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Some statistics about tropical sandpile model

Nikita Kalinin, Yulieth Prieto

Abstract. Tropical sandpile model (or linearized sandpile model) is the only known
continuous geometric model exhibiting self-organised criticality. This model repre-
sents the scaling limit behavior of a small perturbation of the maximal stable sandpile
state on a big subset of Z2. Given a set P of points in a compact convex domain
Ω ⊂ R2 this linearized model produces a tropical polynomial GP0Ω.

Here we present some quantitative statistical characteristics of this model and
some speculative explanations. Namely, we study the dependence between the num-
ber n of randomly dropped points P = {p1, . . . , pn} ⊂ [0, 1]2 = Ω and the degree of
the tropical polynomial GP0Ω. We also study the distributions of the coefficients of
GP0Ω and the correlation between them. This paper’s main (experimental) result
is that the tropical curve C(GP0Ω) defined by GP0Ω is a small perturbation of the
standard square grid lines. This explains a previously known fact that most of the
edges of the tropical curve C(GP0Ω) are of directions (1, 0), (0, 1), (1, 1), (−1, 1).

The main theoretical result is that C(GP0Ω) \ (P ∩ ∂Ω), i.e. the tropical curve in
Ω◦ with marked points P removed, is a tree.

1 Abelian sandpile model

A mathematical object is interesting if it appears in several contexts under different
disguises. The sandpile model evolves by a very simple rule. Hence it is not unexpected
that it was discovered independently at least three times: in number theory, combinatorics,
and physics. Let us define it.

MSC 2020: 14T15, 37B15
Keywords: tropical geometry, power law, genus, sandpile
Contact information:

N. Kalinin:
Affiliation: Guangdong Technion-Israel Institute of Technology, China.
Email: nikaanspb@gmail.com

Yu. Prieto:
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Italy.
Email: yprieto@ictp.it

ar
X

iv
:1

90
6.

02
80

2v
3 

 [
m

at
h.

C
O

] 
 1

3 
Ju

n 
20

23



10 Nikita Kalinin, Yulieth Prieto

1. Let Ω be a big compact convex subset of R2. Let Γ = Ω ∩ Z2, naturally, Γ becomes
a graph when for each point (i, j) we draw edges from (i, j) to its neighbors (i +
1, j), (i− 1, j), (i, j − 1), (i, j + 1).

Definition 1.1. A state of a sandpile is a function ϕ : Γ → Z≥0, ϕ(v) being the
number of grains at v ∈ Γ. If ϕ(v) ≥ 4, we can topple v by redistributing four
grains from v equally to its four neighbors. Sand falling outside of Ω disappears,
that guarantees that any relaxation (doing toppling while it is possible) eventually
terminates.

It is a basic feature of the model, that the result ϕ◦ does not depend on a particular
choice of relaxation.

If Ω is a big rectangle, then the distribution of the sizes of avalanches (all vertices
that topple at least once during a relaxation) caused by subsequent grain dropping at
random vertices obeys a power law, thus the sandpile serves as an example of the self-
organized criticality (SOC). That was experimentally observed (and the term SOC
was coined) in [4] and was proven only recently [6]. A key property of the sandpile is
that the recurrent states of the above dynamic correspond to the spanning trees of the
underlying graph Γ [13]; hence the distribution of avalanches is related to random
spanning forests on Z2, see [2] for details. Sandpiles were studied extensively in
physics literature: their universality [34, 11], and algebraic properties [13], and the
power spectra of its avalanches [25].

2. Another source of sandpiles is the following problem: given a set of vectors, let us
try to minimize their sum with ±1 coefficients. In [39], a certain combinatorial game
was defined to approach this problem. In [8], this game was generalized, and the
so-called chip-firing game was defined: a collection of chips at the vertices of a finite
graph evolves by the same toppling rule: we topple (fire) a vertex if the number of
chips at it is at least its valency.

3. The set of recurrent configurations of the above dynamic has a group structure, the
critical group of the underlying graph. This observation leads to fruitful connections
between sandpiles, Tutte polynomials, and matroid theory [30, 7]. One of the results
in this direction is the Riemann-Roch theorem for divisors on graphs [5], exploit-
ing the similarity between Jacobians of Riemann surfaces and graphs, cf. [3]. The
toppling rule essentially boils down to a discrete Laplacian operator, and the sand-
pile group is the critical group of the dual graph of a degeneration of an algebraic
curve [26, 27] (this study of divisor under a degeneration can be traced back to [36],
Proposition 8.1.2).

We recommend the following introductory reading about sandpiles: [14, 18, 37, 19, 12].

1.1 Self-reproducing patterns and tropical curves

Patterns in sandpiles, resembling tropical curves, were studied by S. Caracciolo, G.
Paoletti, and A. Sportiello, [10]. Later, the corresponding dynamic after the scaling limit
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was rigorously defined under the name of “tropical sandpile model” by N. Kalinin and M.
Shkolnikov, whose main result is that the deviation set of ϕ◦ (where ϕ = 3 +

∑
p∈P δp,

P ⊂ Γ) is a tropical analytic curve that passes through P ; see[22] (for a short version read
[23]). Recently is has been shown that the tropical sandpile model exhibits self-organised
criticality behaviour [21].

