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Transitions between root subsets associated with Carter
diagrams

Rafael Stekolshchik

Abstract. For any two root subsets associated with two Carter diagrams that have
the same ADE type and the same size, we construct the transition matrix that maps
one subset to the other. The transition between these two subsets is carried out in
some canonical way affecting exactly one root, so that this root is mapped to the
minimal element in some root subsystem. The constructed transitions are involu-
tions. It is shown that all root subsets associated with the given Carter diagram
are conjugate under the action of the Weyl group. A numerical relationship is ob-
served between enhanced Dynkin diagrams ∆(E6), ∆(E7) and ∆(E8) (introduced
by Dynkin-Minchenko) and Carter diagrams. This relationship echoes the 2− 4− 8
assertions obtained by Ringel, Rosenfeld and Baez in completely different contexts
regarding the Dynkin diagrams E6, E7, E8.

In memory of Semyon E. Konstein

1 Introduction

1.1 Diagrams with cycles

In 1972, R. Carter introduced the so-called admissible diagrams representing semi-
Coxeter elements of conjugacy classes in the Weil group. The admissible diagrams also
represent root subsets1 of the root systems associated with the Weyl group. These root
subsets sometimes form strange cycles, strange because the extended Dynkin diagram Ãl

cannot be part of any admissible diagram. The explanation for this fact was that in the
case of extended Dynkin diagrams, the inner products of roots of cycle Ãl are negative,
while in the case of admissible diagrams, there are necessarily both positive and negative
inner products, see [18, Lemma A.1]. Thus was born the concept of the Carter diagram,
see [18]. They differ from admissible diagrams in that they take into account the sign of
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the inner product on the pair of roots; for this, the language of solid and dotted edges is
used, see Section 2.2.

Carter diagrams distinguish between negative inner products (solid edges) and positive
inner products (dotted edges). The number of solid edges must necessarily be odd, as
well as the number of dotted edges. This agrees well with the fact that, by definition,
the length of an admissible diagram is even. In the theorem on exclusion of long cycles
[18, Theorem 3.1] it was shown that any Carter diagram with cycles of arbitrary even
length can be reduced to another Carter diagram containing only 4-cycles. In proving this
theorem, for each particular case, it is checked that a semi-Coxeter element associated with
a Carter diagram with long cycles is conjugate to a semi-Coxeter element associated with
another Carter diagram containing only cycles of length 4.

1.2 Homogeneous classes of Carter diagrams

The Dynkin diagram Al, where l ≥ 1 (resp. Dl, where l ≥ 4; resp. El, where l = 6, 7, 8)
is said to be the Dynkin diagram of A-type (resp. D-type, resp. E-type). The Carter
diagram Al, where l ≥ 1 (resp. Dl, Dl(ak), where l ≥ 4, 1 ≤ k ≤

[
l−2
2

]
; resp. El, El(ak),

where l = 6, 7, 8, k = 1, 2, 3, 4) is said to be the Carter diagram of A-type (resp. D-type,
resp. E-type).

The Carter diagrams of the same type and the same index constitute a homogeneous
class of Carter diagrams. Denote by C(Γ) the homogeneous class containing the Carter
diagram Γ, see (1) and Fig. 1.

C(E6) ={E6, E6(a1), E6(a2)},
C(E7) ={E7, E7(a1), E7(a2), E7(a3), E7(a4)},
C(E8) ={E8, E8(a1), E8(a2), E8(a3), E7(a4), E8(a5), E8(a6), E8(a7), E7(a8)},

C(Dl) =
{
Dl, Dl(a1), Dl(a2), . . . , Dl

(
a[ l−2

2 ]

)}
, where l ≥ 4.

(1)

A root subset associated with some diagram Γ̃ is denoted by a Γ̃-set. Let S̃ (resp. S)

be a Γ̃-set (resp. Γ-set). In Tables 2-5 of Section 4.6, the transition matrix MI : S̃ 7−→ S

is constructed for the following homogeneous pairs {Γ̃,Γ}:

(1) {D4(a1), D4} (9) {E8(a1), E8}
(2) {Dl(ak), Dl} (10) {E8(a2), E8}
(3) {E6(a1), E6} (11) {E8(a3), E8(a2)}
(4) {E6(a2), E6(a1)} (12) {E8(a4), E8(a1)}
(5) {E7(a1), E7} (13) {E8(a5), E8(a4)}
(6) {E7(a2), E7} (14) {E8(a6), E8(a4)}
(7) {E7(a3), E7(a1)} (15) {E8(a7), E8(a5)}
(8) {E7(a4), E7(a3)} (16) {E8(a8), E8(a7)}

(2)

The diagrams obtained as images of the mapping MI are considered up to equivalence
of Carter diagrams, see [18, Section 1.3]. The list (2) is called the adjacency list. The

1In the following, the phrase “root subset” always means the root subset of linearly independent roots.
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Figure 1: Carter diagrams of D and E types
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adjacency list is not a complete list, but a minimal list that chains all Carter diagrams of
to the same homogeneous class using the transition matrices constructed in Theorem 4.1.

1.3 A group of transitions M

Let C(Γ) be a homogeneous class of Carter diagrams out of (1), and Ŝ be the set of
all root subsets associated with diagrams of C(Γ). Let M be some subgroup of the group

generated by transitions of type MI operating on Ŝ. The Weyl group W operates simply
transitively on the set of bases of the corresponding root system, all bases are associated
with a single Dynkin diagram (which is also the Carter diagram). This is not true for the

group M : any element Mt ∈ M (of type MI) can map some root subset S1 ∈ Ŝ to another

root subset S2 ∈ Ŝ. The root subsets S1 and S2 are associated, generally speaking, with
different Carter diagrams Γ1 ∈ C(Γ) and Γ2 ∈ C(Γ). We will say that S1 (resp. S2) is a
Γ1-set (resp. Γ2-set).

1.4 Theorems on transition matrix

In this paper, we show that each homogeneous class of Carter diagrams essentially
depicts the same subset of the root system given in different bases. There are several
chains of diagrams containing homogeneous classes of Carter diagrams. The transition
between neighboring bases in any chain can be performed in some canonical way, affecting
exactly one root, which is mapped to the minimum element in some root subsystem. The
transition matrix connecting two adjacent diagrams is an involution.

The main result of this paper can be formulated as follows: Let {Γ̃,Γ} be a pair out

of the adjacency list (2), and let S̃ (resp. S) be a Γ̃-set (resp. Γ-set). We construct the
matrix MI having the following properties (Theorem 4.1, Theorem 4.3):

(a) The matrix MI is the transition matrix transforming the roots of S̃ to the roots of S.

(b) The matrix MI transforms only one element in α̃ ∈ S̃, the remaining elements of

S̃ are left fixed. The element α̃ is transformed into the minimal element of some
Dynkin subset S(α̃) ⊂ S̃,

(c) The matrix MI acts as involution on S̃:

MI α̃ = α = −α̃ +
∑
τi∈S̃

tiτi, MIτi = τi for τi ̸= α̃, (3)

and MI acts also as involution on S:

MIα = α̃ = −α +
∑
τi∈S

tiτi, MIτi = τi for τi ̸= α, (4)

The values of ti in (3) and (4) are given in Tables 2-5 of Section 4.6.

(d) In most cases of Section 4.6, the mapping MI given in (3) eliminates one circle (or
one endpoint), the mapping MI given in (4) builds one circle (or one endpoint). In
case (16) of Section 4.6, MI eliminates 3 cycles.

Only ADE root systems are considered.
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Table 1: Cardinality of extra nodes

D2m D2m+1 E6 E7 E8

m− 1 m− 1 2 4 8

1.5 Relationship with other diagrams containing cycles

1.5.1 Dynkin-Minchenko diagrams: Procedure of completion

Let Γ be a Dynkin diagram of the complex semisimple Lie algebra g. Subdiagrams of Γ are
Dynkin diagrams of regular subalgebras of g. However, not all regular subalgebras can be
obtained in this way. Besides, non-conjugate regular subalgebras can have identical Dynkin
diagrams. Both problems are efficiently solved by using enhanced Dynkin diagrams. In [6],
Dynkin and Minchenko introduced a canonical enlargement of the basis called the enhanced
basis and enhanced Dynkin diagrams representing an enhanced basis. They constructed an
enhancement of Γ by a recursive procedure which they call the completion: At each step
of the procedure, find a D4-subset in the already introduced nodes, add the maximal2 root
of this subset, and connect it by edges to the corresponding part of the already introduced
nodes. For the enhanced Dynkin diagrams ∆(E6) and ∆(E7), see Section A.

In [19],[20] Vavilov and Migrin combined both types of considered diagrams: Carter di-
agrams and enhanced Dynkin diagrams, they applied the language of solid and dotted edges
to enhanced Dynkin diagrams. The obtained diagrams are called signed enhanced Dynkin
diagrams. They showed that any Carter diagram of the homogeneous class containing the
Dynkin diagrams E6, E7, E8 can be embedded into the signed enhanced Dynkin diagram
∆(Γ) associated with Γ such that the “solid and dotted” correspondence is preserved.

1.5.2 Values 2,4,8 and diagrams E6, E7, E8

To the Vavilov-Margin observation mentioned above, I would like to add the following
easily verifiable fact:

Remark 1.1. The number of extra nodes obtained by the Dynkin-Minchenko completion
procedure for a simply-laced Dynkin diagram coincides with the number of Carter diagrams
(with cycles) of the same type, see Fig. 1, Table 1.

