n+2}-(n+1) p^{n+1}}{p(p-1)}\right)}$.

Lemma 2.5. Let G be a cyclic group of order $s=p_{1}^{r_{1}} \ldots p_{k}^{r_{k}}$ where the p_{i} are distinct primes with $r_{i} \geq 1$ for $i=1, \ldots, k$. Then

$$
R(G)=\prod_{i=1}^{k} p_{i}^{\left(\frac{p_{i}+r_{i} p_{i}^{r_{i}+2}-\left(r_{i}+1\right) p_{i}^{r_{i}+1}}{p_{i}\left(p_{i}-1\right)}\right) n_{i}}, \quad n_{i}=p_{i}^{-r_{i}} \prod_{j=1}^{k} p_{j}^{r_{j}}
$$

Proof. We know that $G \cong C_{p_{1}^{r_{1}}} \times \cdots \times C_{p_{k}^{r_{k}}}$ and p_{i} are all distinct primes. Hence we can apply Theorem 2.1. Thus by Lemma 2.4, we arrive at the required result.

2.2 Direct product of a cyclic \boldsymbol{p}-Group and a \boldsymbol{p}-Group

In this section, we obtain a recursive formula for $R(G)$ where G is a direct product of a finite cyclic p-group and any p-group. We begin with the following lemma from [3, Lemma 2.3].

Lemma 2.6. If H and K are p-groups, then $o\left(\left(x_{1}, x_{2}\right)\right)=\max \left\{o\left(x_{1}\right), o\left(x_{2}\right)\right\}$ for all for any $x_{1} \in H$ and $x_{2} \in K$.

We now prove the following using techniques motivated by [3].
Proposition 2.7. Let $G=C_{p^{r}} \times H$ where $r \geq 1$, and H is a p-group with $\exp (H) \geq p^{r}$. Let N_{j} be the number of elements in H that have order p^{j}. Then

$$
R(G)=\left\{\begin{array}{lc}
p^{p-1} R(H)^{p^{r}} \prod_{i=2}^{r}\left(\prod_{j=1}^{i-1}\left(p^{i-j}\right)^{N_{j}}\right)^{p^{i}-p^{i-1}}, & \text { if } r>1 \\
p^{p-1} R(H)^{p}, & \text { if } r=1
\end{array}\right.
$$

Proof. Note that G is a finite group whose elements are of the form (x, y) where $x \in C_{p^{r}}$ and $y \in H$. We now partition G based on the order of the elements in the first component. In particular we have, $G=\bigcup_{k=0}^{r} F_{k}$ where $F_{k}=\left\{\left(x_{1}, x_{2}\right) \in G \mid o\left(x_{1}\right)=p^{k}\right\}$. Since the $F_{i} \cap F_{j}=\emptyset$ for $i \neq j$, we have $R(G)=\prod_{k=0}^{r} R\left(F_{k}\right)$. Now let $x_{1} \in C_{p^{r}}$ with $o\left(x_{1}\right)=p^{i}$ for some i with $0 \leq i \leq r$. For each such x_{1}, define $F_{i, x_{1}}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \in H\right\}$. Then we have $F_{i}=\bigcup_{x_{1} \in C_{p^{r}}, o\left(x_{1}\right)=p^{i}} F_{i, x_{1}}$ and $R\left(F_{i}\right)=\prod_{x_{1} \in C_{p^{r}}, o\left(x_{1}\right)=p^{i}} R\left(F_{i, x_{1}}\right)$ for $i=0,1, \ldots, r$. There are $\left(p^{i}-p^{i-1}\right)$ elements of order p^{i} in $C_{p^{r}}$, see Lemma 2.2. As a result,

$$
R\left(F_{i}\right)=R\left(F_{i, x_{1}}\right)^{\left(p^{i}-p^{i-1}\right)}
$$

Taking $i=0$, we have $F_{0}=F_{0,1}$ and thus, $R\left(F_{0}\right)=R(H)$. For $i=1$, each element $\left(x_{1}, x_{2}\right)$ in $F_{1, x_{1}}$ has order same as $o\left(x_{2}\right)$ except for $\left(x_{1}, 1\right)$ which has order p. Thus $R\left(F_{1, x_{1}}\right)=p R(H)$. So $R\left(F_{1}\right)=(p R(H))^{p-1}$.

