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Universal quadratic forms and indecomposables in number
fields: A survey

Vı́tězslav Kala

Abstract. We give an overview of universal quadratic forms and lattices, focusing on
the recent developments over the rings of integers in totally real number fields. In
particular, we discuss indecomposable algebraic integers as one of the main tools.

The goal of this survey article is to give an overview of the arithmetic theory of universal
quadratic forms. I will primarily focus on the results over number fields obtained since
2015. For other surveys focusing on different facets of the area, see [29, 37, 62].

While I try to explain the broad ideas behind the proofs and the tools that are used,
many details are nevertheless missing and there are numerous simplifications. The inter-
ested reader is therefore always encouraged to look into the original papers or to contact
me. Overall the notes are more aimed at a junior audience rather than the experts in the
field (who might at least prefer to start reading only in Sections 4 or 5).

The paper is primarily based on the notes from my lectures at the XXIII International
Workshop for Young Mathematicians in Krakow, Poland (and from some of my other
talks). Parts of the text are also taken from the introduction to my habilitation thesis [47].

1 Introduction

The study of representations of integers by quadratic forms has a long history; let’s
briefly start here with a few highlights.

One can perhaps argue that they were first considered as Pythagorean triples, i.e.,
solutions of the Diophantine equation x2 + y2 = z2, or, equivalently, representations of 0
by the indefinite ternary form x2 + y2 − z2. A list of 15 such triples occurs already on the
Babylonian clay tablet Plimpton 322 [90] from around 1800 BC!
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The Pell equation, i.e., representation of 1 and other small integers by the binary form
x2 − dy2 (for some d ∈ Z>0 that is not a square), was considered as early as 400 BC
by Greek mathematicians in connection with approximating

√
2,
√
3 by rational numbers.

Later it was studied, e.g., by Archimedes (3rd century BC) and Diophantus (3rd century
AD) and in India by Brahmagupta (7th century AD) and Bhaskara (12th century AD).

The modern European history starts with giants such as Fermat, Euler, and Gauss, who
considered representations of primes by binary definite forms x2 + dy2 (for d ∈ Z>0) [20]
and obtained results such as a prime number p is of the form x2 + y2 if and only if p = 2
or p ≡ 1 (mod 4).

In 1770 Lagrange proved the Four–Square Theorem stating that every positive integer
n is of the form x2 + y2 + z2 + w2; Jacobi then in 1834 gave a formula for the number of
representations of n in this form. In a similar vein, Legendre in 1790 proved the Three–
Square Theorem that characterizes the integers of the form x2 + y2 + z2 (for much more
information on the history, see, e.g., [26]). These results eventually led, e.g., to the still
active Waring problem, and to using modular forms for studying the representations of
integers by quadratic forms.

A quadratic form representing all positive integers is called universal. Lagrange’s Theo-
rem thus says that x2+y2+z2+w2 is a universal quadratic form. The early 20th century saw
the characterization of all universal quaternary diagonal positive forms ax2+by2+cz2+dw2

by Ramanujan [87], and an extension of this work to non-diagonal forms by Dickson [25],
who also introduced the term “universal quadratic form”. Among such forms are, for
example, x2 + 2y2 + 4z2 + dw2 for 1 ≤ d ≤ 14. These results were further expanded by
Willerding [105] to cover also the cases of classical quaternary forms (although her list
contains a number of errors, it was nevertheless a big step towards the full classification).

While no ternary positive definite quadratic form is universal (for local reasons), indef-
inite quadratic forms tend to be universal more easily. For example, any quadratic form
x2 − y2 − dz2 is universal as long as 4 does not divide d because x2 − y2 = (x+ y)(x− y)
represents all odd numbers. They form a separate area of study, and we will return to
them later only very briefly.

2 The 15- and 290-Theorems

Let’s first discuss in some detail the case of quadratic forms over the ring of integers
Z. Recall that a quadratic form of rank r over Z is a polynomial

Q(x1, . . . , xr) =
∑

1≤i≤j≤r

aijxixj, aij ∈ Z. (1)

Typically we require the form to be positive definite, meaning that Q(v) > 0 for all v ∈ Zr,
v ̸= 0.
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We attach the Gram matrix to Q, given by

M = MQ =


a11

1
2
a12 · · · 1

2
a1r

1
2
a12 a22 · · · 1

2
a2r

...
...

. . .
...

1
2
a1r

1
2
a2r · · · arr

 . (2)

Taking v ∈ Zr to be a column vector (x1, . . . , xr)
t we have

Q(v) = vtMv.

The quadratic form Q is called classical if all the entries of M are integers, i.e., if aij
are even for all i ̸= j.

Each quadratic form has an associated bilinear form B defined by

Q(v + w) = Q(v) +Q(w) + 2B(v, w), v, w ∈ Zr.

A positive definite form satisfies the Cauchy–Schwarz inequality: For all v and w,

Q(v)Q(w) ≥ B(v, w)2.

In the 90’s, Conway, Miller, Schneeberger, and Simons, and then Bhargava and Hanke
[5, 6] came up with the following fascinating criteria for universality.

Theorem 2.1. Let Q be a positive definite quadratic form over Z. Then:
(a) (15-Theorem, Conway–Schneeberger, ∼ 1995) If Q is classical and represents the

integers
1, 2, 3, 5, 6, 7, 10, 14, and 15,

then it is universal.

(b) (290-Theorem, Bhargava–Hanke, ∼ 2005 [6]) If Q represents the integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,

29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,

then it is universal.

(c) Both of these lists of integers are minimal in the sense that for each integer n in the
list, there exists a corresponding quadratic form that represents all of Z>0 \ {n}, but
does not represent n.

While the 15-Theorem in part (a) is not too hard to prove, the 290-Theorem in part (b)
is very challenging, not only because of the large amount of computations needed.

There have been a number of further exciting developments related to universal quad-
ratic forms over Z. For example, the conjectural 451-Theorem by Rouse [91] says that if
a positive definite form represents the integers 1, 3, 5, . . . , 451, then it represents all odd
positive integers. This result has been proved only under the assumption that each of the
ternary forms x2 + 2y2 + 5z2 + xz, x2 + 3y2 + 6z2 + xy + 2yz, x2 + 3y2 + 7z2 + xy + xz
represents all odd positive integers (that seems very hard to establish).
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Escalations

We give a sketch of Bhargava’s proof of the 15-Theorem. The idea is to “build up”
a universal quadratic form Q by gradually adding variables.

In order for Q to be universal, it must represent 1, and so it must contain x2. Slightly
more precisely, a linear change of variables does not change universality and gives us x2

(this will be made more precise soon, once we discuss quadratic lattices).
Now x2 is clearly not universal as it does not represent 2, hence Q must contain 2y2

(again after a change of variables). We get the form x2 +2axy+2y2, where the coefficient
of xy is 2a because we require the form to be classical, and so the corresponding Gram
matrix is (

1 a
a 2

)
.

What are the possible values for a ? By the Cauchy–Schwarz inequality 1 · 2 ≥ a2,
which leaves the possibilities a = 0, 1,−1 with the corresponding Gram matrices(

1 0
0 2

)
,

(
1 1
1 2

)
,

(
1 −1
−1 2

)
.

The quadratic forms x2 + 2xy + 2y2 and x2 − 2xy + 2y2 are equivalent by the change
of variables y 7→ −y so we can forget about the third matrix. As for the second matrix,
we can reduce the quadratic form by changing variables:

x2 + 2xy + 2y2 = (x+ y)2 + y2 = X2 + Y 2.

Note that, in terms of matrices, the Gram matrix of the resulting form is CtMC for
an invertible matrix C. It can be obtained from M by successively applying the same row
and column operations: (

1 1
1 2

)
∼

(
1 0
1 1

)
∼

(
1 0
0 1

)
.

