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Solvable Leibniz superalgebras whose nilradical has the char-
acteristic sequence (n − 1, 1 | m) and nilindex n + m

Abror Khudoyberdiyev, Khosiyat Muratova.

Abstract. Leibniz superalgebras with nilindex n + m and characteristic sequence
(n−1, 1 | m) divided into four parametric classes that contain a set of non-isomorphic
superalgebras. In this paper, we give a complete classification of solvable Leibniz
superalgebras whose nilradical is a nilpotent Leibniz superalgebra with nilindex n+m
and characteristic sequence (n − 1, 1 | m). We obtain a condition for the value
of parameters of the classes of such nilpotent superalgebras for which they have
a solvable extension. Moreover, the classification of solvable Leibniz superalgebras
whose nilradical is a Lie superalgebra with the maximal nilindex is given.

1 Introduction

The theory of supervariety and superalgebras is one of the important direction of mod-
ern mathematics which generalizes many objects from differential and algebraic geometry.
The interest in superalgebras is explained by their ability to unify bosons and fermions in
physics, to integrate the groups of internal and dynamic symmetries into one complex, and
to transfer all fundamental powers into a unified field. Lie supergroups and superalgebras
are the most widely used supermanifolds in theory of supersymmetry, and the structure
theory and classification problems of Lie superalgebras are important problems in non-
associative algebras. Lie superalgebras are generalizations of most important object of Lie
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algebras and for many years they attract the attention of both the mathematicians and
physicists [8, 16, 19, 24, 29].

In Lie theory, there are many works devoted to the study of finite-dimensional solvable
and nilpotent Lie algebras. First, we recall that in 1945 it was proved by A.I. Malcev
that a solvable Lie algebra is fully determined by its nilradical [32]. Further, in 1963,
Mubarakzjanov developed a method for constructing solvable algebras using the nilradical
and its nil-independent derivations [33]. Using this method, a number of solvable Lie
algebras with given nilradicals were constructed, such as: abelian, Heisenberg, filiform,
quasi-filiform algebras and others [3, 4, 36, 39, 40, 15].

The notion of Leibniz algebras was introduced in [31] as a non-antisymmetric gener-
alization of Lie algebras. In recent years it has been a common theme to extend various
results from Lie algebras to Leibniz algebras [6]. Specifically, variations of Engel’s theorem
for Leibniz algebras have been proved by different authors and D. Barnes proved Levi’s
theorem for Leibniz algebras [7]. The analog of Mubarakzjanov’s result has been applied
to Leibniz algebras case in [14], which shows the importance of the consideration of their
nilradicals in the Leibniz algebra case as well. The papers [2, 23, 22, 25, 9, 18, 27, 28]
are also devoted to the algebraic and geometric classification of some important classes of
finite-dimensional Leibniz algebras.

Leibniz superalgebras are generalizations of Leibniz algebras, and on the other hand,
they naturally generalize Lie superalgebras. Leibniz superalgebras first were considered
in [30] under the name of graded Leibniz algebras. The concept of Leibniz superalgebra
and its cohomology was first introduced by Dzhumadil’daev in [17]. The term Leibniz
superalgebras was first used in [1], whose nilpotent Leibniz superalgebras with the maximal
index of nilpotency were classified. It should be noted that Lie superalgebras with maximal
nilindex were classified in [20]. The distinctive property of Leibniz superalgebra is that
the maximal nilindex of (n+m)-dimensional Leibniz superalgebra is equal to n+m+ 1.
The description of Leibniz superalgebras with dimensions of even and odd parts equal to
n and m, respectively, and with nilindex n+m were classified by applying restrictions the
invariant called characteristic sequences in [5, 11, 12, 21].

The next natural step in the theory of finite-dimensional Leibniz (Lie) superalgebras
is to extend the method of classification of solvable superalgebras with their nilradical. It
should be noted that the structures of solvable Lie and Leibniz superalgebras are more
complex than the structures of solvable Lie and Leibniz algebras. In particular, an analog
of Lie’s theorem is not yet known even for Lie superalgebras. However, the corollary
to the Lie theorem that the square of a solvable algebra is nilpotent is not true for Lie
superalgebras, that is, in [16] an example was constructed of a solvable Lie superalgebra
whose square is not nilpotent. Despite all the difficulties, in [10, 13] the solvable extension
method for Leibniz superalgebras was established. The papers [26, 38] are also devoted
to the description of solvable Lie and Leibniz superalgebras. In particular, in the papers
[10, 26], solvable Lie and Leibniz superalgebras are obtained for whose nilradical has the
maximal index of nilpotency. Some solvable Leibniz superalgebras for whose nilradical
has the nilindex n + m were classified in [34, 35]. In this paper, we give a classification
of solvable Leibniz superalgebras whose nilradical has the index of nilpotency n +m and
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characteristic sequence (n− 1, 1|m). Specific values are obtained for the parameters of the
classes of such nilpotent superalgebras for which they have a solvable extension.

2 Preliminaries

In this section, we give definitions and facts concerning Lie and Leibniz’s superalgebras.

Definition 2.1. A Z2-graded vector space G = G0 ⊕ G1 is called a Lie superalgebra if it
is equipped with a product [−,−] which satisfies the following conditions:

1. [x, y] = −(−1)αβ[y, x], for any x ∈ Gα, y ∈ Gβ,
2. (−1)αγ[x, [y, z]] + (−1)αβ[y, [z, x]] + (−1)βγ[z, [x, y]] = 0
for any x ∈ Gα, y ∈ Gβ, z ∈ Gγ(Jacobi superidentity).

Definition 2.2. A Z2-graded vector space L = L0 ⊕ L1 is called a Leibniz superalgebra if
it is equipped with a product [−,−] which satisfies the following condition:[

x, [y, z]
]
=

[
[x, y], z

]
− (−1)αβ

[
[x, z], y

]
− Leibniz superidentity

for all x ∈ L, y ∈ Lα, z ∈ Lβ.

The vector spaces L0 and L1 are said to be the even and odd parts of the superalgebra
L, respectively. It is obvious that L0 is a Leibniz algebra and L1 is a representation of L0.
Note that if in Leibniz superalgebra L the identity

[x, y] = −(−1)αβ[y, x]

holds for any x ∈ Lα and y ∈ Lβ, then the Leibniz superidentity can be transformed into the
Jacobi superidentity. Thus, Leibniz superalgebras are generalization of Lie superalgebras.

The notions of nilpotency and solvability of Leibniz superalgebras are defined in the
same way as for Leibniz algebras. For solvable Leibniz superalgebras we have that a Leibniz
superalgebra L is solvable if and only if its Leibniz algebra L0 is solvable. The concept
of derivations of superalgebras differs from the notion of derivations of algebras, and as in
a Z2-graded algebra, the space of derivations consists of even and odd subspaces. Recall,
now the definition of superderivations of Leibniz superalgebras [24, 37].