If $r=1$ then $R(G)=R\left(F_{0}\right) R\left(F_{1}\right)=p^{p-1} R(H)^{p}$.
Now consider $r>1$ and let $i \in\{2, \ldots, r\}$. For $\left(x_{1}, x_{2}\right) \in F_{i, x_{1}}$ with $o\left(x_{2}\right)=p^{j}$, we have
$o\left(\left(x_{1}, x_{2}\right)\right)=p^{i}$ if $j<i$ and $o\left(\left(x_{1}, x_{2}\right)\right)=p^{j}$ if $j \geq i$. If $r^{\prime}=\exp (H)$ then

$$
\begin{aligned}
R\left(F_{i, x_{1}}\right) & =\prod_{j=0}^{i-1}\left(p^{i}\right)^{N_{j}} \prod_{j=i}^{r^{\prime}}\left(p^{j}\right)^{N_{j}} \\
& =p^{i} \prod_{j=1}^{i-1}\left(p^{i}\right)^{N_{j}} \prod_{j=i}^{r^{\prime}}\left(p^{j}\right)^{N_{j}} \\
& =p^{i} \prod_{j=1}^{r^{\prime}}\left(p^{j}\right)^{N_{j}} \prod_{j=1}^{i-1}\left(p^{i-j}\right)^{N_{j}} \\
& =p^{i} R(H) \prod_{j=1}^{i-1}\left(p^{i-j}\right)^{N_{j}}
\end{aligned}
$$

Thus $\prod_{i=2}^{r} R\left(F_{i}\right)=R(H)^{\left(p^{r}-p\right)} \prod_{i=2}^{r}\left(\prod_{j=1}^{i-1}\left(p^{i-j}\right)^{N_{j}}\right)^{p^{i}-p^{i-1}}$ and finally the result follows from a direct calculation $R(G)=R\left(F_{0}\right) R_{l}\left(F_{1}\right) \prod_{i=2}^{r} R_{l}\left(F_{i}\right)$.

2.3 Finite abelian groups

We can now state how to compute $R(G)$ for any finite abelian group G. In view of Theorem 2.1, the following is a direct application of Proposition 2.7 and Lemma 2.2.

Theorem 2.8. Let G be a finite abelian group with $G \cong H_{1} \times \cdots \times H_{k}$ where each H_{i} is an abelian p_{i}-group and p_{i} are distinct primes for $i=1, \ldots, k$. Then

$$
R(G)=R\left(H_{1}\right) \ldots R\left(H_{k}\right)
$$

where $R\left(H_{i}\right)$ for $i=1, \ldots, k$ are computed as follows:
a) If $H_{i} \cong C_{p_{i}^{n}}$ then

$$
R\left(H_{i}\right)=p_{i}^{\left(\frac{p_{i}+n p_{i}^{n+2}-(n+1) p_{i}^{n+1}}{p_{i}\left(p_{i}-1\right)}\right)} .
$$

b) If $H_{i} \cong C_{p_{i}^{r_{1}}} \times C_{p_{i}^{r_{2}}} \times \cdots \times C_{p_{i}^{r_{n}}}$, where $1 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{n}$, and $r_{1}+\ldots+r_{n}=r$ then $R\left(H_{i}\right)$ can be determined recursively as follows
i) If $r_{1}>1$ then

$$
R\left(H_{i}\right)=p_{i}^{p_{i}-1} R\left(C_{p_{i}^{r_{2}}} \times \cdots \times C_{p_{i}^{r_{n}}}\right)^{p^{r_{1}}} \prod_{z=2}^{r_{1}}\left(\prod_{j=1}^{z-1}\left(p_{i}^{z-j}\right)^{N_{j}}\right)^{p_{i}^{z}-p_{i}^{z-1}},
$$

where $N_{j}=\left(\left(p_{i}^{j}\right)^{n-1}-\left(p_{i}^{j-1}\right)^{n-1}\right)$
ii) If $r_{1}=1$ then

$$
R\left(H_{i}\right)=p_{i}^{p_{i}-1} R\left(C_{p_{i}^{r_{2}}} \times \cdots \times C_{p_{i}^{r_{n}}}\right)^{p_{i}}
$$

3 Some Examples

In this final section we compute some examples using Theorem 2.8.
Example 3.1. We compute $R\left(C_{p}^{(r)} \times C_{p^{n}}\right)$ where n and r are positive integers. By part a) of Theorem 2.8 we have

$$
\left.R\left(C_{p^{n}}\right)=p^{\left(\frac{p+n p^{n+2}\left(-(n+1) p^{n+1}\right.}{p(p-1)}\right.}\right) .
$$

Then by part b) of Theorem 2.8 we have

$$
R\left(C_{p} \times C_{p^{n}}\right)=p^{p-1} p^{p\left(\frac{p+n p^{n+2}-(n+1) p^{n+1}}{p(p-1)}\right)}=p^{\left(\frac{(p-1)^{2}+\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{(p-1)}\right)} .
$$

Similarly

$$
R\left(C_{p} \times C_{p} \times C_{p^{n}}\right)=p^{\left(\frac{(p-1)^{2}(1+p)+p\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{(p-1)}\right)} .
$$