We see that after two steps of escalations, we have two candidate forms x2 + 2y2 and
x2 + y2. Since they do not represent 5, respectively 3, we pass to the matrices 1 0 b1

0 2 c1
b1 c1 5

 ,

 1 0 b2
0 1 c2
b2 c2 3

 .

We again determine all possible values for the coefficients and reduce the forms, which
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leads to the following possibilities (this can be done as an exercise by the reader):1
1

d1

 , d1 = 1, 2, 3

1
2

d2

 , d2 = 2, 3, 4, 5

1
2 1
1 d3

 , d3 = 4, 5.

Continuing this process for rank 4, we get 207 forms, 201 of which are universal. This
can be proved by local methods and genus theory (i.e., by a suitable use of the local-global
principle). The remaining 6 forms represent all but one integers. After adding one more
variable, we get 1630 universal forms of rank 5.

This procedure showed that if Q is universal, then it contains one of the rank 4 or 5
forms obtained above. These are all universal, and so the converse implication also holds,
i.e., any quadratic form that contains one of these forms is universal.

But in the process of escalations, we only considered representations of small integers:

rank
1 1
2 1, 2
3 1, 2, 3, 5
4 & 5 1, 2, 3, . . . , 15

Thus if Q represents the integers 1, 2, 3, . . . , 15, then it is universal, proving the
15-Theorem.

Proof of 290-Theorem

The proof of the 290-Theorem, although similar, is much more complicated. First, there
are more cases to be considered (we have to continue the escalations up to rank 7, which
leaves us with approximately 20 000 cases). Second, proving universality is sometimes very
non-trivial and uses tools such as theta series (modular forms). For more information, see
the original papers [5, 6] or the surveys [35, 76].

3 Quadratic Lattices

Talking about changes of variables and adding a variable in each step of the escalation
process is unpleasant. A more efficient approach is to work with quadratic lattices. Their
theory is extensive, but we will keep it to the necessary minimum and refer the reader to
the book by O’Meara [83] for more details.
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Abstract lattices

Let K denote a number field of degree d over Q, OK its ring of integers, and V a finite
dimensional K-vector space. A subset L ⊂ V is an OK-lattice if it is a finitely generated
OK-module.

Example 3.1. If v1, v2, . . . , vr is a basis of V , then L = OKv1 + · · · + OKvr is the free
OK-lattice of rank r.

We can wonder about the converse statement: Is every OK-lattice of this form? The
answer is no, as the following theorem shows.

Theorem 3.2 ([83, 81:5]). Let L ⊂ V be an OK-lattice. Then there exist linearly indepen-
dent vectors v1, . . . , vr in V and a fractional ideal A in K such that

L = OKv1 +OKv2 + · · ·+OKvr−1 + Avr.

In particular, the lattice L is not free when A is not a principal ideal.

Of course, when K has class number hK = 1, then all fractional ideals are principal
and all OK-lattices are free.

When L is as in theorem above, then r is its rank.

Quadratic lattices

Recall that V denotes a finite dimensional K-vector space. We moreover assume that
V is a quadratic space, i.e., we a have quadratic form Q : V → K and the attached bilinear
form

B(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)) .

If L ⊂ V is an OK-lattice, then the pair (L,Q) is called a quadratic OK-lattice (more
precisely, we should take the restriction Q|L instead of Q).

A quadratic OK-lattice (L,Q) is called integral if Q(v) ∈ OK for all v ∈ L. In this
case B(v, w) ∈ 1

2
OK for all v, w ∈ L. If B(v, w) ∈ OK for all v, w ∈ L, we say that the

quadratic lattice is classical.
The language of quadratic lattices lets us make some of the arguments of the preceding

section on escalations more formal. Let (L,Q) be a Z-lattice. Instead of “Q contains x2”
we can say “there exists v1 ∈ L such that Q(v1) = 1”, instead of “Q must represent 2” we
would say “there exists v2 ∈ L such that Q(v2) = 2. What are now the possibilities for
B(v1, v2)?” and so on.

Nevertheless, we will sometimes still just talk about quadratic forms with the under-
standing that the discussion can be made more precise in the language of lattices.

Specifically, when we have a free lattice Or
K , then the corresponding quadratic form

looks like (1), except that now aij ∈ OK , and we again have the Gram matrix given by (2).

As before, we want to study positive definite quadratic forms, but now over a number
field K.
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First, note that if [K : Q] = d, then there are d embeddings σ : K ↪→ C. We say that
K is totally real if σ(K) ⊂ R for every σ. Concretely, let’s take K = Q(γ) for an algebraic
integer γ whose minimal polynomial is

f(X) = Xd + a1X
d−1 + · · ·+ ad−1X + ad, ai ∈ Z.

Let γ1, . . . , γd denote the complex roots of f(X). Each embedding σi : K ↪→ C is com-
pletely determined by the image of γ, which is sent to one of its conjugates, so that after
relabeling σi(γ) = γi. We see that K is totally real if and only if γi ∈ R for all i.

From now on let’s always assume that the number field K is totally real.

An element α ∈ K is totally positive if σ(α) > 0 for all the embeddings σ. We write
α ≻ β for α, β ∈ K if σ(α) > σ(β) for all σ. In particular α ≻ 0 means that α is totally
positive. The totally positive elements α ∈ OK form a semiring which we denote O+

K .
The quadratic lattice (L,Q) is totally positive definite if Q(v) ≻ 0 for all v ∈ L \ {0}.

Definition 3.3. Let (L,Q) be an integral totally positive definite lattice. We say that Q is
universal if it represents all totally positive integers, i.e., if ∀α ∈ O+

K ∃v ∈ L : Q(v) = α.

Sums of lattices

If V is a finite dimensional K-vector space and L1, L2 ⊂ V are two OK-lattices, we
define their sum as

L1 + L2 = {v + w | v ∈ L1, w ∈ L2}.
It is a direct sum if L1 ∩ L2 = 0, in which case we write L1 ⊕ L2 = L1 + L2.

Assuming that V is a quadratic space with a quadratic form Q, the sum of L1 and L2

is orthogonal, denoted L1 ⊥ L2 = L1 + L2, if B(v, w) = 0 for any v ∈ L1 and w ∈ L2.
We further use the following notation for diagonal quadratic lattices: ⟨a⟩ is the rank

one lattice OKv with v ∈ V such that Q(v) = a. Then we define

⟨a1, a2, . . . , ar⟩ = ⟨a1⟩ ⊥ · · · ⊥ ⟨ar⟩ = OKv1 ⊥ OKv2 ⊥ · · · ⊥ OKvr,

where vi ∈ V satisfies Q(vi) = ai (and B(vi, vj) = 0 for i ̸= j).
We next state a useful proposition on the “splitting off units” that is proved quite easily

using Gram–Schmidt orthogonalization.

Proposition 3.4. Let (L,Q) be a classical OK-lattice, and let v ∈ L be such that Q(v) = ε
is a unit in OK. Then L = ⟨ε⟩ ⊥ L′ for some lattice L′ ⊂ L.

Proof. Let L′ = (OKv)
⊥ = {w ∈ L | B(w, v) = 0}. Clearly OKv = ⟨ε⟩ is orthogonal to L′

and we must show that L = OKv + L′.
Take any z ∈ L and set w := z−B(z, v)ε−1v. The vector B(z, v)ε−1v belongs to OKv,

because ε is invertible and B(z, v) ∈ OK as L is classical. And we have w ∈ L′ because

B(w, v) = B(z −B(z, v)ε−1v, v) = B(z, v)−B(z, v)ε−1B(v, v) = 0,

where we used B(v, v) = Q(v) = ε. Thus z = B(z, v)ε−1v + w ∈ OKv + L′.
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Before turning to the recent developments on universal forms that constitute our main
topic, let’s briefly comment on three closely related fields of interest:

Indefinite quadratic forms (and forms over number fields that are not totally real)
behave quite differently from our case. Let’s only briefly remark that, for example, [99]
and [32] characterized general number fields with universal sums of five and three squares,
and then [38, 41, 106] considered more general universal forms. Another interesting topic is
the study of universal Hermitian quadratic forms over imaginary quadratic fields, e.g., [30,
61].