For a further discussion of the relationship between enhanced Dynkin diagrams and
Carter diagrams, see Section C.1.

In [13], in the context of Auslander-Reiten quivers, Ringel observed a completely dif-
ferent relation between values 2,4,8 and diagrams E6, E7, E8, see Section C.3.

In [1], Baez (in relation to Rosenfeld’s idea in [14]) points to another connection between
values 2,4,8 and diagrams E6, E7, E8, see Section C.4.

2Adding a minimal root (instead of a maximal one) leads to a topologically isomorphic enhanced Dynkin
diagram, but distinguished by solid and dotted edges.
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1.5.3 McKee-Smyth diagrams: Eigenvalues in (−2, 2)

Much to my surprise, I found a complete list of 8-vertex Carter diagrams with circles in
the paper of McKee and Smyth [11, Figs. 12-14]. The {0, 1}-matrices with zeros on the
diagonal can be regarded as adjacency matrices of graphs. Assume that the off-diagonal
elements of such a matrix to be chosen from the set {−1, 0, 1}. Then, we get so-called a
signed graph, a non-zero (α, β)th entry denotes a sign of −1 or 1 on the edge connecting
vertices α and β. The signed graphs exactly correspond to our diagrams with solid and
dotted edges. The matrix with zeros on the diagonal is called an uncharged matrix. By
[11, Theorem 4], the signed graphs maximal with respect to having all their eigenvalues
in (−2, 2) are exactly Carter diagrams E8(ai), 1 ≤ i ≤ 8 and Dl(ai), i < l/2 − 1, see
Fig. 1. If the diagonal matrix 2I is added to such an uncharged matrix, then exactly
partial Cartan matrix will be obtained, see Section 3.2. Then, the eigenvalues of the
partial Cartan matrices should lie in the interval (0, 4). Using eigenvalues one can get
an invariant description of Carter diagrams, see [16, Section 4.4]. For some details on
the relationship between Carter diagrams and eigenvalues of partial Cartan matrices, see
Section C.2.

Similar results to [11] were also obtained by Mulas and Stanic in [12].

2 Diagrams containing cycles

2.1 Admissible diagrams: Conjugacy classes of W

Let Φ be the root system corresponding to the Weyl group W . Each element w ∈ W
can be expressed in the form

w = sα1sα2 . . . sαk
, where αi ∈ Φ for all i. (5)

Carter proved that k in the decomposition (5) is the smallest if and only if the subset of
roots {α1, α2, . . . , αk} is linearly independent; such a decomposition is said to be reduced.
The admissible diagram corresponding to the given element w is not unique, since the
reduced decomposition of the element w is not unique.

Denote by lC(w) the smallest value k corresponding to any reduced decomposition (5).
The corresponding set of roots {α1, α2, . . . , αk} consists of linearly independent and not ne-
cessarily simple roots, see Lemma 2.1. If l(w) is the smallest value k in any expression like
(5) such that all roots αi are simple, then lC(w) ≤ l(w).

Lemma 2.1 ([4, Lemma 3]). Let α1, α2, . . . , αk ∈ Φ. Then, sα1sα2 . . . sαk
is reduced if and

only if α1, α2, . . . , αk are linearly independent.

The Cartan matrix (resp. quadratic form) associated with Φ is denoted by B (resp.
B). The inner product induced by B is denoted by (·, ·).

Let us take the subset of linearly independent, but not necessarily simple roots S ⊂ Φ.
To the subset S we associate some diagram Γ that provides one-to-one correspondence
between roots of S and nodes of Γ. The diagram Γ is said to be admissible if the following
two conditions hold:
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(a) The nodes of Γ correspond to a set of linearly independent roots in Φ.

(b) If a subdiagram of Γ is a cycle, then it contains an even number of nodes.

Note that the admissible diagram may contain cycles, since the roots of S are non
necessarily simple, see [17, Section 1.2.1]. Let us fix some basis of roots corresponding to
the given admissible diagram Γ:

S = {α1, . . . , αk, β1, . . . , βh}.

The admissible diagram is bicolored, i.e., the set of nodes can be partitioned into two
disjoint subsets Sα = {α1, . . . , αk} and Sβ = {β1, . . . , βh}, where roots of Sα (resp. Sβ) are
mutually orthogonal. The element

c = wαwβ, where wα =
k∏

i=1

sαi
, wβ =

h∏
j=1

sβj

is called the semi-Coxeter element ; it represents the conjugacy class associated with the
admissible diagram Γ and root subset S (not necessarily root system).

2.2 Carter diagrams: Language of “solid and dotted” edges

In [18], it was observed that the cycles in the admissible diagrams with necessity con-
tains at least one pair of roots {α1, β1} with (α1, β1) > 0 and at least one pair of roots
{α2, β2} with (α2, β2) < 0, where (·, ·) is the Tits bilinear form associated with the root
system Φ. This observation motivated me to distinguish such pairs of roots: Let us draw
the dotted (resp. solid) edge {α, β} if (α, β) > 0 (resp. (α, β) < 0). The admissible dia-
gram with dotted and solid edges is said to be the Carter diagram. Up to dotted edges, the
classification of Carter diagrams coincides with the classification of admissible diagrams.

In the theorem on exclusion of long cycles [18], it was shown that any Carter diagram
with cycles of arbitrary even length can be reduced to diagrams with cycles of length 4
only. This explains why the admissible diagrams Dl(b 1

2
l−1), E7(b2), E8(b3), E8(b5) listed

in [4, Table 2] do not appear in the lists of conjugacy classes. The Carter diagrams with
conjugate semi-Coxeter elements are said to be equivalent. The Carter diagrams (with
cycles) representing non-Coxeter conjugacy classes are given in Fig. 1. For another view
of these diagrams, see [18, Table 1].

2.3 Carter diagrams: Eliminating the cycle.

The semi-Coxeter elements generated by reflections {sα1 , sα2 , sβ1 , sβ2} constitute ex-
actly two conjugacy classes with representatives wt and wo, see Fig. 2. Semi-Coxeter ele-
ments wt and wo are distinguished by orders of reflections in the decomposition of wt, and
wo. Here, t is the bicolored order {α1, α2, β1, β2}, and o is the cyclic order {α1, β1, α2, β2},
see [18, Section 1.2].
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Figure 2: Diagram Γ1 (resp. Γ2) of type D4(a1) (resp. equivalent to D4)

The element wo is conjugate to the wõ = sα1sα2s−(α1+β1+β2)sβ2 since

wo =sα1sβ1sα2sβ2 = sα1+β1sα1sα2sβ2

sα1+β1≃ sα1sα2sβ2sα1+β1 =

sα1sα2sα1+β1+β2sβ2 = sα1sα2s−(α1+β1+β2)sβ2 = wõ.

The elements wo and wõ are conjugate, the corresponding sets of roots are as follows:

S1 = {α1, β1, α2, β2} and S2 = {α1, α2,−(α1 + β1 + β2), β2}.

There is a map M : S1 7−→ S2 acting as follows:

Mα1 = α1, Mα2 = α2, Mβ2 = β2, β̃1 = Mβ1 = −(α1 + β1 + β2).

Note that M is an involution, M : S1 → S2 and M : S2 → S1, since

M2β1 = −(α1 +Mβ1 + β2) = −(α1 + β2) + (α1 + β1 + β2) = β1,

Mβ1 = β̃1 and Mβ̃1 = β1.

Thus,M transforms the root β1 into the minimal element of the root subsystem {α1, β1, β2}.
In this paper, we will encounter a number of involution mappings M that map a certain
element to the minimal element of some root subsystem of Φ. So, we observe that there
are two different orders of reflections:

• The cyclic order of reflections o. Then, we get a 4-cycle leading to the Coxeter class
D4 of W (D4), see Fig. 3.

• The bicolored order of reflections t. Then, we get an indestructible 4-cycle leading
to the semi-Coxeter class D4(a1).

2.4 Connection diagrams

In [18], in addition to Carter diagrams, the so-called connection diagrams were intro-
duced. Let S be a set of linearly independent and not necessarily simple roots, o be the
order of reflections in the decomposition (5) of element w associated with the set of roots
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Figure 3: Conjugate elements {wo, wõ} corresponding to the Coxeter class D4

Figure 4: Eight similar 4-cycles equivalent to D4(a1))

S. The connection diagram is a pair (Γ, o), where Γ corresponds to the set S. In the
connection diagram Γ, edges are also solid and dotted as in Carter diagrams. The con-
nection diagrams serve to transform one Carter diagram into another, since in the process
of transformation we can get non-Carter diagrams – the evenness of the cycles may be
violated, see [18, Section 1.2.2].

In [18], three equivalence transformations operating on the connection diagrams and
Carter diagrams were introduced: similarities, conjugations and s-permutations. The
Carter diagrams are studied there up to equivalence. In what follows, we only need sim-
ilarity. Let α be a root in the Γ-set S. The similarity transformation Lα reflects the
root α:

Lα : α 7−→ −α. (6)

Two connection diagrams obtained from each other by a sequence of reflections (6), are
called similar connection diagrams, see Fig. 4.