Thus inductively it is easy to show that

$$
R\left(C_{p}^{(r)} \times C_{p^{n}}\right)=p^{\left(\frac{(p-1)^{2}\left(1+p+\ldots+p^{r-1}\right)+p^{r-1}\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{(p-1)}\right)} .
$$

Thus we have

$$
R\left(C_{p}^{(r)} \times C_{p^{n}}\right)=p^{\left(\frac{(p-1)\left(p^{r}-1\right)+p^{r-1}\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{(p-1)}\right)} .
$$

The next example is an application of Theorem 2.8 in the case where $r_{1}>1$.
Example 3.2. In this example we compute $R\left(C_{p^{2}} \times C_{p^{n}}\right)$ where n is a positive integers. By part a) of Theorem 2.8 we have

$$
R\left(C_{p^{n}}\right)=p^{\left(\frac{p+n p^{n+2}-(n+1) p^{n+1}}{p(p-1)}\right)} .
$$

Then by part b) of Theorem 2.8 we have

$$
R\left(C_{p^{2}} \times C_{p^{n}}\right)=p^{p-1} p^{p^{2}\left(\frac{p+n p^{n+2}-(n+1) p^{n+1}}{p(p-1)}\right)} p^{p(p-1)\left(p^{n-1}-1\right)} .
$$

This gives

$$
R\left(C_{p^{2}} \times C_{p^{n}}\right)=p^{\left(\frac{(p-1)^{2}\left(p^{n}+1-p\right)+p\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{p-1}\right)} .
$$

In the following example we compute $R\left(C_{p}^{(r)} \times C_{p^{2}} \times C_{p^{n}}\right)$ where n and r are positive integers with $n \geq 2$.

Example 3.3. In example 3.2 we have computed $R\left(C_{p^{2}} \times C_{p^{n}}\right)$. Then by part b) of Theorem 2.8 we have

$$
\left.R\left(C_{p} \times C_{p^{2}} \times C_{p^{n}}\right)=p^{p-1} p^{p\left(\frac{(p-1)^{2}\left(p^{n}+1-p\right)+p\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{p-1}\right)}\right) .
$$

This gives

$$
\left.R\left(C_{p} \times C_{p^{2}} \times C_{p^{n}}\right)=p^{p\left(\frac{(p-1)^{2}\left(1+p-p^{2}+p^{n+1}\right)+p^{2}\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{p-1}\right)}\right)
$$

Then inductively one can show that

$$
\left.R\left(C_{p}^{(r)} \times C_{p^{2}} \times C_{p^{n}}\right)=p^{p\left(\frac{(p-1)^{2}\left(1+p+\ldots+p^{r}-p^{r+1}+p^{n+r}\right)+p^{r+1}\left(p+n p^{n+2}-(n+1) p^{n+1}\right)}{p-1}\right)}\right)
$$

where n and r are integers with $n \geq 2$.
Note that formulas obtained in Examples 3.1, 3.2 and 3.3 are straightforward to compute even when n and r are large. For any finite abelian p-group, an explicit formula for computing $R(G)$ was obtained in [4, Theorem 1.1]. By expanding and simplifying the formula obtained in [4, Theorem 1.1] one can compare the computations for $R\left(C_{p}^{(r)} \times C_{p^{2}} \times C_{p^{n}}\right)$; the recursive formula used in Example 3.3 provides a more efficient method for obtaining $R\left(C_{p}^{(r)} \times C_{p^{2}} \times C_{p^{n}}\right)$.

References

[1] Amiri H. and Jafarian Amiri S. M. : Sum of element orders on finite groups of the same order. Journal of Algebra and its Applications 10 (2) (2011) 187-190.
[2] Amiri H., Jafarian Amiri S. M. and Isaacs I. M.: Sums of element orders in finite groups. Communications in Algebra 37 (9) (2009) 2978-2980.
[3] Chew C. Y., Chin A. Y. M. and Lim C. S.: A recursive formula for the sum of element orders of finite abelian groups. Results in Mathematics 72 (4) (2017) 1897-1905.
[4] Tarnauceanu M.: A note on the product of element orders of finite abelian groups. Bulletin of the Malaysian Mathematical Sciences Society. Second Series 36 (4) (2013) 1123-1126.
[5] Saha S.: Sum of the powers of the orders of elements in finite abelian groups. Advances in Group Theory and Applications 13 (2022) 1-11.

Received: April 12, 2021
Accepted for publication: June 25, 2022
Communicated by: Pasha Zusmanovich

[^0]: MSC 2020: 20D60, 20K01
 Keywords: Finite group; Abelian group; Element order
 Affiliation:
 Monash University, Australia and University of Liverpool, UK
 E-mail: subhrajyotimath@gmail.com