Definition 2.3. A superderivation (or derivation) of a superalgebra L of degree s is a linear
map D : L → L satisfying the following condition:

D([x, y]) = [D(x), y] + (−1)s·α[x,D(y)],

where x ∈ Lα, y ∈ L and s, α ∈ Z2

For convenience, let us shorten ”derivation of even degree” to just even derivation.
Linear operator Rx : L → L, x ∈ L such that Rx(y) = (−1)αβ[y, x], x ∈ Lα, y ∈ Lβ is
called a right multiplication operator. It is known that such an operator is a derivation of
the Leibniz superalgebra L of degree s for x ∈ Ls.
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Engel’s theorem and its direct consequences remain valid for Leibniz superalgebras. In
particular, a Leibniz superalgebra L is nilpotent if and only if Rx is nilpotent for every ho-
mogeneous element x of L. Here is the definition of nil-independency of the superderivation
of degree s imitated from Lie case (see [33]).

Definition 2.4. Let d1, d2, . . . , dn be derivations of a Leibniz superalgebra L of degree s. The
derivations d1, d2, . . . , dn are said to be a linearly nil-independent if for α1, α2, . . . , αn ∈ C
and a natural number k

(α1d1 + α2d2 + · · ·+ αndn)
k = 0 implies α1 = α2 = · · · = αn = 0.

Note that the maximal nilpotent ideal N of the Leibniz superalgebra L such that
[L,L] ⊂ N is called a nilradical. In [13] important results regarding the solvable exten-
sion method for the finite-dimensional case are given and it is shown that solvable Lie
and Leibniz superalgebras can be described using nil-independent even derivations of the
nilradical. Additionally, it is proved that the dimension of a solvable Leibniz superalge-
bra with a given nilradical is bounded by the maximal number of nil-independent even
derivations of the nilradical.

Definition 2.5. The set
Annr(L) = {z ∈ L | [L, z] = 0}

is called the right annihilator of the superalgebra L.

Note that, elements of the form [a, b] + (−1)αβ[b, a], (a ∈ Lα, b ∈ Lβ) are contained in
Annr(L).

Let L = L0 ⊕ L1 be a nilpotent Leibniz superalgebra. Operator Rx, x ∈ L0 is a nilpo-
tent endomorphism of the space Li, where i ∈ {0, 1}. Taking into account the property
of complex field we can consider the Jordan form of Rx. Denote by Ci(x)(i ∈ {0, 1}) the
descending sequence of the Jordan blocks with dimensions of Rx. Consider the lexico-
graphical order on the set Ci(L0).

Definition 2.6. A sequence

C(L) =
(

max
x∈L0\L2

0

C0(x)| max
x̃∈L0\L2

0

C1(x̃)
)

is said to be the characteristic sequence of the Leibniz superalgebra L.

3 Solvable Leibniz superalgebras whose nilradical is a Lie superalgebra
with maximal nilindex

In this section, we give the description of solvable Leibniz superalgebras whose nilradical
is a Lie superalgebra with the maximal index of nilpotency. Note that (n+m)-dimensional
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Lie superalgebra with nilindex n+m exists only for n = 2, m is odd and the multiplication
table of a superalgebra is as follows:

N2,m :

{
[yi, e1] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

.

In the next theorems, we present the classification of solvable Leibniz (Lie) superalge-
bras with the nilradical N2,m, which implies using the results of the works [10] and [26].
It should be noted that here we give list of solvable Lie superalgebras after some minor
corrections and add the list of solvable non-Lie Leibniz superalgebras.

Theorem 3.1. Let L = L0 ⊕ L1 be a (m + 3)-dimensional solvable Leibniz superalgebra
whose nilradical is isomorphic to N2,m. Then L is isomorphic to one of the following
pairwise non-isomorphic superalgebras:

M1 :



[e1, x] = −[x, e1] = e1,

[x, x] = e2,

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = −[yi, ym+1−i] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

,

[yi, x] = −[x, yi] = (i− m+1
2

)yi, 1 ≤ i ≤ m.

M2(α) :



[e1, x] = −[x, e1] = e1,

[e2, x] = −[x, e2] = αe2,

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = −[yi, ym+1−i] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

,

[yi, x] = −[x, yi] = (i+ α−m−1
2

)yi, 1 ≤ i ≤ m,

M3 :



[e1, x] = −[x, e1] = e1 + e2,

[e2, x] = −[x, e2] = e2,

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = −[yi, ym+1−i] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

,

[yi, x] = −[x, yi] = (i− m
2
)yi, 1 ≤ i ≤ m,

M4(b2, b4, . . . , bm−1) :



[e2, x] = −[x, e2] = 2e2,

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = −[yi, ym+1−i] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

,

[yi, x] = −[x, yi] = yi +
[m−i+1

2
]∑

k=1

b2kyi+2k−1, 1 ≤ i ≤ m,

Note that the first nonzero parameter of the algebra M4(b2, b4, . . . , bm−1) can be reduced to
1.
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Theorem 3.2. Let L = L0⊕L1 be a (m+4)-dimensional solvable Leibniz superalgebra whose
nilradical is isomorphic to N2,m. Then L is isomorphic to the following Lie superalgebra:

M5 :



[e1, x] = −[x, e1] = e1,

[e2, x] = −[x, e2] = (m− 1)e2,

[e2, z] = −[z, e2] = 2e2,

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = −[yi, ym+1−i] = (−1)i+1e2, 1 ≤ i ≤ m+1
2

,

[yi, x] = −[x, yi] = (1− i)yi, 1 ≤ i ≤ m,

[yi, z] = −[z, yi] = yi, 1 ≤ i ≤ m.

4 Main result

In this section, we give the classification of solvable Leibniz superalgebras whose nil-
radical has nilindex n+m and characteristic sequence (n− 1, 1|m). Note that, in the case
of n = m = 2 there are two four-dimensional Leibniz superalgebras of nilindex four [5].
Solvable Leibniz superalgebras with these four-dimensional nilradicals are classified in [35].
Thus, we consider the case n ≥ 3 and in the following theorem we give the list of nilpotent
Leibniz superalgebras with nilindex n+m and the characteristic sequence (n− 1, 1|m).