Regular quadratic forms are forms that represent all elements that are not ruled out
by local obstructions [14, 29], and thus present a natural generalization of universal forms.
Their theory in many aspects parallels the theory of universal forms; in fact, tools such as
Watson’s transformations [12, 13, 104] sometimes allow one to convert regular forms into
universal ones (although special care must be paid to what happens dyadically, as well as
over number fields with non-trivial narrow ideal class group).

In connection to this, let’s also briefly mention the recent computational results by
Kirschmer and Lorch [66, 74] that classify 1-class genera of quadratic lattices over number
fields.

Further, let’s note that besides from studying representations of integers by quadratic
forms, there have been numerous works considering representations of quadratic forms by
quadratic forms and, in particular, by the sum of squares, e.g., [1, 3, 42, 44, 63, 64, 65,
68, 72, 77, 78, 82, 92]. Most of them deal with forms over Z, but it is another exciting
direction of future research to consider the situation over number fields in detail.

4 Real Quadratic Fields

In this section, let’s consider universal forms over a real quadratic field K = Q(
√
D)

with squarefree D > 1. For simplicity, we always assume D ≡ 2, 3 (mod 4) so that
OK = Z[

√
D] (but everything that we discuss here also generalizes to the case D ≡ 1

(mod 4)).
There are two embeddings K ↪→ R, the identity and

α = a+ b
√
D 7→ α′ = a− b

√
D.

Thus α is totally positive if and only if a+ b
√
D > 0 and a− b

√
D > 0. The norm of α is

N(α) = αα′ = a2 − b2D, and its trace is Tr(α) = α + α′ = 2a.

Diagonal forms and indecomposables

An easy example of a quadratic lattice is (Or
K , Q), where

Q(x1, . . . , xr) = a1x
2
1 + · · ·+ arx

2
r

is a diagonal form. The lattice is integral and totally positive if and only if all the coeffi-
cients ai ∈ O+

K .
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A key tool for working with (diagonal) universal forms is the notion of an indecompos-
able element:

We say that α ∈ O+
K is indecomposable if α ̸= β + γ for β, γ ∈ O+

K .
To explain the connection, let’s assume that a diagonal quadratic form Q is universal.

Then we can express any indecomposable α as

α = a1v
2
1 + · · ·+ arv

2
r ,

and hence α = aiv
2
i for some i thanks to indecomposability. Thus each indecomposable

essentially appears as a coefficient in Q, and we can conclude that the number of variables
r of a universal quadratic form is bounded from below by the number of square classes of
indecomposables.

The key question that remains to be answered is: Are there any indecomposables?
Luckily, yes:

Lemma 4.1. If ε is a totally positive unit, then it is indecomposable.

Proof. Suppose for contradiction that ε = β + γ for some β, γ ∈ O+
K . Then

1 = N(ε) = (β + γ)(β′ + γ′) = N(β) +N(γ) + βγ′ + β′γ > N(β) +N(γ) ≥ 2.

Essentially the same proof also works in a totally real field of a general degree d and
shows that each element of norm < 2d is indecomposable.

Brunotte [9, 10] gave a general upper bound on the norm of an indecomposable integer,
and so in each K, there are finitely many indecomposables up to multiplication by totally
positive units. Unfortunately, the bound is exponential in the regulator of the number field,
and so it is not very useful. While this can be significantly improved (see Theorem 6.1
below), it is still important to obtain more information about indecomposables, ideally in
the form of an explicit construction. In real quadratic fields, this is possible using continued
fractions, as we shall see next.

Continued fractions

The fundamental unit of a real quadratic field can be given in terms of the continued
fraction of

√
D. It is periodic

√
D = [u0, u1, . . . , us] = [u0, u1, . . . , us, u1, . . . , us, u1, . . . ] = u0 +

1

u1 +
1

u2+···
,

and we know that u0 = ⌊
√
D⌋ and us = 2⌊

√
D⌋.

Let
pi
qi

= [u0, . . . , ui]

be the convergents of the continued fraction. These give the good approximations to
√
D

since ∣∣∣∣piqi −√
D

∣∣∣∣ < 1

ui+1q2i
.
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By an abuse of terminology, the quadratic integers αi = pi + qi
√
D will also be called

convergents. The element αs−1 is the fundamental unit. In other words, it generates the
group of units, which can be described as

O×
K =

{
±αk

s−1 | k ∈ Z
}
.

When are the convergents αi totally positive? We always have αi > 0, and it turns out
that α′

i > 0 if and only if i is odd.
Consequently, the fundamental unit αs−1 is totally positive if and only if s is even.

Thus for s even, the Pell equation x2 − Dy2 = −1 has no solutions. For s odd, it has
a solution, namely αs−1 = x + y

√
D. When s is odd, the smallest totally positive unit

(greater than 1) is then α2s−1 = α2
s−1.

The convergents αi satisfy the recurrence

αi+1 = ui+1αi + αi−1, i ≥ 0,

with α−1 = 1, α0 = ⌊
√
D⌋ +

√
D. We observe that multiplication by αs−1 shifts indices:

αiαs−1 = αi+s.
The convergents of a continued fraction are characterized by their best approximation

property. One could say that being indecomposable is a form of “totally positive best
approximation property”, and so the following classical theorem [28] should not be too
surprising.

Theorem 4.2 ([28, Theorems 2 and 3]). The indecomposables α are precisely the semicon-
vergents, i.e., elements of the form

α = αi,t = αi + tαi+1, i ≥ −1 odd, 0 ≤ t < ui+2,

and their conjugates. Moreover, N(α) ≤ D for every indecomposable α.

Note that αi,ui+2
= αi + ui+2αi+1 = αi+2, so indecomposables with a fixed i form an

arithmetic progression going from αi to αi+2.
There have been several improvements on the upper bound for the norm of indecom-

posables [43, 45, 103], and on the additive structure of quadratic fields [39, 57].

Example 4.3. Let’s find all indecomposables for D = 6. The convergents of the continued
fraction expansion

√
6 = [2, 2, 4] are

α−1 = 1

α0 = 2 +
√
6,

p0
q0

= 2

α1 = 5 + 2
√
6,

p1
q1

= 2 +
1

2
=

5

2
.

The element α1 is a totally positive unit. Thus all indecomposables up to multiplication
by α1 are α−1,t for 0 ≤ t < u1 = 2. We have
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α−1,0 = 1, α−1,1 = 1 + (2 +
√
6) = 3 +

√
6

with N(3 +
√
6) = 3, and

α1,0 = α1 = 5 + 2
√
6, α1,1 = α1 · α−1,1 = 27 + 11

√
6.

The semiconvergents α1,t = α1 ·α−1,t, α3,t = α2
1 ·α−1,t etc. differ from α−1,t by a multiple

of a unit but in the case of α1,t not by a multiple of a square of a unit.
In conclusion, there are four square classes of indecomposables represented by 1, 3+

√
6,

5 + 2
√
6, and 27 + 11

√
6.