2.5 Bicolored partition

Let Γ be a Carter diagram and

S = {α1, α2, . . . , αk, β1, β2, . . . , βh} (7)

be any Γ-set (of not necessarily simple roots), where roots of the set

Sα := {αi | i = 1, . . . , k} (resp. Sβ := {βj | j = 1, . . . , h})
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are mutually orthogonal. According to condition 2.1(a), there exists a certain set (7)
of linearly independent roots, and thanks to condition 2.1(b), there exists a partition
S = Sα

∐
Sβ which is said to be the bicolored partition.

Let w = w1w2 be the decomposition of w into the product of two involutions. By [4,
Lemma 5] each of w1 and w2 can be expressed as a product of reflections as follows:

w = w1w2, where w1 = sα1sα2 . . . sαk
, w2 = sβ1sβ2 . . . sβh

, (8)

where subset Sα = {α1, . . . , αk} (resp. Sβ = {β1, . . . , βh}) consists of mutually orthogonal
roots. Let

Πw = {α1, α2, . . . , αk, β1, β2, . . . , βh} (9)

be the linearly independent root subset. Then, the decomposition (8) is reduced, see
Lemma 2.1, and k + h = lC(w). The decomposition (8) is said to be a bicolored decompo-
sition.

3 The Cartan matrix

3.1 The generalized Cartan matrix

The n× n matrix K = (kij), where 1 ≤ i, j ≤ n, such that

(C1) kii = 2 for i = 1, . . . , n,

(C2) − kij ∈ Z = {0, 1, 2, . . . } for i ̸= j,

(C3) kij = 0 implies kji = 0 for i, j = 1, . . . , n,

is called a generalized Cartan matrix, [10], [16, Section 2.1]. For the Carter diagram Γ,
which is not a Dynkin diagram, the condition (C2) fails: The elements kij associated with
dotted edges are positive.

If the Carter diagram does not contain any cycle, then the Carter diagram is the Dynkin
diagram, the corresponding conjugacy class is the conjugacy class of the Coxeter element,
and the partial Cartan matrix is the classical Cartan matrix, which is the particular case
of a generalized Cartan matrix.

3.2 The partial Cartan matrix

Similarly to the Cartan matrix associated with Dynkin diagrams, we determine the
Cartan matrix for each pair {Γ, S} consisting of the connection or Carter diagram Γ and
Γ-set S:

BΓ :=

 (τ1, τ1) . . . (τ1, τn)
. . . . . . . . .

(τn, τ1) . . . (τn, τn)

 , (10)

where S = {τ1, . . . , τn}. We call the matrix BΓ a partial Cartan matrix corresponding to
the diagram Γ. The partial Cartan matrix BΓ is well-defined since products (τi, τj) in (10)
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do not depend on the choice of the Γ-set S. The elements of the partial Cartan matrix are
uniquely determined by the diagram Γ as follows:

(τi, τj) =


2, if τi = τj,

0, if τi and τj are not connected,

−1, if edge {τi, τj} is solid,

1, if edge {τi, τj} is dotted.

(11)

Let L be the subspace spanned by the vectors {τ1, . . . , τn}. We write this fact as follows:

L = [τ1, . . . , τn]. (12)

The subspace L is said to be the S-associated subspace. Let B be the Cartan matrix
corresponding to the primary root system Φ.

Proposition 3.1. (i) The restriction of the bilinear form associated with the Cartan ma-
trix B on the subspace L coincides with the bilinear form associated with the partial
Cartan matrix BΓ, i.e., for any pair of vectors v, u ∈ L, we have

(v, u)Γ = (v, u), and BΓ(v) = B(v). (13)

(ii) For every Carter diagram, the matrix BΓ is positive definite.

Proof. (i) From (10) we deduce:

(v, u)Γ =

(∑
i

tiτi,
∑
j

qjτj

)
Γ

=
∑
i,j

tiqj(τi, τj)Γ =
∑
i,j

tiqj(τi, τj) = (v, u).

(ii) This follows from (i).

If Γ is a Dynkin diagram, the partial Cartan matrix BΓ is the Cartan matrix associated
with Γ. By (13) the matrix BΓ is positive definite. The symmetric bilinear form associated
with BΓ is denoted by (·, ·)Γ and the corresponding quadratic form is denoted by BΓ.

Remark 3.2. (i) D. Leites noticed that there are a number of other cases, where some
off-diagonal elements of the Cartan matrices are positive. For example, this is so
in the case of Lorentzian algebras, see [8], [5]. However, in these cases the Cartan
matrices are of hyperbolic type, whereas the partial Cartan matrices are positive
definite.

(ii) I would like to quote S. Brenner’s article: “. . . it is amusing to note that there is
a surprisingly large intersection between the finite type quivers with commutativity
conditions and the diagrams by Carter in describing conjugacy classes of the classical
Weyl groups . . . ”, [3, p.43]. On various other cases arising in the representation
theory of quivers, algebras and posets with Cartan matrices containing positive off-
diagonal elements, see [2], [7, 10.7], [15].
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4 Transitions

4.1 First transition theorem

Let {Γ̃,Γ} be a homogeneous pair of Carter diagrams, S̃ be a Γ̃-set, and S be a Γ-set.

In this section, we construct a mapping connecting S̃ and S. This mapping represents
the transition matrix connecting S̃ and S as bases in the linear spaces. The transition
matrix has some good properties that are presented in Theorems 4.1 and 4.3. Let Γ′ be
the subdiagram of Γ, and subset S ′ ⊂ S be a Γ′-set. If Γ′ is the Dynkin diagram, we call
S ′ the Dynkin subset.

Theorem 4.1. For each pair of diagrams {Γ̃,Γ} out of the list (2), there exists the linear

transformation matrix MI mapping each Γ̃-set S̃ to some Γ-set S being the image of MI ,
see Tables 2-5 of Section 4.6. The matrix MI is the transition matrix binding S̃ and S as
bases in the linear spaces.

(i) The matrix MI acts only on one element α̃ ∈ S̃ and does not change remaining

elements in S̃; MI transforms α̃ into the minimal element α of some Dynkin subset
S(α̃) in S̃:

α̃ ∈ S(α̃) ⊂ S̃,

MIτi = τi for all τi ∈ S̃, τi ̸= α̃,

MI α̃ = α = −α̃ +
∑

tiτi, where the sum is taken over τi ∈ S̃, τi ̸= α̃, ti ∈ Z,
α - minimal element in S(α̃).

The image S = MI S̃ is the set {S̃\α̃}⊔{α} that satisfies to the orthogonality relations
of the Carter diagram Γ.

(ii) The transformation MI : S̃ 7−→ S is an involution1 on the set S̃ ⊔ {α}:

MI α̃ = α and MIα = α̃.

For each pair of diagrams {Γ̃,Γ} from list (2), the matrix MI is defined in Tables 2-5 of

Section 4.6. The matrix MI is the transition matrix transforming each basis S̃ into some
basis S.

The proof of Theorem 4.1 is given in Section 4.6. It is carried out separately for each
pair {Γ̃,Γ} in the adjacency list (2).

1The index I in the symbol MI originally appeared to indicate that MI is an involution. In what
follows, we will use also other notation for the matrix M and its index, which are more related to a
specific situation.
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4.2 The chain of homogeneous pairs

Let Γ̃ be a Carter diagram. Denote by C(Γ̃) the homogeneous class containing Γ̃. For

any Carter diagram Γ̃ and the Dynkin diagram Γ from C(Γ̃), there exists the chain of

homogeneous pairs connecting Γ̃ and Γ as follows:

{{Γ̃,Γ1}, {Γ1,Γ2}, . . . , {Γk−1,Γk}, {Γk,Γ}}. (14)

This fact follows easily from consideration of the adjacency list (2).

4.2.1 Example: from E8(a8) to E8

There are 16 cases in Section 4.6. Denote by MI(n) the transition matrix of the n-th case.
The similarity transformation Lτi from (6) is the diagonal matrix of the form

diag(1, 1 . . . , 1,−1, 1, . . . , 1)

with −1 in the {i, i}th entry. The homogeneous pairs are bound by matrices MI and
similarity matrices Lτi . Consider, for example, the chain diagrams E8(a8), E8(a7), E8(a5),
E8(a4), E8(a1), E8, see eq. (15) and Section 1.2.

E8(a8)
MI(16)

−−−→ E8(a7)
Lβ2

−−−→E8(a7)
MI(15)

−−−→ E8(a5)
Lα̃3

−−−→ E8(a5)

MI(13)

−−−→ E8(a4)
MI(12)

−−−→ E8(a1)
MI(9)

−−−→ E8

Lα4Lβ4

−−−−−→ E8

(15)

In eq. (15), we mean that instead of each diagram Γ there is some Γ-set. The matrices
MI(n) are given in Appendix B. Consider the product of matrices of (15):

F = Lα4Lβ4MI(9)MI(12)MI(13)Lα̃3MI(15)Lβ2MI(16).

The matrix F maps the E8(a8)-basis S̃ to a certain E8-basis S = FS̃:

F : S̃ = {α̃1, α2, α̃3, α̃4, β1, β2, β3, β4} 7−→ S = {α1, α2, α3, α4, β1, β2, β3, β4}

The chain (15) is parallel to the ascending chain of maximal eigenvalues of the corre-
sponding partial Cartan matrices, see Section C.2.