Figure 1: Ω-tropical curve C(f) corresponding to f(x, y) = min(1/3, x, y, 1− x, 1− y).

2 The tropical sandpile model

Tropical curves are graphs of a special type appearing as degenerations of Riemann
surfaces (see also their connections with string theory [40] and statistical physics [1]), and
are used to compute Gromov-Witten invariants, see introductory texts [17, 9]. Here we
need only the simplest version of a tropical curve, a planar tropical curve. Let Ω ⊂ R2 be
a compact convex set.

Definition 2.1. An Ω-tropical series is a function f : Ω → R such that f |Ω≥ 0, f |∂Ω= 0
and there exist cij ∈ R such that for each point (x, y) ∈ Ω◦ we have

f(x, y) = min{cij + ix+ jy|(i, j) ∈ Z2}.

The set of non-smooth points of f is called an Ω-tropical analytic curve and is denoted
by C(f).

It is easy to see that the complement of C(f) in Ω◦ is divided into parts where only
one monomial cij + ix+ jy is minimal.

Definition 2.2. The minimal canonical form of an Ω-tropical series is the unique presen-
tation with the minimal by inclusion set of monomials and minimal possible coefficients
cij.

Let V (Ω) be the set of all Ω-tropical series. To each finite subset P ⊂ Ω◦ we associate
an operator GP : V (Ω) → V (Ω) which associates to any Ω-tropical curve and a set P of
points a new Ω-tropical curve passing through P as follows.

Definition 2.3. Let GPf(x, y) = min{g(x, y) | g ∈ V (Ω), g ≥ f and P ⊂ C(g)}.
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Clearly, if P ⊂ C(f) then GPf = f . Suppose that P = {p}. Then, if p belongs to a
face where the monomial cij + ix+ jy is minimal, then Gp just increases the coefficient cij,
[24]. On the level of associated Ω-tropical curves, Gp contracts the face which p belongs
to, see Figure 2.

•p

Φ

•p •p

Figure 2: The operator Gp shrinks the face Φ where p belongs to. Note that combinatorics of
the new curve can change when shrinking.

The operators GP appear in works of C. Vafa under the name of “breathing mode”,
see [41].

The theory of tropical series, operators GP , and all proofs of the aforementioned results
can be found in [24]. The Ω-tropical curves recently appear in the study of Lagrangian
submanifolds [29, 33, 15]. An introduction to tropical geometry can be found in [9, 31, 28].

Dynamics of Gp in the case of one-dimensional tropical series was thoroughly studied
in [38].

3 Experiments and results

We drop n random uniformly chosen points P = {p1, . . . , pn} to Ω = [0, 1]2. In order
to facilitate the computations, we fix s ∈ N and choose n random points pi = (x

s
, y
s
) where

x, y ∈ [0, s]∩Z and study the Ω-tropical series GP0[0,1]2 , i.e. GP applied to the identically
zero function on Ω. We assume that when s is big enough, this model is close to the
continuous model.

Let

S := {50, 100, 200, 300, 500, 1000},
N := {100, 500, 1000, 1500, 2000, 2500, 5000},

For every s ∈ S and n ∈ N , we run experiments as explained above and study the following
characteristic of GP0Ω.

3.1 The minimal degree of GP0

Definition 3.1. If f(x, y) = min
(i,j)∈A

(cij + ix+ jy), then the (tropical) degree of f is defined

as
Degree(f) = max

(i,j)∈A
(|i|+ |j|).
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Figure 3: A typical example of GP0[0,1]2.

This degree is the analog of the degree of a polynomial in two variables in algebraic
geometry. It is known that a curve {F (x, y) = 0} where F is a polynomial in two variables

of degree d can be drawn through (d+1)(d+2)
2

− 1 generic points (e.g. a line through two
points, a conic through five points). So it is reasonable to expect that Degree(GP0[0,1]2)

should be of order
√

|P | =
√
n.

According to simulations for S,N as above, we numerically observe that the families
fmin
Degree and f mean

Degree defined as follows

fmin
Degree(n) =

min(degree(s, n))

n
1
2
−ϵ

f mean
Degree(n) =

mean(degree(s, n))

n
1
2
−ϵ

converge to constants as s and n tend to infinity, and ϵ is a small number, see Figure 4.

Figure 4: Minimum and mean degree of 5000 experiments for each s ∈ S (different curves) and
n ∈ N (x-axe).
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In other words, the limit of the degree distribution depends only on the number of
randomly chosen points and does not depend on the size of square if it is large enough.
Moreover, most of the degrees are approximately

√
n, so we conjecture a kind of concen-

tration of measure (the standard deviation of the distribution of degrees tends to zero).