Now we apply our findings to the problem of universality. Let Q be a diagonal universal
quadratic form. Since it must represent 1 and 3 +

√
6, it contains

1 · x2 + (3 +
√
6) · y2. (3)

The totally positive unit 5 + 2
√
6 is represented by Q, but it is not a square and N(5 +

2
√
6) = 1, so it is not represented by (3). Hence Q must contain

1 · x2 + (3 +
√
6) · y2 + (5 + 2

√
6) · z2. (4)

The indecomposable 27+11
√
6 has norm 3 but its square class is not represented by 3+

√
6,

and therefore Q contains

1 · x2 + (3 +
√
6) · y2 + (5 + 2

√
6) · z2 + (27 + 11

√
6) · w2. (5)

This shows that each diagonal universal quadratic form must have rank r ≥ 4. (Of
course, the preceding argument could be more formally stated in the language of quadratic
lattices.)

Construction of a universal form

Lemma 4.4. Every α ∈ O+
K is a sum of indecomposables.

Proof. If α is not indecomposable, then α = β + γ. But then Tr(α) = Tr(β) + Tr(γ) and
the traces are positive integers (because the elements are totally positive and integral).
Therefore Tr(β),Tr(γ) < Tr(α). The result follows by induction.

Let ε be the totally positive fundamental unit; in other words, a generator of the group
of all totally positive units

O×,+
K = {εℓ | ℓ ∈ Z}.

We have seen that ε equals αs−1 or α2s−1 depending on whether s is even or odd, respec-
tively.

Further, let S be the set of representatives of indecomposables up to multiplication by
O×,+

K . We can take

S = {αi,ti | i = −1, 1, 3, . . . , k, 0 ≤ ti < ui+2},
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where k = s − 3 if s is even and k = 2s − 3 if s is odd. In particular, the number of
elements in S is

#S = u1 + u3 + u5 + · · ·

=

{
u1 + u3 + · · ·+ us−3 + us−1, s even,

u1 + u3 + · · ·+ u2s−3 + u2s−1 = u1 + u2 + u3 + · · ·+ us−1 + us, s odd.

Lemma 4.4 tells us that any totally positive α is a sum of indecomposables. We group
the indecomposables according to their class in S to express α as

α =
∑
σ∈S

σeσ, (6)

where each eσ is a linear combination of totally positive units with non-negative coefficients.

Lemma 4.5. For each eσ, there exist j ∈ Z and integers c, d ≥ 0 such that

eσ = cεj + dεj+1.

The idea of the proof is to rewrite the linear combination eσ using the minimal polyno-
mial ε2−nε+1 = 0, one just needs to arrange things so that c, d are indeed non-negative.

Theorem 4.6 ([60, Theorem 1], [8, Theorem 10]). The quadratic form

⊥
σ∈S

⟨σ, σ, σ, σ, εσ, εσ, εσ, εσ⟩

is universal and has 8 ·#S variables. (Here ⊥ denotes an orthogonal sum of the diagonal
lattices.)

Proof. Let α be a totally positive integer and write it as in (6). By the preceding lemma,
each coefficient eσ is of the form eσ = cεj + dεj+1. All it remains to show is that eσ is
represented by the form

⟨1, 1, 1, 1, ε, ε, ε, ε⟩ = x2
1 + x2

2 + x2
3 + x2

4 + ε · (x2
5 + x2

6 + x2
7 + x2

8).

When j is even, then c is represented by x2
1 + x2

2 + x2
3 + x2

4 by Lagrange’s Four Square
Theorem, and cεj also, and the second term ε · dεj is represented by ε · (x2

5+x2
6+x2

7+x2
8).

The case of odd j is very similar.

Sums of continued fraction coefficients

How big is S? We would like to bound its size in terms of D, ε, and the class number
hD.

In the case of odd s we have the trivial bound

u1 + u2 + · · ·+ us ≥ us = 2⌊
√
D⌋ >

√
D.

On the other hand, we know the following:
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Theorem 4.7 ([8, Corollary 18]). There is a positive constant c such that

u1 + u2 + · · ·+ us ≤ c
√
D(logD)2.

Roughly speaking, the preceding estimate (which can be somewhat improved) comes
from the class number formula

hD =

√
D

log ε
L(1, χ).

It is know that L(1, χ) ≪ logD, and since clearly hD ≥ 1,

log ε ≪
√
D logD.

Here we use the usual analytic notations that f ≪ g (and g ≫ f) if there is a constant
C > 0 such that f(x) < Cg(x) for all x (that lie in the domains of f, g). We use f ≪P g
or g ≫P f to stress that the constant C depends on the specified parameter(s) P .

Next we relate log ε to the sum
∑s

i=1 ui. We have

ε = αs−1 = us−1αs−2 + αs−3 ≥ us−1αs−2 ≥ us−1us−2αs−3 ≥ · · · ≥ us−1us−2 · · ·u0,

hence log ε ≥
∑s

i=1 log ui. This at least proves that s ≪
√
D logD (if ui = 1 for some i,

we have to proceed more carefully). See also [49] for a more detailed discussion.

In the case when s is even and ε = αs−1, it is quite subtle trying to estimate u1 + u3 +
· · ·+ us−1 because it can be small: e.g., for the continued fraction

√
n2 − 1 = [n− 1, 1, 2(n− 1)],

S contains only one element even though D = n2 − 1 grows to infinity.

5 (Non-)Existence of Universal Forms

Let’s now turn our attention more generally to the questions of existence of universal
forms and of their properties, such as possible ranks. (Again, our discussion always applies
to quadratic lattices, even when we talk about quadratic forms.)

We will still (mostly) treat the case of real quadratic fields K = Q(
√
D) in this section.

Above, we constructed a universal form over every such K (with D ≡ 2, 3 (mod 4), al-
though this assumption is not necessary). In fact, a universal form exists in every number
field, and there are (at least) two ways of proving this:

a) Proceed similarly as in the case of Q(
√
D) (see Corollary 6.2 below).

b) Hsia–Kitaoka–Kneser [40, Theorem 3] showed a local-global principle for representa-
tions of elements with sufficiently large norm by Q, provided that the rank of Q is
at least 5. So one can:
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• Find a form Q0 that represents everything locally over all the finite places. For
example, Q0 = ⟨1, 1, 1, α⟩ where α ≻ 0 has additive valuation 1 at each dyadic
place works, for already ⟨1, 1, 1⟩ is locally universal at all non-dyadic places [83,
92:1b], and at the dyadic places, one can use Beli’s theorem [2, Theorem 2.1].
Alternatively, one can use Riehm’s (much older) theorem [89, Theorem 7.4]
thanks to which it suffices to make sure that all classes mod 2 are represented
– which is easily arranged by adding extra variables.

• If necessary, add variables to Q0 to obtain Q of rank ≥ 5, for which one can use
the asymptotic local-global principle [40, Theorem 3].

• Finally, add extra variables to cover the (finitely many) square classes of ele-
ments of small norms that are not represented by Q.

It is easy to see that there is never a universal form of rank r = 1 or 2 (for local reasons).
Moreover, when the degree d of K is odd, it quickly follows from Hilbert’s reciprocity law
that there is no ternary universal form [31, Lemma 3].

The most natural candidate for a universal form would be the sum of squares. Un-
fortunately, it is almost never universal, for Siegel [99] showed that a sum of squares is
universal over OK only for

• K = Q (when 4 squares suffice) and

• K = Q(
√
5) (when 3 squares suffice [75]).

The proof considers representations of units and indecomposables and is sketched below
as Theorem 8.1.

One thus has to consider more general quadratic forms and aim at various classification
results. This has been the most successful in the quadratic case.

Theorem 5.1 ([15, Theorem 1.1]). If K = Q(
√
D) has a ternary classical universal form,

then D = 2, 3, or 5. In total, there are 11 such forms; examples in the three cases are

• x2 + y2 + (2 +
√
2)z2 for D = 2,

• x2 + y2 + (2 +
√
3)z2 for D = 3,

• x2 + y2 + 5+
√
5

2
z2 for D = 5.