4.2.2 Alternative transitions

The transition matrices from the adjacency list (2) do not constitute a complete set of
possible transitions. For example, to the transition {E8(a6), E8(a4)}, one can add more
pairs containing E8(a6): {E8(a6), E8(a5)} and {E8(a6), E8(a1)}, see Fig. 5. The marked
vertex corresponds to the root, which is converted with the transition matrix MI . To keep
the solid and dotted edges corresponding to cases (9) and (13) in Tables 4 – 5, each such
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Figure 5: Alternative transitions {E8(a6), E8(a5)} and {E8(a6), E8(a1)})

transition is followed by actions of similarities which result in the desired edge type1. Note
that the vertex names for E8(a1) and E8(a5) are different from those in Tables 4 – 5:

{E8(a6),E8(a4)} : MI β̃4 = β4 = −(β̃4 + 2α1 + 2β1 + 2α2 + β2 + β3).

{E8(a6),E8(a5)} : MIβ2 = β̃2 = −(β̃4 + 2α1 + 2β1 + 2α2 + β2 + β3),

followed by actions of Lτ , with τ = α1, α2, β1, β̃2.

{E8(a6),E8(a1)} : MIβ3 = β̃3 = −(β̃4 + 2α1 + 2β1 + 2α2 + β2 + β3).

followed by actions of Lτ , with τ = α̃4.

4.2.3 The product of transition matrices

As in Section 4.2.1, for any chain (14), one can construct the matrices F and F−1, where
F is the product of corresponding transition matrices MI(n) and similarity matrices Lτi .
The matrix F is invertible since all MI(n) and Lτi are invertible.

F : Γ̃ 7−→ Γ, F−1 : Γ 7−→ Γ̃. (16)

This means that for any Γ̃-set S̃ there exists Γ-set S such that

FS̃ = S, F−1S = S̃. (17)

1The property of the edge to be solid or dotted is called the edge type.
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The matrix F does not depend on S̃ and S. If S = {τ1, . . . , τn}, F transforms τi so that

Fτi =
n∑

j=1

fjiτi, (18)

where fji are some coefficients that depend only on diagrams Γ̃ and Γ.

4.3 Action of the Weyl group on a Carter diagram

We suppose that {Γ̃,Γ} is the homogeneous pair of Carter diagrams, where Γ is the
simply-laced Dynkin diagram, and W is the Weyl group associated with Γ.

Lemma 4.2. Let F , F−1 be the matrices described in (16), (17). Then,

(i) The matrix F commutes with the Weyl group W on any Γ-set S as follows:

wF = Fw for any w ∈ W. (19)

(ii) Let Γ-sets S and S ′ be conjugate by some w ∈ W : wS = S ′. Then, FS and FS ′ are
conjugate by the same element w ∈ W , i.e,

wS = S ′ implies wFS = FS ′.

Proof. (i) It suffices to prove eq. (19) for each element τi ∈ S. Each element w ∈ W
transforms basis S to another basis S ′ = wS, where wτi = τ ′i , and S ′ = {τ ′1, . . . , τ ′n}.
In our case,

Fwτi = Fτ ′i =
n∑

j=1

fjiτ
′
i and

wFτi = w

n∑
j=1

fjiτi =
n∑

j=1

fjiwτi =
n∑

j=1

fjiτ
′
i .

Therefore, Fwτi = wFτi for any τi ∈ S.

(ii) If wS = S ′ then by (i), we have wFS = FwS = FS ′, i.e., FS and FS ′ conjugate by
the same element w ∈ W .

4.4 Second transition theorem

Theorem 4.3. (i) For any Carter diagram Γ̃, all Γ̃-sets are conjugate under the Weyl
group W .

(ii) Let {Γ̃,Γ} be any homogeneous pair of Carter diagrams, where Γ is the Dynkin

diagram, and let S̃ be any Γ̃-set, S be any Γ-set. Then, there exists F , the product
of transition matrices MI(n) and some matrices of similarity maps like Lτi as in

Theorem 4.1 and Section 4.2.1 and w ∈ W such that S = wFS̃.
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Figure 6: FS̃i = Si, where S̃i (resp. Si), are some Γ̃-sets (resp. Γ-sets), i = 1, 2, 3, . . .

Proof. (i) The Carter diagram Γ̃ belongs to some homogeneous class C(Γ̃). Every ho-
mogeneous class contains a Dynkin diagram Γ. As in Section 4.2.1, there exists the
mapping F from any Γ̃-set S̃ to some Γ-set S. By Theorem 4.1, the mapping F is
the product of transition matrices MI(n) and some matrices of similarity maps like
Lτi .

Let S̃ ′ and S̃ ′′ be any Γ̃-sets. We will prove that S̃ ′ and S̃ ′′ are conjugate under the
Weyl group W , i.e.,

wS̃ ′ = S̃ ′′, for some w ∈ W. (20)

There exist Γ-sets S ′ and S ′′ such that

FS̃ ′ = S ′, F S̃ ′′ = S ′′, (21)

see Fig. 6. Let Φ be the root system associated with Γ. All bases in Φ are conjugate,
see [9, Theorem 1.4]. Then, there exists w ∈ W , such that wS ′ = S ′′. By (21),

wFS̃ ′ = wS ′ = S ′′ = FS̃ ′′. (22)

By Lemma 4.2, transformations w and F in (22) commute, so

FwS̃ ′ = FS̃ ′′, and wS̃ ′ = S̃ ′′. (23)

(ii) First, by Theorem 4.1, we transform S̃ to some Γ-set S ′ by the mapping F as in (i),
see Fig. 6. Further, as in (i), there exists w ∈ W such that wS ′ = S. Thus,

wFS̃ = wS ′ = S.

4.5 Conjugacy of all Γ̃′-sets

As above, {Γ̃,Γ} is a homogeneous pair of Carter diagrams, Γ is the simply-laced
Dynkin diagram, W is the Weyl group associated with Γ.

Similarly to the fact that all Γ-bases (where Γ is the Dynkin diagram) are conjugate
under the Weyl group [9, Theorem 1.4], the same fact holds for Carter diagrams.
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Corollary 4.4. All Γ̃-sets are conjugate under the Weyl group W associated with the Dynkin
diagram Γ.

Proof. Let S̃ and S̃ ′ be two Γ̃′-sets. By Theorem 4.3, there exist Γ-bases S and S ′ and
w ∈ W such that

F : S̃ 7−→ S, w : S 7−→ S ′, F : S̃ ′ 7−→ S ′.

In other words,

FwS̃ = wFS̃ = S ′, F S̃ ′ = S ′, i.e.,

FwS̃ = FS̃ ′, and wS̃ = S̃ ′.

Let C(Γ), as above, be a homogeneous class of Carter diagrams out of (1), where Γ is
the Dynkin diagram. Denote by ν(Γ′) the number of all Γ′-sets.

Corollary 4.5. The number ν(Γ′) is the constant number for any homogeneous class. For
any Carter diagram Γ′ ∈ C(Γ), the number ν(Γ′) coincides with the number of bases in
the root system associated with Γ, and coincides with the number of elements in the Weyl
group:

| ν(Γ′) | = | ν(Γ) | = | W | . (24)

4.6 Proof of Theorem 4.1

(i) Let us construct the matrix MI for every pair {Γ̃,Γ} in the adjacency list (2).

(1) Pair {D4(a1), D4}: MI maps D4(a1)-set to D4-set.

• Mapping: MI α̃3 = α3 = −(α1 + α2 + α̃3).

• Root system: S = {α2, α1, α̃3} and Φ is a root system of type A3.

• Minimal root: α3 is the minimal root in Φ.

• Eliminated edges: {α̃3, α1} and {α̃3, α4}.
• Emerging edge: {α3, α2}.
• Checking relations:

α3 ⊥ α1 (α3 is the minimal root)

α3 ⊥ α4 (α2 + α̃3 ⊥ α4)

(α3, α2) = −1 (α3 is the minimal root)

(2) Pair {Dl(ak), Dl}: MI maps Dl(ak)-set to Dl-set.

• Mapping:

MIτ k+1 =

{
β2 = −(τ1 + τ2 + τ 2), for k = 1,

βk+1 = −(τ1 + 2
∑k

i=2 τi + τk+1 + τ k+1), for k ≥ 2.
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• Root systems: {
S1 = {τ1, . . . , τk, τk+1, τ k+1}, for k ≥ 2,

S2 = {τ1, τ2, τ 2}, for k = 1,{
Φ(S1) is a root system of type Dk+2, for k ≥ 2,

Φ(S2) is a root system of type A3, for k = 1.

• Minimal roots: βk+1 is the minimal root in Φ(S1) and β2 is the minimal
root in Φ(S2).

• Eliminated edges: {τ k+1, τk} and {τ k+1, τk+2} .

• Emerging edge: {βk+1, τ2}.
• Checking relations: for k ≥ 2,

βk+1 ⊥ τi (1 ≤ i ≤ k + 1, i ̸= 2) (βk+1 is the minimal root1)

βk+1 ⊥ τk+2 ((βk+1, τk+2) = (τk+1 + τ k+1, τk+2) = 0)

βk+1 ⊥ τi (i > k + 2) (disconnected2)

(βk+1, τ2) = −1 (βk+1 is the minimal root),

and for k = 1,{
β2 ⊥ τ1, (β2, τ2) = −1 (β2 is the minimal root)

β2 ⊥ τi (i > 3) (disconnected).