Theorem 4.1 ([5]). Let L be a Leibniz superalgebra of nilindex n + m with character-
istic sequence (n − 1, 1|m), then m = n − 1 or m = n and there exists such a basis
{e1, e2, . . . , en, y1, y2, . . . , ym} in superalgebra L whose multiplication in this basis is as fol-
lows:

if m = n− 1, L(α4, α5, . . . , αn, θ) :

[e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 2 ≤ i ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, e2] = α4e4 + α5e5 + . . .+ αn−1en−1 + θen,

[ej, e2] = α4ej+2 + α5ej+3 + . . .+ αn+2−jen, 2 ≤ j ≤ n− 2,

[y1, e2] = α4y3 + α5y4 + . . .+ αn−1yn−2 + θyn−1,

[yj, e2] = α4yj+2 + α5yj+3 + . . .+ αn+1−jyn−1, 2 ≤ j ≤ n− 3,

(4.1)
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G(β4, β5, . . . , βn, γ) :

[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, e2] = β4e4 + β5e5 + . . .+ βnen,

[ej, e2] = β4ej+2 + β5ej+3 + . . .+ βn+2−jen, [e2, e2] = γen, 3 ≤ j ≤ n− 2,

[yj, e2] = β4yj+2 + β5yj+3 + . . .+ βn+1−jyn−1, 1 ≤ j ≤ n− 3,

(4.2)

if m = n, then M(α4, α5, . . . , αn, θ, τ) :

[e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 2 ≤ i ≤ n,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, e2] = α4e4 + α5e5 + . . .+ αn−1en−1 + θen,

[ej, e2] = α4ej+2 + α5ej+3 + . . .+ αn+2−jen, 2 ≤ j ≤ n− 2,

[y1, e2] = α4y3 + . . .+ αn−1yn−2 + θyn−1 + τyn,

[y2, e2] = α4y4 + α5y4 + . . .+ αn−1yn−1 + θyn,

[yj, e2] = α4yj+2 + α5yj+3 + . . .+ αn+2−jyn, 3 ≤ j ≤ n− 2,

(4.3)

H(β4, β5, . . . , βn, δ, γ) :

[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, e2] = β4e4 + β5e5 + . . .+ βnen,

[ej, e2] = β4ej+2 + β5ej+3 + . . .+ βn+2−jen, [e2, e2] = γen, 3 ≤ j ≤ n− 2,

[y1, e2] = β4y3 + β5y4 + . . .+ βnyn−1 + δyn,

[yj, e2] = β4yj+2 + β5yj+3 + . . .+ βn+2−jyn, 2 ≤ j ≤ n− 2.

(4.4)

First, we describe the even derivations of these nilpotent Leibniz superalgebras.

Proposition 4.2. An even derivation of L(α4, α5, . . . , αn, θ) has the following form:
d(e1) = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

d(e2) = 2a1e2 + a2e3 + a3e4 + · · ·+ an−2en−1 + bnen,

d(ei) = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

d(yi) = (2i− 1)a1yi + a2yi+1 + a3yi+2 + · · ·+ an−iyn−1, 1 ≤ i ≤ n− 1,

where (n− 3)θa1 = 0, αia1 = 0, 4 ≤ i ≤ n.
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Proof. Let d be an even derivation of a Leibniz superalgebra which belongs to the class
L(α4, α5, . . . , αn, θ). Put

d(y1) = a1y1 + a2y2 + · · ·+ an−1yy−1, d(e2) = b1e1 + b2e2 + · · ·+ bnen.

Using the multiplications of the superalgebra and Definition 2.3, we find the following:

d(e1) = d([y1, y1]) = [d(y1), y1] + [y1, d(y1)] = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

d(e3) = d([e2, e1]) = [d(e2), e1] + [e2, d(e1)] = (b1 + b2 + 2a1)e3 + b3e4 + · · ·+ bn−1en,

On the other hand,

d(e3) = d([e1, e1]) = [d(e1), e1] + [e1, d(e1)] = 4a1e3 + a2e4 + a3e4 + · · ·+ an−2en.

Comparing the coefficients at the basic elements, we get that

b1 + b2 = 2a1, bi = ai−1, 3 ≤ i ≤ n− 1.

Since [ek, e1] = ek+1 for 3 ≤ k ≤ n, then from

d(ek+1) = d([ek, e1]) = [d(ek), e1] + [ek, d(e1)],

we have

d(ei) = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n.

Now we consider

d(y2) = d([y1, e1]) = [d(y1), e1] + [y1, d(e1)] = 3a1y2 + a2y3 + · · ·+ an−2yn−1.

From d(yi) = d([yi−1, e1]) = [d(yi−1), e1] + [yi−1, d(e1)], inductively we get

d(yi) = (2i− 1)a1yi + a2yi+1 + · · ·+ an−iyn−1, 1 ≤ i ≤ n− 1.

Consider

d([y1, e2]) = [d(y1), e2] + [y1, d(e2)] =

= [a1y1 + a2y2 + · · ·+ an−1yy−1, e2]+

+[y1, b1e1 + b2e2 + a2e3 + · · ·+ an−2en−1 + bnen] =

= b1y2 + (a1 + b2)α4y3 + (a1α5 + a2α4 + α5b2)y4+

+(a1α6 + a2α5 + a3α4 + α6b2)y5 + · · ·+
+(a1θ + a2αn−1 + a3αn−2 + a4αn−3 + · · ·+ an−3α4 + θb2)yn−1.

On the other hand,

d([y1, e2]) = α4d(y3) + α5d(y4) + · · ·+ αn−1d(yn−2) + θd(yn−1) =

= 5α4a1y3 + (α4a2 + 7α5a1)y4 + (α4a3 + α5a2 + 9α6a1)y5 + · · ·+
+(α4an−3 + α5an−4 + α6an−5 + · · ·+ αn−1a2 + (2n− 3)θa1)yn−1.
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Comparing the coefficients at the basis elements, we obtain that

b1 = 0, (n− 3)θa1 = 0, αia1 = 0, 4 ≤ i ≤ n− 1.

From d([e2, e2]) = [d(e2), e2]+ [e2, d(e2)], we have αna1 = 0. Verification of the property
of derivation for the other products give the identity or already obtained restrictions.

Similarly, to Proposition 4.2, we have the description of the even derivations of the
superalgebras for the other classes.

Proposition 4.3. An even derivation of M(α4, α5, . . . , αn, θ, τ) has the following form:
d(e1) = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

d(e2) = 2a1e2 + a2e3 + a3e4 + · · ·+ an−2en−1 + bnen,

d(ei) = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

d(yi) = (2i− 1)a1yi + a2yi+1 + a3yi+2 + · · ·+ an−i+1yn, 1 ≤ i ≤ n,

where θa1 = 0, τa1 = 0, αia1 = 0, 4 ≤ i ≤ n.

Proof. The proof is carried out using the property of derivation.