The best available result in this direction is:

Theorem 5.2 ([61, Theorem 3.2]). If K = Q(
√
D) has a universal lattice of rank ≤ 7 (and

D is squarefree), then D < (576283867731072000000005)2.
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This result builds on [59]; in fact, Kim–Kim–Park [61] give more precise results, also
separately for classical lattices. The proof is based on considering the sublattice represent-
ing 1, 2, . . . , 290 (it must have rank at least 4 when D is large thanks to the 290-Theorem),
and the sublattice representing

⌈1 ·
√
D⌉+ 1 ·

√
D, ⌈2 ·

√
D⌉+ 2 ·

√
D, . . . , ⌈290 ·

√
D⌉+ 290 ·

√
D

(that also must have rank ≥ 4).
Note that there is an 8-ary universal form over each Q(

√
n2 − 1) (when n2 − 1 is

squarefree) [60] that is constructed precisely as in Theorem 4.6.

Such results on determining the small possible ranks of universal lattices are motivated
by Kitaoka’s conjecture.

Conjecture 5.3 (Kitaoka). There are only finitely many totally real number fields K having
a ternary universal form.

The conjecture still remains open. However, B. M. Kim and Kala–Yatsyna [55] proved
at least a weak version of the conjecture saying that when the degree d of K is fixed, then
there are only finitely many such fields K.

Some further interesting results are [11, 23, 24, 73, 71, 93].

Lower bounds on ranks

Surprisingly, it turns out that universal lattices can require arbitrarily large ranks.

Theorem 5.4 ([7, Theorem 1], [46, Theorem 1.1]). For any positive integer r, there are
infinitely many quadratic fields Q(

√
D) that do not have a universal lattice of rank ≤ r.

The broad idea behind the proof is the following. In a universal lattice (L,Q), construct
a sublattice that must have rank ≥ r, for example by arranging it to contain pairwise
orthogonal vectors vi representing suitable convergents αi.

A more precise result in this direction was obtained by Kala–Tinková [52], with inspi-
ration by earlier results of Yatsyna [107].

Theorem 5.5 ([52, Sections 7.1 and 7.3]). Let
√
D = [u0, u1, . . . , us] and

U =

{
max(u1, u3, . . . , us−1), if s is even,√
D, if s is odd.

Let Q be a universal quadratic form over Q(
√
D) of rank r.

a) If Q is classical, then r ≥ U/2.

b) In general, r ≥
√
U/2 (assuming U ≥ 240).
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To prove the theorem, we want to use minimal vectors in a quadratic lattice (L,Q),
i.e., nonzero vectors v such that Q(v) is minimal. This approach works best over Z, so we
need to obtain a Z-lattice. In general, if [K : Q] = d and L is an OK-lattice of rank r,
then L can be naturally viewed as a Z-lattice of rank rd. Indeed,

L = OKv1 + · · ·+OKvr−1 + Avr

for some fractional ideal A. Now OK and A are isomorphic to Zd as Z-modules and hence
we can identify L ≃ Zdr as a Z-module.

We will consider the quadratic form Tr(δQ) for a suitable δ. We choose δ to satisfy
that

• δ is a totally positive element (for then Tr(δQ) is positive definite), and

• Tr(δQ(v)) ∈ Z for any v ∈ L.

This naturally leads us to looking at the codifferent

O∨
K = {δ ∈ K | ∀α ∈ OK : Tr(δα) ∈ Z}.

If OK = Z[
√
D], then O∨

K = 1
2
√
D
· OK . The inclusion ⊃ is easy to prove as

Tr

(
1

2
√
D
(a+ b

√
D)

)
= Tr

(
b

2
+

a

2D

√
D

)
= b

for a, b ∈ Z (and the other inclusion is not too hard either).
We next make the following observation: Let α ∈ O+

K . If there exists δ ∈ O∨,+
K such

that Tr(δα) = 1, then α is indecomposable. For if α = β + γ for β, γ ∈ O+
K , then

1 = Tr(δα) = Tr(δβ) + Tr(δγ) ≥ 2.

Now we have what we need to prove Theorem 5.5.

Sketch of proof of Theorem 5.5.
Step 1. Let U = ui+2 for some odd i and consider the indecomposables αi,t, 0 ≤ t < U .

We define δ = − 1
2
√
D
α′
i+1. It can be checked directly that δ ∈ O∨

K and δ is totally positive.
Next we compute the trace of

δαi,t = − 1

2
√
D
(pi+1 − qi+1

√
D) · (pi + qi

√
D)− t

√
D

2D
α′
i+1αi+1.

Since α′
i+1αi+1 = N(αi+1) ∈ Z, we have

Tr(δαi,t) = piqi+1 − pi+1qi = (−1)i+1 = 1.
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Step 2. Take a quadratic OK-lattice (L,Q) representing all the indecomposables αi,t,
0 ≤ t < U , so that Q(vt) = αi,t for some vt ∈ L. Then (Z2r,Tr(δQ)) is a Z-lattice
containing 2U vectors of length 1, namely ±vt, as

Tr(δQ(±vt)) = Tr(δαi,t) = 1.

Observe that ifQ is classical, then Tr(δQ) is also classical. Therefore by repeatedly splitting
off 1 (see Proposition 3.4) we get

Z2r = ⟨1⟩ ⊥ ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ L′,

where ⟨1⟩ is repeated U times in the diagonal part. Thus 2r ≥ U .

Step 3. If Q is non-classical, we use known bound on the number of length-one vectors:
There are ≤ max(r2, 240) of them in a non-classical Z-lattice of rank r.

Summary

Denote m(K) the minimal rank of a universal OK-lattice over K and mclass(K) the
minimal rank of a classical universal OK-lattice.

We saw that for K = Q(
√
D) with

√
D = [u0, u1, . . . , us], we have

1

2
max(ui)

1/2 ≤ m(K) ≤ 8
s∑

i=1

ui ≪
√
D(logD)2

1

2
max(ui) ≤ mclass(K) ≤ 8

s∑
i=1

ui ≪
√
D(logD)2

If the fundamental unit is not totally positive (i.e., s odd), this is not too bad: the
lower bound is D1/4 and D1/2 for m(K) and mclass(K), respectively. In the case when
the fundamental unit is totally positive (i.e., s even), there are arbitrarily large differ-
ences between the lower and upper bounds, e.g., for

√
D = [u0, 1, 1, . . . , 1, 2u0], we get

1/2 ≤ mclass(K) ≤ 4s. Obtaining better lower bounds would require including all the
indecomposables, not just αi,t for a fixed i.

However, Kala–Yatsyna–Żmija recently expanded on these results by showing that

Theorem 5.6 ([56, Theorem 1.1]). Let ε > 0. For almost all squarefree D > 0, we have
that

mclass(Q(
√
D)) ≫ε D

1
12

−ε and m(Q(
√
D)) ≫ε D

1
24

−ε.

By “almost all” we mean that the set of such D has (natural) density 1 among the set
of all squarefree D > 0.

Finally, let’s mention an open problem. Thanks to Chan–Oh [16], we know that there
exist analogues of the 15- and 290-Theorems over any number field. However, the cor-
responding bounds are explicitly known only for classical forms over Q(

√
5) [73], and

determining them more generally seems to be quite hard.
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6 General Results

Let’s now turn to fields of higher degree, and to several possible approaches for studying
universal forms over them. Throughout this section, K thus denotes a totally real number
field of degree d = [K : Q].