(3) Pair {E6(a1), E6}: MI maps E6(a1)-set to E6-set.

• Mapping: MI β̃3 = β3 = −(α1 + β1 + α3 + β̃3).

• Root system: S = {α1, β1, α3, β̃3} and Φ is a root system of type A4.

• Minimal root: β3 is the minimal root in Φ.

• Eliminated edges: {β̃3, α3}, {β̃3, α2}.
• Emerging edge: {β3, α1}.
• Checking relations:

β3 ⊥ α3, β1 (β3 is the minimal root)

β3 ⊥ α2 (β̃3 + β1 ⊥ α2)

β3 ⊥ β2 (disconnected)

(β3, α1) = −1 (β3 is the minimal root)

(4) Pair {E6(a2), E6(a1)}: MI maps E6(a2)-set to E6(a1)-set.

1Hereinafter, the reason for the relation is indicated in parentheses.
2Let α be the sum of several roots αi: α =

∑
αi. Hereinafter, the line “α ⊥ β (disconnected)” means

the case, where each summand αi in α is orthogonal to β.
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Figure 7: Case (3). Mapping MI : E6(a1) 7−→ E6.

• Mapping: MI β̃2 = β2 = −(α3 + β1 + α2 + β̃2).

• Root systems: S = {α3, β1, α2, β̃2} and Φ(S) is a root system of type A4.

• Minimal roots: β2 is the minimal root in Φ(S).

• Eliminated edges: {β̃2, α3} and {β̃2, α1}.
• Emerging edges: {β2, α2}.
• Checking relations:

β2 ⊥ α3, β1 (β2 – minimal root)

β2 ⊥ α1, β̃3 (β̃2 + β1 ⊥ α1 and α2 + α3 ⊥ β̃3)

(β2, α2) = −1 (β2 – minimal root)

Figure 8: Case (4). Mapping MI : E6(a2) 7−→ E6(a1).

(5) Pair {E7(a1), E7}: MI maps E7(a1)-set to E7-set.

• Mapping: MI α̃3 = α3 = −(β2 + α2 + β3 + α̃3).

• Root system: S = {β2, α2, β3, α̃3} and Φ is a root system of type A4.

• Minimal root: α3 is the minimal root in Φ.

• Eliminated edges: {α̃3, β1} and {α̃3, β3}.
• Emerging edge: {β2, α3}.
• Checking relations:

α3 ⊥ α2, β3 (α3 is the minimal root)

α3 ⊥ β1 (α̃3 + α2 ⊥ β1)

α3 ⊥ α1, β4 (disconnected)

(α3, β2) = −1 (α3 is the minimal root)
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D4 S = {α1, α2, α3, α4}

(1)

D4(a1)

{Γ̃,Γ} = {D4(a1), D4}
S̃ = {α1, α2, α̃3, α4},
MIτ = τ for τ ∈ {α1, α2, α4},
MI α̃3 = α3 = −(α1 + α2 + α̃3)

Dl S = {τ1, τ2, . . . , τl−1, βk+1}

(2)

Dl(ak)

{Γ̃,Γ} = {Dl(ak), Dl}
S̃ = {τ1, . . . , τk, τk+1, τ k+1, τk+2 . . . , τl−1},
MIτ = τ for τ ∈ {τ1, τ2, . . . , τl−1},
MIτ k+1 =
βk+1 = −(τ1 + 2

k∑
i=2

τi + τk+1 + τ k+1),

k ≥ 2,

β2 = −(τ1 + τ2 + τ 2).

E6 S = {α1, α2, α3, β1, β2, β3}

(3)

E6(a1)

{Γ̃,Γ} = {E6(a1), E6} S̃ = {α1, α2, α3, β1, β2, β̃3},
MIτ = τ for τ ∈ {α1, α2, α3, β1, β2},
MI β̃3 = β3 = −(α1 + β1 + α3 + β̃3)

(4)

E6(a2)

{Γ̃,Γ} = {E6(a2), E6(a1)}
S̃ = {α1, α2, α3, β1, β̃2, β̃3},
MIτ = τ for τ ∈ {α1, α2, α3, β1, β̃3}
MI β̃2 = β2 = −(α3 + β1 + α2 + β̃2)

Table 2: {D4(a1), D4}, {Dl(ak), Dl}, {E6(a1), E6}, {E6(a2), E6(a1)}
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Figure 9: Case (5). Mapping MI : E7(a1) 7−→ E7.

(6) Pair {E7(a2), E7}: MI maps E7(a2)-set to E7-set.

• Mapping: MI α̃1 = α1 = −(β1 + α2 + β3 + α̃1).

• Root system: S = β1, α2, β3, α̃1 and Φ is a root system of type A4.

• Minimal root: α1 is the minimal root in Φ.

• Eliminated edges: α̃1, β3, α̃1, β2 and α̃1, β̃4.

• Emerging edges: α1, β1 and α1, β̃4.

• Checking relations:

α1 ⊥ α2, β3 (α1 is the minimal root)

α1 ⊥ β2 (α2 + α̃1 ⊥ β2)

α1 ⊥ α3 (disconnected)

(α1, β1) = −1 (α1 is the minimal root)

(β4, α1) = −1 ((β4, α1) = (β4, α̃1))

Figure 10: Case (6). Mapping MI : E7(a2) 7−→ E7.

(7) Pair {E7(a3), E7(a1)}: MI maps E7(a3)-set to E7(a1)-set.

• Mapping: MIα4 = β4 = −(α4 + β3 + α2 + β1 + α1).

• Root system: S = {α4, β3, α2, β1, α1} and Φ(S) is a root system of type A5.

• Minimal root: β4 is the minimal root in Φ(S).

• Eliminated edges: {α4, β3} and {α4, β2}.
• Emerging edge: {β4, α1}.
• Checking relations:

β4 ⊥ β1, α2, β3 (β4 is the minimal root)

β4 ⊥ α̃3, β2 (β1 + β3 ⊥ α̃3 and α2 + α4 ⊥ β2)

(β4, α1) = −1 (β4 is the minimal root)
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Figure 11: Case (7). Mapping MI : E7(a3) 7−→ E7(a1).

(8) Pair {E7(a4), E7(a3)}: MI maps E7(a4)-set to E7(a3)-set.

• Mapping: MI α̃1 = α1 = −(2β1 + α̃1 + α2 + α̃3).

• Root system: S = {β1, α̃1, α2, α3} and Φ(S) is a root system of type D4.

• Minimal root: α1 is the minimal root in Φ(S).

• Eliminated edges: {α̃1, β1} and {α̃1, β2}.
• Emerging edge: {α1, β1}.
• Checking relations:

α1 ⊥ α2, α̃3 (β1 is the minimal root)

α1 ⊥ β3, β2 (α2 + α̃3 ⊥ β3 and α̃1 + α2 ⊥ β2)

α1 ⊥ α4 (α4 ⊥ α̃1, α̃3, α2, β1)

(α1, β1) = −1 (β1 is the minimal root)

Figure 12: Case (8). Mapping MI : E7(a4) 7−→ E7(a3) (diagram (c)). Diagrams (c) and
(d) are equivalent (by similarity α̃3 7−→ −α̃3)

(9) Pair {E8(a1), E8}: MI maps E8(a1)-set to E8-set.

• Mapping: MI α̃3 = α3 = −(α̃3 + β3 + α2 + β2).

• Root system: S = {α̃3, β3, α2, β2} and Φ is a root system of type A4.

• Minimal root: α3 is the minimal root in Φ.

• Eliminated edges: {α̃3, β3} and {α̃3, β̃3}.
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Table 3: {E7(a1), E7}, {E7(a2), E7}, {E7(a3), E7(a1)}, {E7(a4), E7(a3)}

Γ̃-basis S̃ and Γ-basis S Mapping MI

E7 S = {α1, α2, α3, β1, β2, β3, β4}

(5)

E7(a1)

{Γ̃,Γ} = {E7(a1), E7}
S̃ = {α1, α2, α̃3, β1, β2, β3, β4},
MIτ = τ for τ ∈ {α1, α2, β1, β2, β3, β4},
MI α̃3 = α3 = −(β2 + α2 + β3 + α̃3)

(6)

E7(a2)

{Γ̃,Γ} = {E7(a2), E7}
S̃ = {α̃1, α2, α3, β1, β2, β3, β4},
MIτ = τ for τ ∈ {α2, α3, β1, β2, β3, β4}
MI α̃1 = α1 = −(β1 + α2 + β3 + α̃1)

(7)

E7(a3)

{Γ̃,Γ} = {E7(a3), E7(a1)}
S̃ = {α1, α2, α̃3, α4, β1, β2, β3},
MIτ = τ for τ ∈ {α1, α2, α̃3, β1, β2, β3},
MIα4 = β4 = −(α4 + β3 + α2 + β1 + α1)

(8)

E7(a4)

{Γ̃,Γ} = {E7(a4), E7(a3)}

S̃ = {α̃1, α2, α̃3, α4, β1, β2, β3},
MIτ = τ for τ ∈ {α2, α̃3, α4, β1, β2, β3},
MI α̃1 = α1 = −(2β1 + α̃1 + α2 + α̃3)
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• Emerging edge: {β2, α3}.
• Checking relations:

α3 ⊥ α2, β3 (α3 is the minimal root)

α3 ⊥ β1 (α̃3 + α2 ⊥ β1)

α3 ⊥ α1, α4, β1 (disconnected)

(α3, β2) = −1 (α3 is the minimal root)

Figure 13: Case (9). Mapping MI : E8(a1) 7−→ E8.