3.2 Genus

As in the classical algebraic geometry we can define the genus of a curve. Together
with the degree, these are two main invariants of plane curves.

Definition 3.2. The genus of an Ω-tropical curve C(f) is the number of connected com-
ponents of Ω◦ \ C(f) whose closure does not intersect ∂Ω.

For example, the genus of the curve on Figure 3 is one, as well as the genera of the
curves on Figure 2. In classical algebraic geometry, the genus represents the dimension
of the deformations of a curve in a given class of curves. Thus, in our setting where the
dimension of deformations of a curve C(GP0Ω) is naturally the number |P | of points, we
would expect that the genus of GP0Ω is equal to P . Indeed, this is the case for a generic
collection P of points.

Theorem 3.3. If P is a generic collection of points in Ω◦, then the genus of C(f) (where
f = GP0Ω) is equal to P .

Proof. Firstly, note that every connected component of Ω◦ \ C(f), whose boundary does
not intersect ∂Ω, contains a point p ∈ P in its closure. Indeed, if it is not the case, consider
the monomial aij + ix+ jy which is minimal on this connected component and note that
aij could be decreased by a small amount, and the corresponding tropical series would still
contain P in its corner locus and be greater than zero which contradicts the minimality of
f = GP0Ω.

Secondly, because of the genericity of the set P , we may assume that a small perturba-
tion of points in P does not change the combinatorial type of the tropical curve. Consider
X = C(f) \ (P ∪ ∂Ω). It does not contain cycles by the above arguments, and to prove
that X is a tree we only need to establish its connectivity. Suppose the contrary and take
any connected component of X: X is a tree with endpoints on the boundary of Ω and
in P . Consider any point p ∈ P which is contained in the closure of X. Note that if we
perturb P by moving p orthogonally to the edge containing it, X should be also perturbed.
This means that X must contain both connected components of the intersection of a small
neighborhood of p with C(f). Otherwise it would be possible to slightly move one of the
legs of a tropical curve without moving any other leg (which would contradict the tropical
Menelaus theorem [32] also known as the tropical momentum theorem [20], or the moment
condition [42]). Thus the closure of X is a connected component of C(f) and recall that
C(f) is connected. Therefore C(f)\ (P ∪∂Ω) is connected from the very beginning, hence
it is a tree, showing that |P | is equal to the genus of C(f).
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3.3 Behaviour of coefficients cij

Let cij be the coefficient of GP0[0,1]2 , as in (2.1). Let {f ij
s }s∈S be

f ij
s (n) :=

mean(cij(s, n))

snα
,

where α is a scaling parameter that we want to estimate, and cij is one of {c00, c11, c10,
c01}. We numerically observe that f ij

s (n) converges to a constant function when α = 1/2
and n, s tend to infinity. More plots can be found in [35].

3.4 Mean identity

There exists a nice relation between coefficients c00, c11, c10 and c01. Namely, writing
c00 for the average of c00 in the experiments, we obtain that

c00(s, n) + c11(s, n) = c10(s, n) + c01(s, n).

is satisfied, see Figure 5. Note that it should be of order
√
n a priori as all of its summands.

Figure 5: Graph of c00(s, n) + c11(s, n)− c10(s, n)− c01(s, n).

The 1/n of the standard deviation of values cij is constant, see Figure 6 for fSD
s (n) =

SD(c00)
sn

.

4 Discussion

We conjecture that the general identity

cij + ci+1j+1 = ci+1j + cij+1. (1)

for the averages of the coefficients is satisfied when i2 + j2 is relatively small with respect
to

√
n. This equality suggests that the tropical curve is a small perturbation of a square
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Figure 6: Standard deviation for values of c00.

lattice (whose tropical equation satisfy (1)). But, believing that the tropical curve is of
degree d =

√
n and is almost a grid we can write that c0,−d = 0 (because the tropical series

is zero on the left side of [0, 1]2 and is equal to c0,−d − dx there) and c0,k−d = c0,k+1−d +
k
2d
,

because near x = k
2d

we have

c0,k−d + (k − d)x = c0,k+1−d + (k + 1− d)x.

Therefore c00 =
(d+1)d

2d
∼ d =

√
n, which agrees with the experimental evidence.

Our simulations suggest that the average degree of an Ω-tropical curve through n
generic points is approximately

√
n, but a naive argument to show that by random dropping

of points we get one point per small square fails, see [16].
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Springer, 2017.

[41] C. Vafa. Supersymmetric partition functions and a string theory in 4 dimensions. arXiv
preprint arXiv:1209.2425, 2012.

[42] S. Yoshitomi. Jacobian varieties of reduced tropical curves. arXiv preprint math/0612810,
2006.

Received: December 17, 2022
Accepted for publication: June 2, 2023
Communicated by: Jacob Mostovoy and Sergei Chmutov


	Abelian sandpile model
	Self-reproducing patterns and tropical curves

	The tropical sandpile model
	Experiments and results
	The minimal degree of GP0
	Genus
	Behaviour of coefficients cij
	Mean identity

	Discussion