Using units

Let (L,Q) be a classical universal quadratic lattice. We saw in Proposition 3.4 that
each unit splits off, and in particular L = ⟨1⟩ ⊥ L′ for some lattice L′ ⊂ L. Now any
square of a unit is represented by ⟨1⟩, so it need not be represented by L′. But if ε ∈ O×,+

K

is a unit which is not a square, then L′ must represent ε and hence L = ⟨1, ε⟩ ⊥ L′′ for
some lattice L′′ ⊂ L. Continuing like this leads to the following observation: The rank of
a classical universal lattice is always greater than or equal to #O×,+

K /O×2
K .

Since K is totally real, there are d− 1 fundamental units ε1, ε2, . . . , εd−1, which implies
O×,+

K ≃ Zd−1. We can distinguish the two extreme cases:

• No fundamental unit is totally positive. Then each totally positive unit is a square,
i.e., O×,+

K = O×2
K .

• All fundamental units are totally positive. Then O×2
K ≃ (2Z)d−1 and #O×,+

K /O×2
K =

2d−1.

In the general situation when k fundamental units are totally positive, the rank of
a classical universal lattice is ≥ 2k. If k ≥ 2, this proves a special case of Kitaoka’s
conjecture, i.e., that K has no ternary classical form. Not much is thus missing to prove
the full conjecture, it would suffice to show the existence of a few indecomposables!

As we already mentioned, recall that Hilbert’s reciprocity law implies a theorem of
Earnest–Khosravani [31]: If d is odd, then there is no ternary universal lattice (for local
reasons).

Bounds on indecomposables

It is not hard to show a general upper bound on the norm of an indecomposable
(although surprisingly, this bound was discovered only very recently, even though this
question is, e.g., formulated as [79, Problem 53]).

Theorem 6.1 ([55, Theorem 5]). Each indecomposable has norm ≤ discK/Q. In fact, if
N(α) > discK/Q, then α ≻ β2 for some β ∈ OK.

Proof. Let’s just sketch the proof. Let α be an element of norm Nα > discK/Q, and let
σ1(α), . . . , σd(α) be its conjugates. By Minkowski’s theorem, for a sufficiently small ε > 0
the box {

x ∈ Rd : |xi| ≤
√
σi(α)− ε, i = 1, . . . , d

}
in the Minkowski space contains a non-zero element β ∈ OK . Then α ≻ β2, and α is
therefore decomposable.
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Before proceeding further, note that we have already seen [99] that typically not all
totally positive integers are sums of squares, but we can ask: What is the smallest integer
P such that if an element is the sum of squares, then it is the sum of at most P squares?
This integer P is called the Pythagoras number of the ring OK and is known to be always
finite, but can be arbitrarily large [95] (cf. also [85]). However, there is an upper bound
for Pythagoras numbers of orders in number fields that depends only on the degree of the
number field [54, Corollary 3.3].

In the case of real quadratic number fields K = Q(
√
D) the Pythagoras number is

always ≤ 5, and this bound is sharp [84]. In fact, one can show that P(OK) = 3 for
D = 2, 3, 5 [18, 94] and determine all D for which P(OK) = 4 (as in [19]). For some
further recent results, see [53, 69, 70, 88, 101].

Thanks to Theorem 6.1 above, if we have an element of large norm, we can successively
subtract squares from it until we are left with something of norm ≤ discK/Q. If we then
rewrite the sum of squares as the sum of P squares, we obtain the following result:

Corollary 6.2 ([55, Theorem 6]). The quadratic form∑
αx2

α + y21 + · · ·+ y2P ,

where we sum over all square classes of elements α ∈ O+
K with norm Nα ≤ discK/Q, is

universal and has rank ≪ discK/Q ·(log discK/Q)
d−1.

It is also sometimes useful to know that there is a partial converse of Theorem 6.1.

Theorem 6.3. Assume that K is primitive, i.e., there is no field Q ⊊ F ⊊ K. If α ∈ O+
K

has norm Nα ≤ disc
1/(d2−d)
K/Q and is not divisible by any n ∈ Z≥2, then it is indecomposable.

We again only sketch the proof. As usual, σ1, . . . , σd denote the d embeddings of K
into R. Suppose that α = β + γ for some totally positive integers β and γ. Then

Nα = (σ1β + σ1γ)(σ2β + σ2γ) · · · (σdβ + σdγ) ≥ Tr(σ1β · σ2γ · σ3γ · · ·σdγ) ≫ disc
1/(d2−d)
K/Q

by the Stieltjes–Schur Theorem [96, §3]: If µ ≻ 0 andK = Q(µ), then Tr(µ) ≫ disc
1/(d2−d)
K/Q ,

cf. [48, Proposition 2].

Elements of trace 1

In Section 4 we saw lower bounds for ranks of universal quadratic lattices in terms of
elements of trace 1 in the codifferent. Exactly the same result holds in general.

Theorem 6.4 ([107], [52, Section 7.1]). Assume that there are β1, . . . , βu ∈ O+
K, δ ∈ O∨,+

K

such that Tr(βiδ) = 1 for all i. Then

m(K) ≥ u

d
, mclass(K) ≥

√
u

d
.
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How to find such elements? There is no general way (after all, there may be no totally
positive elements in the codifferent that have trace 1), so one may have to rely on explicit
constructions (such as in the proof of Theorem 5.5 or 7.1). However, let’s also briefly discuss
a method based on interlacing polynomials and another one which uses the Dedekind zeta
function.

Theorem 6.5 ([107, Theorem 4]). Let d and r be positive integers. There are only finitely
many totally real number fields K of degree d such that

• K is primitive (it has no proper subfields),

• K is monogenic (OK = Z[α] for some algebraic integer α),

• K has units of all signatures (equivalently, O×,+
K = O×2

K ),

• K has a universal lattice of rank r.

The proof uses interlacing polynomials. Let

f(x) = (x− α1)(x− α2) · · · (x− αd)

be the minimal polynomial for α, and assume that α1 < α2 < · · · < αd. We say that
a polynomial

g(x) = (x− β1)(x− β2) · · · (x− βd−1)

interlaces f is
α1 < β1 < α2 < β2 < · · · < βd−1 < αd.

The key fact is that there is a bijection between such polynomials g and the set

{γ ∈ O∨,+
K | Tr γ = 1}.

The Dedekind zeta function is defined as

ζK(s) =
∑

A<OK

1

(NA)s
, ℜs > 1.

The series converges absolutely for ℜs > 1 and ζK has a meromorphic continuation to the
entire complex plane with a simple pole at s = 1. It satisfies a functional equation which
relates ζK(s) to ζK(1− s).

For us, the important important fact is that Siegel related the value ζK(−1) to elements
of small trace [100], [108, §1]:
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Theorem 6.6 (Siegel’s formula for ζK(−1) and functional equation). Assume that K is a to-
tally real field of degree d = 2, 3, 5, 7. Then

∑
α∈O∨,+

K
Trα=1

σ
(
(α)(O∨

K)
−1
)
=

1

bd

∣∣discK/Q
∣∣3/2(−1

4π

)d

ζK(2)

for a suitable bd ∈ Q (e.g., b2 =
1

240
, b3 = − 1

504
, . . . ). Here

σ(B) =
∑
A|B

N(A).

A similar formula holds in each degree d, but as the degree grows, it will involve
elements of large traces (roughly, of traces up to d/6).

As a sample application, let’s mention the following result on the lifting problem (that
will discussed in detail in Section 8).

Theorem 6.7 ([54, Theorem 1.2]). If K is a totally real number field of degree d = 2, 3, 4, 5, 7
which has

• principal codifferent ideal, and

• a universal quadratic form with coefficients in Z,

then K = Q(
√
5) or K = Q(ζ7+ζ−1

7 ), where ζ7 = e2πi/7. The form x2+y2+z2 is universal
over Q(

√
5), and x2 + y2 + z2 + w2 + xy + xz + xw is universal over Q(ζ7 + ζ−1

7 ).