(10) Pair {E8(a2), E8}: MI maps E8(a2)-set to E8-set.

• Mapping: MI α̃1 = α1 = −(α̃1 + β3 + α2 + β1).

• Root system: S = {α̃1, β3, α2, β1} and Φ is a root system of type A4.

• Minimal root: α1 is the minimal root in Φ.

• Eliminated edges: {β3, α̃1}, {α̃1, β4} and {α̃1, β2}.
• Emerging edges: {α1, β1} and {α1, β4}.
• Checking relations:

α1 ⊥ α2, β3 (α1 is the minimal root)

α1 ⊥ β2 (α̃1 + α2 ⊥ β2)

α1 ⊥ α4 (disconnected)

(α1, β1) = −1 (α1 is the minimal root)

(β4, α1) = +1 ((β4, α1) = −(β4, α̃1))

(11) Pair {E8(a3), E8(a2)}: MI maps E8(a3)-set to E8(a2)-set.

• Mapping: MI α̃4 = α4 = −(3α̃1 + 2β2 + 2β3 + 2β4 + α3 + α̃4).

• Root system: S = {α̃1, β2, β3, β4, α3, α̃4} and Φ is a root system of type E6.

• Minimal root: α4 is the minimal root in Φ. The minimal root MI α̃4 = α4

is connected only with β4.

• Eliminated edge: {α̃4, β3}.
• Emerging edge: {β4, α4}.
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Figure 14: Case (10). Mapping MI : E8(a2) 7−→ E8 (diagram (b)). Diagrams (b) and (c)
are equivalent (by similarity α4 7−→ −α4, β4 7−→ −β4)

• Checking relations:
α4 ⊥ α̃1, α3, β2, β3 (α4 - minimal root)

α4 ⊥ α2 (β2 + β3 ⊥ α2)

α4 ⊥ β1 (disconnected)

(α4, β4) = −1 (α4 - minimal root)

Figure 15: Case (11). Mapping MI : E8(a3) 7−→ E8(a2) (diagram (b)). Diagrams (b) and
(c) are equivalent (by similarity β2 7−→ −β2, α3 7−→ −α3 )

(12) Pair {E8(a4), E8(a1)}: MI maps E8(a4)-set to E8(a1)-set.

• Mapping: MI α̃4 = α4 = −(α̃4 + β3 + α2 + β1 + α1 + β4).
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• Root systems: S = {α̃4, β3, α2, β1, α1, β4} and Φ(S) is a root system of type
A4.

• Minimal roots: α4 is the minimal root in Φ(S).

• Eliminated edges: {α̃4, β2} and {α̃4, β3}.
• Emerging edge: {α4, β4}.
• Checking relations:

α4 ⊥ β3, α2, β1, α1 (α4 - minimal root)

α4 ⊥ α̃3, β2 (β3 + β1 ⊥ α̃3, and α̃4 + α2 ⊥ β2)

(α4, β4) = −1 (α4 - minimal root)

Figure 16: Case (12). Mapping MI : E8(a4) 7−→ E8(a1).

(13) Pair {E8(a5), E8(a4)}: MI maps E8(a5)-set to E8(a4)-set.

• Mapping: MI β̃4 = β4 = −(β̃4 + α̃4 + β3 + α2 + β1 + α1)

• Root systems: S = {β̃4, α̃4, β3, α2, β1, α1} and Φ(S) is a root system of type
A6.

• Minimal roots: β4 is the minimal root in Φ(S).

• Eliminated edge: {α̃4, β̃4}.
• Emerging edge: {β4, α1}.
• Checking relations:

β4 ⊥ β1, α2, β3, α̃4 (β4 - minimal root)

β4 ⊥ α̃3, β2 (β3 + β1 ⊥ α̃3 and

α2 + α̃4 ⊥ β2)

(β4, α1) = −1 (β4 - minimal root)

(14) Pair {E8(a6), E8(a4)}: MI maps E8(a6)-set to E8(a4)-set.

• Mapping: MI β̃4 = β4 = −(β̃4 + 2α1 + 2β1 + 2α2 + β2 + β3).

• Root systems: S = {β̃4, α1, β1, α2, β2, β3} and Φ is a root system of type
D6.

• Minimal root: β4 is the minimal root in Φ.
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Table 4: {E8(a1), E8}, {E8(a2), E8}, {E8(a3), E8(a2)}, {E8(a4), E8(a1)}

Γ̃-basis S̃ and Γ-basis S Mapping MI

E8 S = {α1, α2, α3, α4, β1, β2, β3, β4}

(9)

E8(a1)

{Γ̃,Γ} = {E8(a1), E8}
S̃ = {α1, α2, α̃3, α4, β1, β2, β3, β4},
MIτ = τ for τ ∈ {α1, α2, α4, β1, β2, β3, β4}
MI α̃3 = α3 = −(α̃3 + β3 + α2 + β2)

(10)

E8(a2)

{Γ̃,Γ} = {E8(a2), E8}

S̃ = {α̃1, α2, α3, α4, β1, β2, β3, β4},
MIτ = τ for τ ∈ {α2, α3, α4, β1, β2, β3, β4}
MI α̃1 = α1 = −(α̃1 + β3 + α2 + β1)

(11)

E8(a3)

{Γ̃,Γ} = {E8(a3), E8(a2)}
S̃ = {α̃1, α2, α3, α̃4, β1, β2, β3, β4}
MIτ = τ for τ ∈ {α̃1, α2, α3, β1, β2, β3, β4}
MI α̃4 = α4 =

−(3α̃1 + 2β2 + 2β3 + 2β4 + α3 + α̃4)

(12)

E8(a4)

{Γ̃,Γ} = {E8(a4), E8(a1)}
S̃ = {α1, α2, α̃3, α̃4, β1, β2, β3, β4}
MIτ = τ for τ ∈ {α1, α2, α̃3, β1, β2, β3, β4}
MI α̃4 = α4 =

−(α̃4 + β3 + α2 + β1 + α1 + β4)
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Figure 17: Case (13). Mapping MI : E8(a5) 7−→ E8(a4)).

• Eliminated edges: {β̃4, α̃3} and {β̃4, α1}.
• Emerging edge: {β4, α1}.
• Checking relations:

β4 ⊥ β1, α2, β2, β3, β̃4 (β4 - minimal root)

β4 ⊥ α̃3 ((β4, α̃3) = (β̃4 + β3 + 2β1, α̃3) = −1− 1 + 2 = 0)

β4 ⊥ α̃4 (β3 + β2 ⊥ α4)

(β4, α1) = −1 (β4 - minimal root)

Figure 18: Case (14). Mapping MI : E8(a6) 7−→ E8(a4).

(15) Pair {E8(a7), E8(a5)}: MI maps E8(a7)-set to E8(a5)-set.

• Mapping: MI α̃1 = α1 = −(2β1 + α̃1 + α2 + α̃3).

• Root systems: S = {β1, α̃1, α2, α̃3} and Φ(S) is a root system of type D4.

• Minimal root: α1 is the minimal root in Φ(S).

• Eliminated edges: {α̃1, β̃1} and {α̃1, β2}.
• Emerging edge: {β1, α1}.
• Checking relations:

α1 ⊥ α2, α̃3 (α1 - minimal root)

α1 ⊥ β̃4 (disconnected)

(α1, β1) = −1 (α1 - minimal root)

α1 ⊥ β2, β3 (α2 + α̃1 ⊥ β2, and α2 + α̃3 ⊥ β3)
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Figure 19: Case (15). Mapping MI : E8(a7) 7−→ E8(a5). Diagrams (c) and (d) are
equivalent (by similarity α̃3 7−→ −α̃3)

(16) Pair {E8(a8), E8(a7)}: MI maps E8(a8)-set to E8(a7)-set.

• Mapping: MIβ4 = β̃4 = −(2α̃4 + β4 + β2 + β3).

• Root systems: S = {α̃4, β4, β2, β3} and Φ(S) is a root system of type D4.

• Minimal root: β4 is the minimal root in Φ(S).

• Eliminated edges: {β4, α̃4}, {β4, α̃1} and {β4, α̃3}.
• Emerging edge: {β̃4, α̃4}.
• Checking relations:

β̃4 ⊥ β2, β3 (β4 - minimal root)

β̃4 ⊥ α̃1, α̃3 (α̃1 ⊥ β2 + β4 and

β3 + β4 ⊥ α̃3)

(β̃4, α̃1) = −1 (β4 - minimal root)

(ii) Let us prove that MI is an involution. There exists a certain root α̃ ∈ S̃ such that{
MIτi = τi for all τi ∈ S̃, τi ̸= α̃,

MI α̃ = α = −α̃ +
∑

tiτi, where sum is taken over all τi ∈ S̃, τi ̸= α̃.

The image MI α̃ = α is the root in S. Then,

M2
I α̃ = −Mα̃ +

∑
tiτi = α̃−

∑
tiτi +

∑
tiτi = α̃ and M2

I α̃ = MIα = α̃.