Proposition 4.4. An even derivation of H(β4, β5, . . . , βn, δ, γ) has the following form:
d(e1) = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

d(e2) = b2e2,

d(ei) = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

d(yi) = (2i− 1)a1yi + a2yi+1 + a3yi+2 + · · ·+ an−i+1yn, 1 ≤ i ≤ n,

where
βi(2(i− 2)a1 − b2) = 0, 4 ≤ i ≤ n,

δ(2(n− 1)a1 − b2) = 0, γ((n− 1)a1 − b2) = 0.
(4.5)

Proof. The proof is carried out using the property of derivation.

Proposition 4.5. An even derivation of G(β4, β5, . . . , βn, γ) has the following form:
d(e1) = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

d(e2) = b2e2 + bnen,

d(ei) = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

d(yi) = (2i− 1)a1yi + a2yi+1 + a3yi+2 + · · ·+ an−iyn−1, 1 ≤ i ≤ n− 1,

where γ((n− 1)a1 − b2) = 0, βi(2(i− 2)a1 − b2) = 0, 4 ≤ i ≤ n.

Proof. The proof is carried out using the property of derivation.
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From Proposition 4.2, we have the following corollary.

Corollary 4.6. If R is a non-nilpotent solvable Leibniz superalgebra with the nilradical from
the class L(α4, α5, . . . , αn, θ), then α4 = α5 = · · · = αn = θ = 0.

Proof. Suppose αi ̸= 0 for some i(4 ≤ i ≤ n) or θ ̸= 0. Then from

(n− 3)θa1 = 0, αia1 = 0, 4 ≤ i ≤ n,

we obtain that that a1 = 0, which implies the nilpotency of any even derivation of
L(α4, α5, . . . , αn, θ). It is a contradiction to the non-nilpotency of R. Therefore, we have
α4 = α5 = · · · = αn = θ = 0.

Thus, we conclude that solvable Leibniz superalgebra whose nilradical from the class
L(α4, α5, . . . , αn, θ) exists only under the condition α4 = α5 = · · · = αn = θ = 0 and such
solvable Leibniz superalgebras are classified in [34].

Theorem 4.7. Let R be a solvable Leibniz superalgebra with nilradical L(0, 0, . . . , 0, 0).
Then it is isomorphic to the superalgebra

SL :



[e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 2 ≤ i ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, x] = 2e1, [ei, x] = 2(i− 1)ei, 2 ≤ i ≤ n,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[x, e1] = −2e1, [x, y1] = −y1.

Analogously to the Corollary 4.6, from Proposition 4.3 for the solvable Leibniz super-
algebras with the nilradical from the class M(α4, α5, . . . , αn, θ, τ) we get

Corollary 4.8. If L is a non-nilpotent solvable Leibniz superalgebra with the nilradical from
the class M(α4, α5, . . . , αn, θ, τ), then α4 = α5 = · · · = αn = θ = τ = 0.

The following theorem describes a solvable Leibniz superalgebra whose nilradical is
M(0, 0, . . . , 0, 0, 0). It is proved by a similar reason as in Theorem 4.7.

Theorem 4.9. Let L be a solvable Leibniz superalgebra with nilradical M(0, 0, . . . , 0, 0, 0).
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Then L isomorphic to the superalgebra

SM :



[e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 2 ≤ i ≤ n,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, x] = 2e1, [ei, x] = 2(i− 1)ei, 2 ≤ i ≤ n,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[x, e1] = −2e1, [x, y1] = −y1.

Now consider solvable Leibniz superalgebras whose nilradicals belong to the class
H(β4, β5, . . . , βn, δ, γ). Then from Proposition 4.4, we have the following result.

Corollary 4.10. If L is a non-nilpotent solvable Leibniz superalgebra with nilradical from
the class H(β4, β5, . . . , βn, δ, γ), then:

(β4, β5, . . . , βn, δ, γ) =


(0, 0, . . . , 0, 0, 0),

(0, 0, . . . , 0, βt, 0, . . . , 0, 0), 4 ≤ t ≤ n, βt ̸= 0,

(0, 0, . . . , 0, δ, 0), δ ̸= 0,

(0, 0, . . . , 0, βn+3
2
, 0, . . . , 0, γ), n is odd, γ ̸= 0.

Proof. By the conditions on the parameters of the H(β4, β5, . . . , βn, δ, γ) from Proposi-
tion 4.4, we have the following cases:

• If all parameters are equal to zero, we obtain a split superalgebra H(0, 0, . . . , 0, 0, 0),
which has non-nilpotent even derivation.

• If βi ̸= 0, βj ̸= 0 for some i, j(4 ≤ i ̸= j ≤ n), then from (4.5), we have (a1, b2) =
(0, 0), which implies that all even derivations of the superalgebra are nilpotent.
Therefore, in this case, there is no solvable Leibniz superalgebra with nilradical
H(β4, β5, . . . , βn, δ, γ).

• If βt ̸= 0 for some t and βi = 0 for i ̸= t, then b2 = 2(t− 2)a1 and

δ(2(n− 1)a1 − b2) = 0, γ((n− 1)a1 − b2) = 0.

From these equalities we have δa1(n+1− t) = 0, γa1(n− 2t+3) = 0. If δ ̸= 0, then
a1 = 0 and the Leibniz superalgebra has only nilpotent even derivations. Thus δ = 0
and

– if γ = 0, then we have the superalgebras H(0, 0, . . . , 0, βt, 0, . . . , 0, 0), 4 ≤ t ≤ n,
βt ̸= 0;
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– if γ ̸= 0, then in case of t ̸= n+3
2
, we have that a1 = 0 and the Leibniz su-

peralgebra has only nilpotent even derivations which is contradiction with non-
nilpotency of the Leibniz superalgebra L. In case of t = n+3

2
we have the su-

peralgebras H(0, 0, . . . , 0, βn+3
2
, 0, . . . , 0, γ). Note that the case t = n+3

2
appears

only for n is odd.

• If βi = 0 for all i(4 ≤ i ≤ n) and δ ̸= 0, then γ = 0 and we have the superalgebra
H(0, 0, 0, . . . , 0, δ, 0).

• If βi = 0 for all i(4 ≤ i ≤ n), δ = 0 and γ ̸= 0, then we have the superalgebra
H(0, 0, 0, . . . , 0, 0, γ).

Similarly, for the class of superalgebras G(β4, β5, . . . , βn, γ), we have

Corollary 4.11. If L is a non-nilpotent solvable Leibniz superalgebra with nilradical from
the class G(β4, β5, . . . , βn, γ), then:

(β4, β5, . . . , βn, γ) =


(0, 0, . . . , 0, 0),

(0, 0, . . . , 0, βt, 0, . . . , 0), 4 ≤ t ≤ n,

(0, 0, . . . , 0, βn+3
2
, 0, . . . , 0, γ), n is odd, γ ̸= 0.