Large ranks

Let’s also summarize here the known results on the existence of number fields with
large minimal rank m(K). For quadratic fields, we have already seen this in Section 5, and
in the cubic case, this is originally due to Yatsyna [107, Theorem 5], and we will establish
this in Section 7 below.

A natural idea for extending these results to higher degrees is to start with a field
K with large m(K) and to consider overfields L ⊃ K. This was first carried out for
multiquadratic fields [51], and then extended to all fields of degrees divisible by 2 and
3 [48]. Finally, Doležálek [27] generalized this method to make it readily applicable to
quite general extensions L ⊃ K. So it would (mostly) suffice to prove the existence of
large ranks m(K) over fields of prime degrees ≥ 5 – which, however, remains open so far.

7 Families of Cubic Fields

Over a fixed field, one can compute everything explicitly, e.g., there are finitely many
totally positive elements α with norm Nα ≤ disc (up to multiplication by units), and we
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can check which ones are indecomposable. We can also compute the codifferent and check
which elements have trace 1.

For all fields of a given degree d, the problem is much harder. We used continued
fractions to deal with real quadratic fields Q(

√
D). We might attempt to use generalized

continued fractions [4, 97] for fields of a higher degree – they are much worse behaved but
there are some ongoing works in connection with the Jacobi–Perron algorithm [86, 50].
Geometric generalized continued fractions [58] are also promising, since there is a close
connection to indecomposables.

Rather than working with all fields, it is however typically easier to focus on a suitable
family of fields that share some relevant properties (such as the structure of units and
indecomposables).

The simplest cubic fields

We describe first the family of totally real cubic fields introduced by Shanks [98].
Let K = Q(ρ) where ρ is a root of the polynomial

f(x) = x3 − ax2 − (a+ 3)x− 1, a ≥ −1.

If we order the three roots ρ, ρ′, ρ′′ as ρ > ρ′′ > ρ′, then they are of approximate sizes
ρ ≈ a + 1, ρ′′ ≈ 0 and ρ′ ≈ −1. It is a useful fact that all the roots are units, and are
permuted under the mapping α 7→ −1

1+α
. We thus see that the other two conjugates ρ′ and

ρ′′ also belong to K, K is the splitting field of f , and the Galois group Gal(K/Q) ≃ Z/3
is cyclic.

Another consequence is that K has units of all signatures. The discriminant of the
polynomial f equals discf = (a2 +3a+9)2. If a2 +3a+9 is squarefree (which happens for
a positive density of a ), then OK = Z[ρ]. The units are small, hence the regulator is also
small, and the class number formula implies that the class number is large, roughly ≈ a2

(up to a logarithmic factor).
When we search for indecomposables in a totally real number field K, it is natural to

consider K in the Minkowski space by the mapping

σ : K ↪→ Rd, α 7→ (σ1(α), σ2(α), . . . , σd(α)).

For example, consider the situation in a real quadratic field K = Q(
√
D) with a funda-

mental totally positive unit ε. We can multiply every totally positive element by a suitable
unit to move it into the cone R≥0 · 1+R>0 · ε spanned by 1 and ε. If β ≻ 1 or β ≻ ε, then
it is not indecomposable, so we can further restrict our attention to the parallelogram

[0, 1) · 1 + [0, 1) · ε = {t1 · 1 + t2 · ε | t1, t2 ∈ [0, 1)}.

The situation in totally real cubic fields is similar. The totally positive units form
a discrete set located on the hyperboloid {(x, y, z) ∈ R3 | xyz = 1} in the Minkowski
space. Up to multiplication by units, each element is contained in the polyhedral cone

C = R≥0 · 1 + R≥0 · ε1 + R≥0 · ε2 + R≥0 · ε1ε2,
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where ε1 and ε2 generate the totally positive unit group. This is essentially the content
of Shintani’s unit theorem [80, Thm (9.3)]. The cone C is the union of two “triangular”
cones spanned by 1, ε1, ε2 and ε1, ε2, ε1ε2, respectively. Again, we can restrict our
search for indecomposables to the parallelepipeds [0, 1) · 1 + [0, 1) · ε1 + [0, 1) · ε2 and
[0, 1) · ε1 + [0, 1) · ε2 + [0, 1) · ε1ε2.

In the simplest cubic fields, this approach (described in more detail in [52, Section 4])
is explicit enough that we can determine all indecomposables.

Theorem 7.1 ([52, Theorem 1.2]). Let K = Q(ρ) be a simplest cubic field such that OK =
Z[ρ]. Up to multiplication by units, all indecomposables are

• 1

• 1 + ρ+ ρ2

• −v − wρ+ (v + 1)ρ2, 0 ≤ v ≤ a , v(a+ 2) + 1 ≤ w ≤ (v + 1)(a+ 1), a triangle with
a2+3a+2

2
indecomposables.

For the indecomposable 1 + ρ+ ρ2, we have

min
{
Tr(δ(1 + ρ+ ρ2)) | δ ∈ O∨+

K

}
= 2.

For the indecomposables α = −v − wρ+ (v + 1)ρ2 in the triangle,

min
{
Tr(δα) | δ ∈ O∨+

K

}
= 1.

Corollary 7.2 ([52, Theorem 1.1]). Let K = Q(ρ) be a simplest cubic field such that
OK = Z[ρ]. Then

• there exists a diagonal universal form of rank ∼ 3a2,

• any classical universal lattice has rank ≥ a2

6
,

• any universal lattice has rank ≥ a
3
√
2
.

Gil Muñoz and Tinková [34] recently extended these results to also cover some non-
monogenic simplest cubic fields.

Other cubic families

Tinková [102] obtained similar results in other families of cubic fields. The fields in
such families are again generated by a root ρ of a cubic polynomial depending on some
parameters. More specifically,

• Ennola’s cubic fields, generated by a root of x3 + (a− 1)x2 − ax− 1, a ≥ 3,

• a family investigated by Thomas, generated by a root of x3 − (a+ b)x2 + abx− 1.

Tinková considered indecomposables and quadratic forms over the order Z[ρ]. She showed
that, surprisingly, the minimum of Tr(δα) taken over δ in the codifferent can be arbitrarily
large for an indecomposable element α. She also applied these results to determine the
Pythagoras number (for the simplest cubic fields, it is typically equal to 6) [101].
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Continued fraction families of real quadratic fields

For comparison, let’s discuss similar families in degree two. The two most well-known
examples are:

• Yokoi’s family Q(
√
m2 + 4). If m = 2n + 1 is odd, then the relevant continued

fraction is
1 +

√
(2n+ 1)2 + 4

2
= [n+ 1, 2n+ 1].

• Chowla’s family Q(
√
4m2 + 1).

We have also already seen that
√
n2 − 1 = [n− 1, 1, 2(n− 1)].

The idea is to generalize this by considering families Q(
√
D) where

√
D = [u0, u1, u2, . . . , us−1, 2u0]

with s and u1, . . . , us−1 fixed. A necessary condition is that the sequence u1, . . . , us−1 must
be symmetric, i.e., ui = us−i. It turns out that this condition is almost sufficient for the
existence of D.

Theorem 7.3 ([33, Theorem]). Let u1, . . . , us−1 be symmetric, and define the numbers qi
via:

qi+1 = ui+1qi + qi−1, q−1 = 0, q0 = 1.