In other words,
MI : α̃ 7−→ α and MI : α 7−→ α̃.
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Table 5: {E8(a5), E8(a4)}, {E8(a6), E8(a4)}, {E8(a7), E8(a5)}, {E8(a8), E8(a7)}

Γ̃-basis S̃ and Γ-basis S Mapping MI

(13)

E8(a5)

{Γ̃,Γ} = {E8(a5), E8(a4)}
S̃ = {α1, α2, α̃3, α̃4, β1, β2, β3, β̃4},
MIτ = τ for τ ∈ {α1, α2, α̃3, α̃4, β1, β2, β3}
MI β̃4 = β4 =

−(β̃4 + α̃4 + β3 + α2 + β1 + α1)

(14)

E8(a6)

{Γ̃,Γ} = {E8(a6), E8(a4)}
S̃ = {α1, α2, α̃3, α̃4, β1, β2, β3, β̃4},
MIτ = τ for τ ∈ {α1, α2, α̃3, α̃4, β1, β2, β3}
MI β̃4 = β4 =

−(β̃4 + 2α1 + 2β1 + 2α2 + β2 + β3)

(15)

E8(a7)

{Γ̃,Γ} = {E8(a7), E8(a5)}

S̃ = {α̃1, α2, α̃3, α̃4, β1, β2, β3, β̃4},
MIτ = τ for τ ∈ {α2, α̃3, α̃4, β1, β2, β3, β̃4}
MI α̃1 = α1 = −(2β1 + α̃1 + α2 + α̃3)

(16)

E8(a8)

{Γ̃,Γ} = {E8(a8), E8(a7)}
S̃ = {α̃1, α2, α̃3, α̃4, β1, β2, β3, β4},
MIτ = τ

for τ ∈ {α̃1, α2, α̃3, α̃4, β1, β2, β3}
MIβ4 = β̃4 = −(2α̃4 + β4 + β2 + β3)
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Figure 20: Case (16). Mapping MI : E8(a8) 7−→ E8(a7). Diagrams (c) and (d) are

equivalent (by similarity β̃2 7−→ −β̃2)

4.7 Relation of partial Cartan matrices

Consider pairs {Γ̃,Γ} out of the adjacency list (2). The transition matrix MI maps the

Γ̃-basis S̃ to the Γ-basis S:

Mτ̃i = τi, where τ̃i ∈ S̃, τi ∈ S.

If the matrix M does not change a certain root τ̃i, the designation of this root and the
corresponding node is the same for Γ̃-basis and Γ-basis, namely: Mτi = τi. The transition
matrix M relates the partial Cartan matrices BΓ and BΓ̃ as follows:

tM ·BΓ̃ ·M = BΓ. (25)

Eq. (25) is the relation of partial Cartan matrices BΓ given in different bases.

4.7.1 Example: {E6(a1), E6}
For the pair {E6(a1), E6} (case (3) in Appendix B),

M =


1 0 0 0 0 −1
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 −1

 and BE6(a1) =


2 0 0 −1 0 0
0 2 0 −1 −1 1
0 0 2 −1 0 −1
−1 −1 −1 2 0 0
0 −1 0 0 2 0
0 1 −1 0 0 2

 .
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Figure 21: Enhanced Dynkin diagrams ∆(E6)

Then,

tMBE6(a1)M =


2 0 0 −1 0 −1
0 2 0 −1 −1 0
0 0 2 −1 0 0
−1 −1 −1 2 0 0
0 −1 0 0 2 0
−1 0 0 0 0 2

 .

The matrix tMBE6(a1)M is the Cartan matrix BE6 for Dynkin diagram E6.

A Dynkin-Minchenko completion procedure

A.1 Enhanced Dynkin diagram ∆(E6)

Extra nodes m1 and m2 for the enhanced Dynkin diagram ∆(E6) are as follows (see
Fig. 21):

m1 = 2α4 + α2 + α3 + α5,

m1 is the maximal element in {α4, α2, α3, α5},
(26)

m2 = 2m1 − α4 + α1 + α6,

m2 is the maximal element in {m1,−α4, α1, α6}.
(27)

From (26) and (27) we get

m2 = 3α4 + 2α2 + 2α3 + 2α5 + α1 + α6.

Then, m2 is also the maximal element in the E6-set {α1, α2, α3, α4, α4, α6}.
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Figure 22: Enhanced Dynkin diagrams ∆(E7)

A.2 Enhanced Dynkin diagram ∆(E7)

As in the case E6, the extra nodes m1 and m2 are as follows:

m1 = 2α4 + α2 + α3 + α5,

m2 = 3α4 + 2α2 + 2α3 + 2α5 + α1 + α6.

Further, the extra node m3 is as follows:

m3 =2α6 + α5 + α7 +m1 =

α2 + α3 + 2α4 + 2α5 + 2α6 + α7.

Here, m3 is the maximal element in the D6-set {α2, α3, α4, α4α6}. The extra node m4:

m4 =2α1 + α3 +m1 +m3 =

4α4 + 3α5 + 3α3 + 2α2 + 2α6 + 2α1 + α7.

The node m4 is the maximal element in the E7-set (see Fig. 22):

{α1, α2, α3, α4, α5, α6, α7}.

B Transition matrices MI, cases (1) - (16)

(1) {D4(a1), D4}:
α1 α2 α3 α4

1 0 −1 0 α1

0 1 −1 0 α2

0 0 −1 0 α̃3

0 0 0 1 α4
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(2) {Dl(ak), Dl}:
τ1 τ2 . . . τl−1 βk+1

1 0 . . . 0 −1 τ1
0 1 . . . −1 −2 τ2
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 −1 τk+1

0 0 . . . 0 −1 τ k+1

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 τl−1

(3) {E6(a1), E6}:
α1 α2 α3 β1 β2 β3

1 0 0 0 0 −1 α1

0 1 0 0 0 0 α2

0 0 1 0 0 −1 α3

0 0 0 1 0 −1 β1

0 0 0 0 1 0 β2

0 0 0 0 0 −1 β̃3

(4) {E6(a2), E6(a1)}:
α1 α2 α3 β1 β2 β̃3

1 0 0 0 0 0 α1

0 1 0 0 −1 0 α2

0 0 1 0 −1 0 α3

0 0 0 1 −1 0 β1

0 0 0 0 −1 0 β̃2

0 0 0 0 0 1 β̃3

(5) {E7(a1), E7}:
α1 α2 α3 β1 β2 β3 β4

1 0 0 0 0 0 0 α1

0 1 −1 0 0 0 0 α2

0 0 −1 0 0 0 0 α̃3

0 0 0 1 0 0 0 β1

0 0 −1 0 1 0 0 β2

0 0 −1 0 0 1 0 β3

0 0 0 0 0 0 1 β4
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(6) {E7(a2), E7}:
α1 α2 α3 β1 β2 β3 β4

−1 0 0 0 0 0 0 α̃1

−1 1 0 0 0 0 0 α2

0 0 1 0 0 0 0 α3

−1 0 0 1 0 0 0 β1

0 0 0 0 1 0 0 β2

−1 0 0 0 0 1 0 β3

0 0 0 0 0 0 1 β4

(7) {E7(a3), E7(a1)}:
α1 α2 α̃3 β1 β2 β3 β4

1 0 0 0 0 0 −1 α1

0 1 0 0 0 0 −1 α2

0 0 1 0 0 0 0 α̃3

0 0 0 1 0 0 −1 α4

0 0 0 0 1 0 −1 β1

0 0 0 0 0 1 0 β2

0 0 0 0 0 0 −1 β3

(8) {E7(a4), E7(a3)}:
α1 α2 α̃3 α4 β1 β2 β3

−1 0 0 0 0 0 0 α̃1

−1 1 0 0 0 0 0 α2

−1 0 1 0 0 0 0 α̃3

0 0 0 1 0 0 0 α4

−2 0 0 0 1 0 0 β1

0 0 0 0 0 1 0 β2

0 0 0 0 0 0 1 β3

(9) {E8(a1), E8}:
α1 α2 α3 α4 β1 β2 β3 β4

1 0 0 0 0 0 0 0 α1

0 1 −1 0 0 0 0 0 α2

0 0 −1 0 0 0 0 0 α̃3

0 0 0 1 0 0 0 0 α4

0 0 0 0 1 0 0 0 β1

0 0 −1 0 0 1 0 0 β2

0 0 −1 0 0 0 1 0 β3

0 0 0 0 0 0 0 1 β4
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(10) {E8(a2), E8}:
α1 α2 α3 α4 β1 β2 β3 β4