Now using Corollary 4.10, we classify solvable Leibniz superalgebras with nilradical
H(β4, β5, . . . , βn, δ, γ).

First we consider the case when the nilradical of solvable Leibniz superalgebra is the
superalgebra H(0, 0, . . . , 0, 0). From Proposition 4.4, it is easy to conclude that there are
two nil-independent even derivations of the superalgebra H(0, 0, . . . , 0, 0) and other al-
gebras have only one nil-independent even derivations. Moreover, a superalgebra from
the class H(β4, β5, . . . , βn, δ, γ) is split if and only if all parameters are equal to zero, i.e.,
superalgebra isomorphic to H(0, 0, . . . , 0, 0).

Theorem 4.12. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to the superalgebra H(0, 0, . . . , 0, 0). Then L is isomorphic to the following
pairwise non-isomorphic superalgebras:

MH1 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[yi, x1] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x1] = 2e1, [ei, x1] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x1, e1] = −2e1, [x1, y1] = −y1, [e2, x2] = e2,
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MH2 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[yi, x1] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x1] = 2e1, [ei, x1] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x1, e1] = −2e1, [x1, y1] = −y1, [e2, x2] = e2, [x2, e2] = −e2,

H1(b) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x] = 2e1, [e2, x] = be2, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, e2] = −be2, [x, y1] = −y1, b ̸= 0,

H2(b) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x] = 2e1, [e2, x] = be2, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, y1] = −y1,

H3 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x] = 2e1, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, y1] = −y1, [x, x] = e2,
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H4 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[e1, x] =
n∑

k=3

ak−1ek, [e2, x] = e2, [ei, x] =
n∑

k=i+1

ak+1−iek, 3 ≤ i ≤ n,

[yi, x] =
n∑

k=i+1

ak+1−iyk, 1 ≤ i ≤ n− 1,

H5(γ) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[e1, x] =
n∑

k=3

ak−1ek, [e2, x] = e2, [ei, x] =
n∑

k=i+1

ak+1−iek, 3 ≤ i ≤ n,

[yi, x] =
n∑

k=i+1

ak+1−iyk, 1 ≤ i ≤ n,

[x, e2] = −e2, [x, x] = γe2, γ ∈ {0; 1}.

Note that, the first non-vanishing parameter {a2, a3, . . . , an} in the algebras H4 and H5(γ)
can be scaled to 1.

Proof. From Proposition 4.4, it is not difficult to see that the maximal number of nil-
independent even derivations of the superalgebra N = H(0, 0, . . . , 0, 0) is equal to 2. Thus,
for the dimension of the solvable Leibniz superalgebras with nilradical N, we have

dimL− dimN ≤ 2.

Case dimL − dimN = 2. Since the codimension of the nilradical N is equal to 2,
we can choose a basis {e1, e2, . . . , en, x1, x2, y1, y2, . . . , ym} of L such that Rx1 and Rx2 are
nil-independent even derivations of N. Then using Proposition 4.4, we have that



[e1, x1] = 2e1 + a2e3 + a3e4 + · · ·+ an−1en,

[ei, x1] = 2(i− 1)ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

[yi, x1] = (2i− 1)yi + a2yi+1 + a3yi+2 + · · ·+ an−i+1yn, 1 ≤ i ≤ n,

[e1, x2] = α2e3 + α3e4 + · · ·+ αn−1en,

[e2, x2] = e2,

[ei, x2] = α2ei+1 + α3ei+2 + · · ·+ αn−i+1en, 3 ≤ i ≤ n− 1,

[yi, x2] = α2yi+1 + α3yi+2 + · · ·+ αn−i+1yn, 1 ≤ i ≤ n− 1.
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Taking the following change of basis

y′i = yi + A2yi+1 + A3yi+2 + · · ·+ An−i+1yn, 1 ≤ i ≤ n,

e′1 = e1 + A2e2 + A3e3 + · · ·+ An−1en,

e′2 = e2,

e′i = ei + A2ei+1 + A3ei+2 + · · ·+ An−i+1en, 3 ≤ i ≤ n,

where

Ak = −ak + A2ak−1 + A3ak−2 + · · ·+ Ak−1a2
2(k − 1)

, 2 ≤ k ≤ n,

we can assume ai = 0, 2 ≤ i ≤ n.
From the multiplication of the nilradical and the properties of the right annihilator, we

easily get ei, yj ∈ Annr(L) for 3 ≤ i ≤ n and 2 ≤ j ≤ n, i.e.,

[x1, ei] = [x2, ei] = 0, 3 ≤ i ≤ n, [x1, yj] = [x2, yj] = 0, 2 ≤ j ≤ n.

Put 

[x1, y1] = m1y1 +m2y2 + · · ·+mnyn,

[x1, e2] = p1e1 + p2e2 + · · ·+ pnen,

[x2, y1] = γ1y1 + γ2y2 + · · ·+ γnyn,

[x2, e2] = δ1e1 + δ2e2 + · · ·+ δnen,

[xi, xj] = c1ije1 + c2ije2 + · · ·+ cnijen, 1 ≤ i, j ≤ 2.

Making the change

x′
1 = x1 − 2m2e1 − 2

n∑
k=3

mkek, x′
2 = x2 − 2γ2e1 − 2

n∑
k=3

γkek,

we can assume mi = γi = 0 for 2 ≤ i ≤ n.
Considering the Leibniz superidentity for {x1, y1, y1} and {x2, y1, y1}, we derive

[x1, e1] = 2m1e1, [x2, e1] = 2γ1e1.

Similarly, if we apply the Leibniz superidentity on the triples {x1, e2, e1}, {x2, e2, e1},
{e1, x1, e1}, {e1, x2, e1}, {x1, x1, e1}, {x2, x2, e1}, {x1, y1, x1}, {x2, y1, x2}, {e1, x1, x2},
{e1, x2, x1}, {x1, x2, e1}, {x2, x1, e1}, {x1, x2, y1} and {x2, x1, y1}, we obtain

p1 = 0, pi = 0, 3 ≤ i ≤ n− 1,

δ1 = 0, δi = 0, 3 ≤ i ≤ n− 1,

m1 = −1, γ1 = 0, αi = 0, 2 ≤ i ≤ n,

c1ii = 0, ckii = 0, 1 ≤ i ≤ 2, 3 ≤ k ≤ n,

c112 = 0, ci12 = 0, 3 ≤ i ≤ n,

c121 = 0, ci21 = 0, 3 ≤ i ≤ n.
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Moreover, the Leibniz superidentity for the triples {x2, e2, x1}, {x1, e2, x2}, {x2, x1, e2},
{x1, x2, e2} and {x2, x2, e2} gives us

δn = 0, pn = 0, p2 = 0, δ2(δ2 + 1) = 0.