(This will be the sequence of denominators of the convergents pi
qi
, and it does not depend

on u0.)
There are infinitely many squarefree positive integers D ≡ 2, 3 (mod 4) such that

√
D = [k, u1, . . . , us−1, 2k]

if and only if qs−2 or
q2s−2−(−1)s

qs−1
is even (otherwise, there is no such D, even when we drop

the condition “squarefree”).
In such a case, all D and k are given by

D = D(t) = at2 + bt+ c, k = k(t) = et+ f, t ≥ 1

for fixed integers a, b, c, e, f that can be explicitly given in terms of ui.

There is a similar characterization for D ≡ 1 (mod 4) and the continued fraction

expansion of 1+
√
D

2
[36].

These families have a number of advantageous properties:

• The fundamental unit ε depends linearly on t.

• The class number is large, essentially t/ log t by the class number formula (see [17,
21, 22]).

• Indecomposables behave nicely (as in the simplest cubic fields).
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8 Lifting Problem for Universal Forms

When can a quadratic form with coefficients in Z be universal over a larger number
field K? The answer to this question, which we call the lifting problem, seems to be “very
rarely”, at least for number fields of small degrees.

We have already mentioned the result of Siegel on non-universality of sums of squares
– let’s now sketch its proof.

Theorem 8.1 ([99, Theorem I]). If K is a totally real number field such that every element
of O+

K is a sum of squares, then K = Q or Q(
√
5).

Sketch of proof. Assume that every element of O+
K is a sum of squares.

Step 1. We show first that all totally positive units are squares and that we have
units of all signatures. By our assumption, each totally positive unit is expressible as
ε = α2

1 + · · ·+ α2
t for some αi ∈ OK , and therefore

1 = N(ε) ≥
t∑

i=1

N(αi)
2 ≥ t,

which implies ε = α2
1.

Next, let ε1, . . . , εd−1 be a system of fundamental units, and consider the units

ε = (−1)a0εa11 · · · εad−1

d−1 , ai ∈ {0, 1}.

There are 2d of them and they have distinct signatures (otherwise there would exist two
of these units whose product is totally positive and hence a square). As there are 2d

signatures in total, we have units of all signatures.

Step 2. We show next that every indecomposable is equal to ε2 for some unit ε. If β =∑t
i=1 α

2
i is an indecomposable, we must have t = 1, thus β = α2 for α = α1. Let ε be a unit

with the same signature as α, or equivalently, εα ≻ 0. If εα ≻ γ for some totally positive
γ, then ε2β ≻ γ2, and ε2β is not indecomposable. Thus εα is indecomposable. But if
N(β) > 1, thenN(β) > N(εα) > 1 and we found an indecomposable with a strictly smaller
norm greater than 1. We can continue this infinite descent until we reach a contradiction.

Step 3. Suppose finally that M = OK \Q(
√
5) is non-empty. Then it contains totally

positive elements (because if α ∈ M , then N +α ∈ M is totally positive for a large enough
integer N). Choose a totally positive element λ ∈ M with minimal trace. The rest of the
proof runs as follows:

• The fact that λ has minimal trace shows that it is indecomposable. By what we
showed earlier, λ = ε2 for a unit ε. Without loss of generality, we can assume that
Tr ε < 0 (substitute −ε for ε if necessary).

• Show Trλ < 3d, where d is the degree of K.
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• Consider the decomposition of ε2 + ε + 1 ≻ 0, and after some estimates get a con-
tradiction.

The general question we are asking is: Over which number fields K is there a universal
Z-form, i.e., a positive definite quadratic form with coefficients in Z? For K different from
Q and Q(

√
5), the sum of squares is not universal by Siegel’s theorem. In particular, there

is no universal diagonal Z-form (for each diagonal Z-form is represented by the sum of
sufficiently many squares).

We can extend this to general forms over real quadratic fields, as conjectured by
Deutsch [23].

Theorem 8.2 ([54, Theorem 1.1]). If K ̸= Q(
√
5) is a real quadratic field, then there is no

universal Z-form over K.

For the proof, we again want to work with “minimal vectors” of the corresponding
quadratic O-lattice (L,Q), as in the proof of Theorem 5.5. For a Z-lattice, they are the
vectors v such that Q(v) is the smallest represented positive integer. This does not make
a good sense over OK , so we will consider TrK/Q(Q(v)) (which is a positive integer).

Recall that the codifferent is defined as

O∨
K = {δ ∈ K | Tr(δα) ∈ Z∀α ∈ OK} .

A little more generally, we can look at Tr(δQ(v)) for δ ∈ O∨,+
K , which is still a non-negative

integer. We will be interested in the vectors minimizing this.
As another tool, let’s introduce the tensor product (see [54, Section 4] for details for

the following discussion) (L1 ⊗L2, Q1 ⊗Q2) of two quadratic Z-lattices (L1, Q1), (L2, Q2).
If we fix Z-bases vi and wj for L1 and L2, then L1 ⊗ L2 is the Z-lattice whose Z-basis
consists of formal elements vi ⊗ wj. The quadratic form is then defined so that

(Q1 ⊗Q2)(v ⊗ w) = Q1(v)Q2(w) for v ∈ L1, w ∈ L2.

This gives an integral Z-lattice if at least one of the Qi is classical.

An important observation is that if Q is a Z-form of rank r, then (Or
K ,Tr(δQ)) is

isomorphic to the tensor product (OK ⊗ Zr, Tδ ⊗ Q), where Tδ(x) = Tr(δx2) (to be more
precise, we need to identify OK with Zd by choosing an integral basis).

A Z-lattice L is of E-type if for each Z-lattice M , all the minimal vectors of L⊗M are
split, i.e., of the form v⊗w for v ∈ L, w ∈ M . A theorem of Kitaoka [67, Theorems 7.1.1,
7.1.2, 7.1.3] states that each lattice of rank ≤ 43 is of E-type. The form Tδ has rank d, so
we are fine when d ≤ 43.

Let Q be a universal Z-form (over a number field K of degree d ≤ 43), and let’s us
introduce the following condition for α ∈ O+

K :

∃δ ∈ O∨,+
K : Tr(δα) = min

β∈O+
K

Tr(δβ). (7)

One uses minimal vectors to show:
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• If α satisfies (7), then α is a square (and indecomposable).

• Every totally positive unit is a square, and so there are units of all signatures in OK .

• If α satisfies (7), then α is a unit.

Sketch of proof of Theorem 8.2. Let K = Q(
√
D), so that OK = Z[ωD], where

ωD =

{√
D, D ≡ 2, 3 (mod 4),

1+
√
D

2
, D ≡ 1 (mod 4).

We know that O∨
K = δOK for some totally positive δ (because we already established that

we have units of all signatures). The elements α ∈ O+
K such that Tr(δα) = 1 form a convex

set in Zd−1 = Z (this set can be described using interlacing polynomials). Hence they form
an arithmetic progression of length at least

√
D− 1. By the remarks preceding the proof,

they are all units. But we cannot have more than 4 units in an arithmetic progression in
a real quadratic field by a result of Newman [81]. Now only finitely many values of D need
to be examined to finish the proof.

Theorem 6.1 is a partial extension of Theorem 8.2 to higher degrees. How to proceed
further? There may be some clever approaches using geometry of numbers, elements of
trace 2 in the codifferent, and perhaps even different generators of O∨

K , but at this point
we do not know much more than Theorem 6.7 above (although we have a promising work
in progress in this direction).

As a few final results, let’s mention:

• LetK ̸= Q, Q(
√
5) be a totally real number field. Then there is no classical universal

Z-form over K of rank 3, 4, or 5 [54, Corollary 3.4].

• Let F be a totally real number field, L an OF -lattice, and d,m ∈ Z>0. There are at
most finitely many totally real number fields K ⊃ F of degree d = [K : Q] such that
L⊗OK represents all elements of mO+

K [55, Theorem 2].
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