−1 0 0 0 0 0 0 0 α̃1

−1 1 0 0 0 0 0 0 α2

0 0 1 0 0 0 0 0 α3

0 0 0 1 0 0 0 0 α4

−1 0 0 0 1 0 0 0 β1

0 0 0 0 0 1 0 0 β2

−1 0 0 0 0 0 1 0 β3

0 0 0 0 0 0 0 1 β4

(11) {E8(a3), E8(a2)}:
α̃1 α2 α3 α4 β1 β2 β3 β4

1 0 0 −3 0 0 0 0 α̃1

0 1 0 0 0 0 0 0 α2

0 0 1 −1 0 0 0 0 α3

0 0 0 −1 0 0 0 0 α̃4

0 0 0 0 1 0 0 0 β1

0 0 0 −2 0 1 0 0 β2

0 0 0 −2 0 0 1 0 β3

0 0 0 −2 0 0 0 1 β4

(12) {E8(a4), E8(a1)}:
α1 α2 α̃3 α4 β1 β2 β3 β4

1 0 0 −1 0 0 0 0 α1

0 1 0 −1 0 0 0 0 α2

0 0 1 0 0 0 0 0 α̃3

0 0 0 −1 0 0 0 0 α̃4

0 0 0 −1 1 0 0 0 β1

0 0 0 0 0 1 0 0 β2

0 0 0 −1 0 0 1 0 β3

0 0 0 −1 0 0 0 1 β4

(13) {E8(a5), E8(a4)}:
α1 α2 α̃3 α̃4 β1 β2 β3 β4

1 0 0 0 0 0 0 −1 α1

0 1 0 0 0 0 0 −1 α2

0 0 1 0 0 0 0 0 α̃3

0 0 0 1 0 0 0 −1 α̃4

0 0 0 0 1 0 0 −1 β1

0 0 0 0 0 1 0 0 β2

0 0 0 0 0 0 1 −1 β3

0 0 0 0 0 0 0 −1 β̃4
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(14) {E8(a6), E8(a4)}:
α1 α2 α̃3 α̃4 β1 β2 β3 β4

1 0 0 0 0 0 0 −2 α1

0 1 0 0 0 0 0 −2 α2

0 0 1 0 0 0 0 0 α̃3

0 0 0 1 0 0 0 0 α̃4

0 0 0 0 1 0 0 −2 β1

0 0 0 0 0 1 0 −1 β2

0 0 0 0 0 0 1 −1 β3

0 0 0 0 0 0 0 −1 β̃4

(15) {E8(a7), E8(a5)}:
α1 α2 α̃3 α̃4 β1 β2 β3 β̃4

−1 0 0 0 0 0 0 0 α̃1

−1 1 0 0 0 0 0 0 α2

−1 0 1 0 0 0 0 0 α̃3

0 0 0 1 0 0 0 0 α̃4

−2 0 0 0 1 0 0 0 β1

0 0 0 0 0 1 0 0 β2

0 0 0 0 0 0 1 0 β3

0 0 0 0 0 0 0 1 β̃4

(16) {E8(a8), E8(a7)}:
α̃1 α2 α̃3 α̃4 β1 β2 β3 β̃4

1 0 0 0 0 0 0 0 α̃1

0 1 0 0 0 0 0 0 α2

0 0 1 0 0 0 0 0 α̃3

0 0 0 1 0 0 0 −2 α̃4

0 0 0 0 1 0 0 0 β1

0 0 0 0 0 1 0 −1 β2

0 0 0 0 0 0 1 −1 β3

0 0 0 0 0 0 0 −1 β4

C For discussion

C.1 Conjectures regarding the Dynkin-Minchenko completion procedure

The numerical relation in Remark 1.1 motivates to the following assumption:

Conjecture C.1. There is a correspondence between Carter diagrams (with cycles) and
extra nodes in the Dynkin-Minchenko completion procedure.

One more conjecture on relationship between enhanced Dynkin diagrams and Carter
diagrams is as follows:
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Conjecture C.2. If {Γ̃,Γ} is a homogeneous pair of Carter diagrams, then the signed

enhanced Dynkin diagrams associated with Γ̃ and Γ coincide up to similarities.

∆(Γ̃) = ∆(Γ).

Remark C.3. Conjecture C.2 is easily verified for Carter diagrams E6(a1) and E6(a2):

• Case E6(a1). Extra nodes m1 and m2 are as follows:

m1 = 2β1 + α1 + α2 + α3, m2 = 2α2 + β1 + β2 − β3.

Figure 23: Enhanced Dynkin diagram ∆(E6(a1))

Orthogonality relations are as follows:

m1 ⊥ α1, α2, α3, β̃3, (m1, β2) = (α2, β2) = −1,

(m1,m2) = (m1, β1 + β2) = 1− 1 = 0.

• Case E6(a2). Here, extra nodes m1 and m2 are as follows:

m1 = 2α3 + β̃3 + β̃2 + β1, m2 = 2β1 + α1 + α2 + α3.

Orthogonality relations:

m1 ⊥ β̃3, β̃2, β1, α1, α2, (m1,m2) = (m1, α3) = 1.

Further, according to Vavilov-Mingin, see [19, Theorem 1],

E7(ai) ⊂ ∆(E7) and E8(ai) ⊂ ∆(E8), 1 ≤ i ≤ 8,

therefore
∆(E7(ai)) ⊂ ∆(E7) and ∆(E8(ai)) ⊂ ∆(E8).

Thus, to prove Conjecture C.2, it suffices to check only the reverse inclusions:

E7 ⊂ ∆(E7(ai)) and E8 ⊂ ∆(E8(ai)).

Figure 24: Enhanced Dynkin diagram ∆(E6(a2))
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C.2 Adjacency, complexity and eigenvalues

Let us define the complexity of the Carter diagram asNc+Ke, whereN is the number of
cycles and K is the number of endpoints. Assume that one cycle contributes to complexity
as two endpoints. One can select another proportion. In Table 6, Carter diagrams located
side by side are the pairs from the adjacency list (2). The Carter diagrams from the
adjacency list can be transformed to each other using the transition matrix MI constructed
in Theorem 4.1, see Section 4.2.1. Denote by Max-E the maximal eigenvalue of a partial
Cartan matrix.

E8(a8) E8(a7) E8(a5) E8(a4) E8(a1) E8 E8(a2) E8(a3)

Nc+Ke 6c 3c+ 1e 2c+ 2e 2c+ 1e 1c+ 2e 3e 1c+ 3e 1c+ 4e

2N +K 12 7 6 5 4 3 5 6

Max-E 3.73 3.93 3.956 3.969 3.982 3.989 3.975 3.93

Table 6: Two chains arranged in ascending order of Max-E.

In Table 6, there are two chains which are arranged in ascending order of the maxi-
mal eigenvalues of the partial Cartan matrices and in descending order of the complexity
parameter, see (28).

E8(a8) −→ E8(a7) −→ E8(a5) −→ E8(a4) −→ E8(a1) −→ E8,

E8(a3) −→ E8(a2) −→ E8.
(28)

The arrows in (28) point in the direction of increasing of maximal eigenvalue. It is not so
clear the place of E8(a6) in the homogeneous class {E, 8}:

• The complexity parameter for the diagram E8(a6) is equal to 3c.

• By alternative transition matrices from Section 4.2.2, the possible adjacent diagram
for E8(a6) can be E8(a5), E8(a4), E8(a1).

• The maximum eigenvalue of the partial Cartan matrix for E8(a6) is 3.902.

Based on these three factors, E8(a6) can be placed, for example, between E8(a5) and
E8(a4), or in the separated pair {E8(a5), E8(a6)}.

C.3 C. M. Ringel: Invariants with value 2, 4, 8

In the survey article [13], C. M. Ringel provided several notes regarding representations
of Dynkin quivers. As Ringel writes: “they shed some new light on properties of Dynkin
and Euclidean quivers”. The following is Ringel’s 2 − 4 − 8 assertion regarding Dynkin
quivers En, n = 6, 7, 8.

Let Γ be the extended Dynkin diagram (=Euclidean quiver) for the Dynkin diagram
Γ. If Γ is constructed from Γ by adding the new edge to the vertex y of Γ, then y is said
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Γ E6 E7 E8

Γ′ A5 D6 E7

n 2 4 8

Table 7: Ringel 2− 4− 8 assertion

Figure 25: Auslander-Reiten quiver A5: τ
− = s5s4s3s2s1, τ

+ = s1s2s3s4s5, τ
−2P4 = I4.

to be the exceptional vertex. For the Dynkin quivers En, n = 6, 7, 8, let x be the neighbor
of y and Γ′ = Γ\{y}, see Table 7.

Let P ′(x) (resp. I ′(x)) be the indecomposable projective (resp. injective) representa-
tion of Γ′ corresponding to vertex x. Let τ ′ be the Auslander-Reiten translation in the
category of finite-dimensional representations rep(Γ). Then, P ′(x) and I ′(x) belong to the
same τ ′-orbit and there is the following 2− 4− 8 assertion:

P ′(x) = (τ ′)nI ′(x),

where n is the Ringel invariant given in the Table 7, see [13, Part 3]. For example, for
the Auslander-Reiten A5, n = 2, see Fig. 25, and for the Auslander-Reiten D6, n = 4, see
Fig. 26.

C.4 B. Rosenfeld: Isometry groups of the projective planes

J. Baez in [1] points out another connection between the invariants 2, 4, 8 and the
diagrams E6, E7 and E8. This connection was discovered by Rosenfeld, see [14]: “. . .
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Figure 26: Auslander-Reiten quiver D6: τ
− = s1s2s3s4s5s6, τ

+ = s6s5s4s3s2s1. For each i,
we have τ−4Pi = Ii.

Boris Rosenfeld had the remarkable idea . . . that the exceptional Lie groups E6, E7 and
E8 may be considered as the isometry groups of the projective planes over the following 3
algebras, respectively:”

• the bioctonions C⊗O,

• the quateroctonions H⊗O,

• the octoctonions O⊗O.

Any real finite-dimensional division algebra over the reals must be only one of these: R,
C, H, O1. The real numbers R, complex numbers C, the quaternions H, and the octonions
O are division algebras of dimensions, respectively: 1, 2, 4, or 8.
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