Changing the basis x′
1 = x1 − c212e2 allows us to assume that c212 = 0.

Now using the Leibniz superidentities for {x1, x1, x2}, {x2, x1, x2}, {x2, x2, x2}, we have
c211 = 0, c221 = 0, δ2c

2
22 = 0.

• If δ2 = 0, then changing x′
2 = x2 − c222e2, we can assume c222 = 0 and obtain the

superalgebra MH1.

• If δ2 = −1, then c222 = 0 and obtain the superalgebra MH2.

Case dimL− dimN = 1. Since, the operator of right multiplication Rx is a derivation
of H(0, 0, . . . , 0), then using Proposition 4.4, we can assume that

[e1, x] = 2a1e1 + a2e3 + a3e4 + · · ·+ an−1en,

[e2, x] = b2e2,

[ei, x] = 2(i− 1)a1ei + a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

[yi, x] = (2i− 1)a1yi + a2yi+1 + a3yi+2 + · · ·+ an−i+1yn, 1 ≤ i ≤ n.

Since (a1, b2) ̸= (0, 0), we divide this case into two subcases:
Subcase 1. Let a1 ̸= 0, then we may suppose a1 = 1. Taking the change of basis

y′i = yi + A2yi+1 + A3yi+2 + · · ·+ An−i+1yn, 1 ≤ i ≤ n,

e′1 = e1 + A2e2 + A3e3 + · · ·+ An−1en,

e′2 = e2,

e′i = ei + A2ei+1 + A3ei+2 + · · ·+ An−i+1en, 3 ≤ i ≤ n,

where

Ak = −ak + A2ak−1 + A3ak−2 + · · ·+ Ak−1a2
2(k − 1)

, 2 ≤ k ≤ n,

we can assume ai = 0, 2 ≤ i ≤ n.
Since ei, yj ∈ Annr(L) for 3 ≤ i ≤ n and 2 ≤ j ≤ n, we conclude

[x, ei] = 0, 3 ≤ i ≤ n, [x, yj] = 0, 2 ≤ j ≤ n.

Put 
[x, y1] = α1y1 + α2y2 + · · ·+ αnyn,

[x, e2] = µ1e1 + µ2e2 + · · ·+ µnen,

[x, x] = γ1e1 + γ2e2 + · · ·+ γnen.
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Using Leibniz superidentity we get:

[x, e1] = [x, [y1, y1]] = 2[[x, y1], y1] = 2α1e1 + 2α2e3 + · · ·+ 2αn−1en.

Taking the change x′ = x − 2(α3e3 + · · · + αnen), one can assume αi = 0 for 3 ≤ i ≤ n.
From 0 = [y1, [x, x]] and [x, [y1, x]] = [[x, y1], x]− [[x, x], y1], we obtain

γ1 = 0, α2 = 0, γi = 0, 3 ≤ i ≤ n,

Since [e1, x] + [x, e1] = 2(α1 + 1)e1 ∈ Annr(L), we get α1 = −1.
Considering the Leibniz superidentity for {x, e2, e1}, {x, e2, y1}, {x, x, e2}, {x, x, x}, we

derive the following restrictions:

µ1 = 0, µi = 0, 3 ≤ i ≤ n,

µ2(µ2 + b2) = 0, γ2µ2 = 0.

• Let µ2 ̸= 0, then γ2 = 0, b2 = −µ2, and obtain the superalgebra H1(b).

• Let µ2 = 0,

– If b2 ̸= 0, then taking x′ = x − γ2
b2
e2, we can suppose γ2 = 0, and obtain the

superalgebra H2(b) for b ̸= 0.

– If b2 = 0, then in case of γ2 = 0, we have the superalgebra H2(b) for b = 0, in
case of γ2 ̸= 0 making the change e′2 = γ2e2, we obtain the superalgebra H3.

Subcase 2. a1 = 0, then b2 ̸= 0 and we may suppose b2 = 1. Then
[e1, x] = a2e3 + a3e4 + · · ·+ an−1en,

[e2, x] = e2,

[ei, x] = a2ei+1 + a3ei+2 + · · ·+ an−i+1en, 3 ≤ i ≤ n,

[yi, x] = a2yi+1 + a3yi+2 + · · ·+ an−i+1yn, 1 ≤ i ≤ n.

Put 
[x, y1] = α1y1 + α2y2 + · · ·+ αnyn,

[x, e2] = µ1e1 + µ2e2 + · · ·+ µnen,

[x, x] = γ1e1 + γ2e2 + · · ·+ γnen.

Using Leibniz superidentity for triples {x, y1, y1}, we get

[x, e1] = 2α1e1 + 2α2e3 + · · ·+ 2αn−1en.

By changing the basis x′ = x − 2(α2e1 + α3e3 + · · · + αnen), we can assume αi = 0 for
2 ≤ i ≤ n.
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Considering the Leibniz superidentity for elements {y1, x, x}, {x, e2, e1}, {x, e2, y1},
{e1, x, y1}, {x, x, e2}, {x, y1, x}, we obtain the following restrictions:{

γ1 = 0, µ1 = 0, µi = 0, 3 ≤ i ≤ n, α1 = 0,

µ2(µ2 + 1) = 0, γi = 0, 3 ≤ i ≤ n.

Subcase 2.1. If µ2 = 0, then by x′ = x−γ2e2, we may suppose that γ2 = 0 and obtain
the superalgebra H4.

Subcase 2.2. If µ2 = −1, then we have the superalgebra H5(γ).

Now we consider the case when the nilradical is a non-split superalgebra from the class
H(β4, β5, . . . , βn, δ, γ), i.e., at least one of the parameters is not equal to zero.

Theorem 4.13. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to a non-split superalgebra N from the class H(β4, β5, . . . , βn, δ, γ). Then L is
isomorphic to one of the following pairwise non-isomorphic superalgebras:

SH1(t)(4 ≤ t ≤ n) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj , e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj , y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2y2, [ei, y1] =

1
2yi, 3 ≤ i ≤ n,

[e1, e2] = et, [ej , e2] = ej+t−2, 3 ≤ j ≤ n− 2,

[y1, e2] = yt−1, [yj , e2] = yj+t−2, 2 ≤ j ≤ n− 2,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[x, y1] = −y1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = 2(t− 2)e2, [x, e2] = −2(t− 2)e2 − 2et−1,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

SH2 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[y1, e2] = yn,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[x, y1] = −y1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = 2(n− 1)e2, [x, e2] = −2(n− 1)e2 − 2en,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n.
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SH3(γ)(n is odd) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[e1, e2] = en+3
2
, [ej, e2] = ej+n−1

2
, 3 ≤ j ≤ n− 2,

[y1, e2] = yn+1
2
, [yj, e2] = yj+n−1

2
, 2 ≤ j ≤ n− 2,

[e2, e2] = γen, γ ̸= 0,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[x, y1] = −y1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = (n− 1)e2, [x, e2] = −(n− 1)e2 − 2en+1
2
,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

SH4 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[e2, e2] = en,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[x, y1] = −y1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = (n− 1)e2, [x, e2] = −(n− 1)e2,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

Proof. From Proposition 4.4, we have that any non-split superalgebra from the class
H(β4, β5, . . . , βn, δ, γ) has a maximum one nil-independent even derivation. Then we have
that, the codimension of the solvable superalgebra L with such nilradicals may be equal
to one. Let {e1, e2, . . . , en, , x, y1, y2 . . . , yn} be a basis of the superalgebra L = L0 ⊕ L1,
such that L0 = {e1, e2, . . . , en, x} and L1 = {y1, y2 . . . , yn}. Since, the operator of right
multiplication Rx is a derivation of H(β4, β5, . . . , βn, δ, γ), then using Proposition 4.4, we
can assume that

[yi, x] = (2i− 1)a1yi + a2yi+1 + · · ·+ an−i+1yn, 1 ≤ i ≤ n,

[e1, x] = 2a1e1 + a2e3 + · · ·+ an−1en,

[e2, x] = b2e2,

[ei, x] = 2(i− 1)a1ei + a2ei+1 + · · ·+ an−i+1en, 3 ≤ i ≤ n.

Moreover, if βi ̸= 0, for some i(4 ≤ i ≤ n), then b2 = 2(i − 2)a1, if βi = 0, for any
i(4 ≤ i ≤ n) and δ ̸= 0, then b2 = 2(n − 1)a1, if βi = 0, for any i(4 ≤ i ≤ n), δ = 0 and
γ ̸= 0, then b2 = (n− 1)a1.
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Thus, from non-nilpotency of even derivation of the non-split superalgebra from the
class H(β4, β5, . . . , βn, δ, γ), we conclude that a1 ̸= 0. Therefore, we can suppose a1 = 1
and considering the following change of basis

y′i = yi + A2yi+1 + A3yi+2 + · · ·+ An−i+1yn, 1 ≤ i ≤ n,

e′1 = e1 + A2e3 + A3e4 + · · ·+ An−1en,

e2 = e2,

e′i = ei + A2ei+1 + A3ei+2 + · · ·+ An−i+1en, 3 ≤ i ≤ n,

where

Ak = −ak + A2ak−1 + A3ak−2 + · · ·+ Ak−1a2
2(k − 1)

, 2 ≤ k ≤ n,

one can assume ai = 0, 2 ≤ i ≤ n.
From (4.4), we can easily get that the basis elements e3, e4, . . . , en, y2, y3, . . . , yn belongs

to the right annihilator of the superalgebra L. Thus, we have

[x, ei] = 0, 3 ≤ i ≤ n, [x, yj] = 0, 2 ≤ j ≤ n.

Put 
[x, y1] = α1y1 + α2y2 + · · ·+ αnyn,

[x, e2] = µ1e1 + µ2e2 + · · ·+ µnen,

[x, x] = γ1e1 + γ2e2 + · · ·+ γnen.

Using Leibniz superidentity we get:

[x, e1] = [x, [y1, y1]] = 2[[x, y1], y1] = 2α1e1 + 2α2e3 + · · ·+ 2αn−1en.

Making the change x′ = x − 2(α2e1 + α3e3 + · · · + αnen), we can assume that αi =
0, 2 ≤ i ≤ n.

Moreover, from 0 = [y1, [x, x]], we obtain

γ1 = 0, γ2βi = 0, 4 ≤ i ≤ n, γ2δ = 0. (4.6)

The Leibniz superidentity [x, [y1, x]] = [[x, y1], x]− [[x, x], y1] gives us the following

γi = 0, 3 ≤ i ≤ n.

Since [e1, x] + [x, e1] ∈ Annr(L), we get that α1 = −1. Thus, we have the following
multiplications

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n,

[e1, x] = 2e1, [e2, x] = b2e2, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, e2] =
n∑

k=1

µkek,

[x, y1] = −y1, [x, x] = γ2e2.
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Now, using Corollary 4.10, consider the following cases:
Case 1. Let N = H(0, 0, . . . , βt, 0, . . . , 0, 0), where 4 ≤ t ≤ n, i.e., nilradical N has the

multiplication 

[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e1, e2] = βtet, [ej, e2] = βtej+t−2, 3 ≤ j ≤ n− 2,

[y1, e2] = βtyt−1, [yj, e2] = βtyj+t−2, 2 ≤ j ≤ n− 2.

(4.7)

Since βt ̸= 0, then from (4.6), we get γ2 = 0 and changing e′2 = 1
βt
e2, we have βt = 1

and b2 = 2(t− 2). Applying the Leibniz superidentity for the triples {e1, x, e2}, {x, e2, y1},
we have

µ1 = 0, µ2 = 2(2− t), µi = 0, 3 ≤ i ̸= t− 1 ≤ n, µt−1 = −2.

Therefore, we obtain the superalgebra SH1(t).
Case 2. Consider the case when nilradical is

H(0, 0, . . . , 0, δ, 0) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n,

[y1, e2] = δyn.

Since δ ̸= 0, then from (4.6) we have γ2 = 0 and by changing e′2 =
1
δ
e2, we can assume

δ = 1.
From the Leibniz superidentity for {x, e2, y1}, {y1, x, e2}, we obtain

µ1 = 0, µ2 = 2(1− n), µi = 0, 3 ≤ i ≤ n− 1, µn = −2.

Therefore, we have the superalgebra SH2.
Case 3. Let the nilradical of the superalgebra is

H(0, 0, . . . , βn+3
2
, 0, . . . , 0, γ) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj , e1] = yj+1, 1 ≤ j ≤ n− 1,

[y1, y1] = e1, [yj , y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2y2, [ei, y1] =

1
2yi, 3 ≤ i ≤ n,

[e1, e2] = βn+3
2
en+3

2
, [ej , e2] = βn+3

2
ej+n−1

2
, 3 ≤ j ≤ n− 2,

[y1, e2] = βn+3
2
yn+1

2
, [yj , e2] = βn+3

2
yj+n−1

2
, 2 ≤ j ≤ n− 2,

[e2, e2] = γen.

In this case, we have b2 = n− 1.
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If βn+3
2

̸= 0, then from (4.6), we get γ2 = 0. Taking the change e′2 = 1
βn+3

2

e2, we can

suppose βn+3
2

= 1. Considering the Leibniz superidentity for {x, e2, y1}, {e1, x, e2}, we get

µ1 = 0, µ2 = 1− n, µn+1
2

= −2, µi = 0, 3 ≤ i ≤ n, (i ̸= n+ 1

2
).

Thus, we have the superalgebra SH3(γ).
If βn+3

2
= 0, then γ ̸= 0 and by changing e′2 =

1√
γ
e2, we can suppose γ = 1. Considering

Leibniz superidentity for {x, e2, y1}, {e2, x, x}, {e2, x, e2}, we get

γ2 = 0, µ1 = 0, µ2 = 1− n, µi = 0, 3 ≤ i ≤ n.

Thus, we obtain the superalgebra SH4.

Now we give the description of solvable Leibniz superalgebras whose nilradical is iso-
morphic to the superalgebra from the class G(β4, β5, . . . , βn, γ). In the following theorem,
we consider the case when nilradical is G(0, 0, . . . , 0).

Theorem 4.14. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to the superalgebra G(0, 0, . . . , 0). Then L is isomorphic to one of the following
pairwise non-isomorphic superalgebras:

MG1 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e1, x1] = 2e1, [ei, x1] = 2(i− 1)ei, 3 ≤ i ≤ n,

[yi, x1] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[x1, e1] = −2e1, [x1, y1] = −y1, [e2, x2] = e2,

MG2 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e1, x1] = 2e1, [ei, x1] = 2(i− 1)ei, 3 ≤ i ≤ n,

[yi, x1] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[x1, e1] = −2e1, [x1, y1] = −y1,

[e2, x2] = e2, [x2, e2] = −e2,
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G1(b) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [e2, x] = be2, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, e2] = −be2, [x, y1] = −y1, b ̸= 0,

G2(b) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [e2, x] = be2, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, e1] = −2e1, [x, y1] = −y1,

G3 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = 2(n− 1)e2 + en, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, y1] = −y1,

G4(γ, b) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = ben, [ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

[x, y1] = −y1, [x, x] = γe2, (γ, b) = (0, 1), (1, 0), (1, 1)
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G5 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e1, x] =
n∑

k=3

ak−1ek, [e2, x] = e2, [ei, x] =
n∑

k=i+1

ak+1−iek, 3 ≤ i ≤ n,

[x, x] = γen, [yi, x] =
n−1∑

k=i+1

ak+1−iy, 1 ≤ i ≤ n− 1,

G6 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e1, x] =
n∑

k=3

ak−1ek, [e2, x] = e2, [ei, x] =
n∑

k=i+1

ak+1−iek, 3 ≤ i ≤ n,

[x, e2] = −e2, [x, x] = γen, [yi, x] =
n−1∑

k=i+1

ak+1−iy, 1 ≤ i ≤ n− 1.

Note that, the first non-vanishing parameter {a2, a3, . . . , an−1, γ} in the algebras G5 and
G6 can be scaled to 1.

Proof. The proof is similar to the proof of Theorem 4.12.

Now we consider the case when the nilradical is a non-split superalgebra from the class
G(β4, β5, . . . , βn, γ), i.e., at least one of the parameters is not equal to zero.

Theorem 4.15. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to a non-split superalgebra N from the class G(β4, β5, . . . , βn, γ). Then L is
isomorphic to one of the following pairwise non-isomorphic superalgebras:

SG1(t)(4 ≤ t ≤ n) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj , e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj , y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2y2, [ei, y1] =

1
2yi, 3 ≤ i ≤ n− 1,

[e1, e2] = et, [ej , e2] = ej+t−2, 3 ≤ j ≤ n− 2,

[yj , e2] = yj+t−2, 2 ≤ j ≤ n− 3,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[x, y1] = −y1, [e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = 2(t− 2)e2, [x, e2] = −2(t− 2)e2 − 2et−1,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,
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SG2(γ)(n is odd) :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj , e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj , y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2y2, [ei, y1] =

1
2yi, 3 ≤ i ≤ n− 1,

[e1, e2] = en+3
2
, [ej , e2] = ej+n−1

2
, 3 ≤ j ≤ n− 2,

[yj , e2] = yj+n−1
2
, 1 ≤ j ≤ n− 3,

[e2, e2] = γen, γ ̸= 0, [x, y1] = −y1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = (n− 1)e2, [x, e2] = −(n− 1)e2 − 2en+1
2
,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n.

SG3 :



[e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[yj, e1] = yj+1, 1 ≤ j ≤ n− 2,

[y1, y1] = e1, [yj, y1] = ej+1, 2 ≤ j ≤ n− 1,

[e1, y1] =
1
2
y2, [ei, y1] =

1
2
yi, 3 ≤ i ≤ n− 1,

[e2, e2] = en, [x, y1] = −y1,

[yi, x] = (2i− 1)yi, 1 ≤ i ≤ n− 1,

[e1, x] = 2e1, [x, e1] = −2e1,

[e2, x] = (n− 1)e2, [x, e2] = −(n− 1)e2,

[ei, x] = 2(i− 1)ei, 3 ≤ i ≤ n,

The proof of this theorem is carried out similarly to the proof of Theorem 4.13.
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of Lie algebras with naturally graded quasi-filiform nilradicals. Journal of Geometry and
Physics, 61(11):2168–2186, 2011.

[5] S. Ayupov, A. Khudoyberdiyev, and B. Omirov. The classification of filiform Leibniz su-
peralgebras of nilindex n + m. Acta Mathematica Sinica (English Series), 25(1):171–190,
2009.

[6] S. Ayupov, B. Omirov, and I. Rakhimov. Leibniz algebras: structure and classification.
Taylor and Francis Group Publisher, 2019.

[7] D. Barnes. On Levi’s theorem for Leibniz algebras. Bulletin of the Australian Mathematical
Society, 86(2):184–185, 2012.

[8] F. Berezin and D. Leites. Supervarieties. Soviet Mathematics Doklady, 16:1218–1222, 1975.

[9] L. Bosko-Dunbar, J. D. Dunbar, J. Hird, and K. Stagg. Solvable Leibniz algebras with
Heisenberg nilradical. Communications in Algebra, 43(6):2272–2281, 2015.

[10] L. Camacho, J. Fernandez-Barroso, and R. Navarro. Solvable Lie and Leibniz superalgebras
with a given nilradical. Forum Mathematicum, 32(5):1271–1288, 2020.
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