
Communications in Mathematics 31 (2023), no. 2, 157–172
DOI: https://doi.org/10.46298/cm.11218
©2023 Sinai Robins
This is an open access article licensed under the CC BY-SA 4.0

157

The integer point transform as a complete invariant

Sinai Robins

Abstract. The integer point transform σP is an important invariant of a rational
polytope P, and here we show that it is a complete invariant. We prove that it is
only necessary to evaluate σP at one algebraic point in order to uniquely determine
P, by employing the Lindemann-Weierstrass theorem. Similarly, we prove that it is
only necessary to evaluate the Fourier transform of a rational polytope P at a single
algebraic point, in order to uniquely determine P. We prove that identical uniqueness
results also hold for integer cones.

In addition, by relating the integer point transform to finite Fourier transforms,
we show that a finite number of integer point evaluations of σP suffice in order to
uniquely determine P. We also give an equivalent condition for central symmetry of
a finite point set, in terms of the integer point transform, and prove some facts about
its local maxima. Most of the results are proven for arbitrary finite sets of integer
points in Rd.

1 Introduction

A polytope P ⊂ Rd is called an integer polytope (respectively, a rational polytope) if
the coordinates of all its vertices are integers (respectively, rationals). Given a rational
polytope P ⊂ Rd, we define its integer point transform by

σP(ξ) :=
∑

n∈Zd∩P

e2πi⟨n,ξ⟩, (1)
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for all ξ ∈ Rd. Throughout, the word polytope refers to a convex set, by definition. We
observe that more generally, Definition (1) makes sense for an arbitrary finite set of integer
points S ⊂ Zd:

σS(ξ) :=
∑
n∈S

e2πi⟨n,ξ⟩. (2)

Indeed, we will often develop general principles for any finite set of integer points in Rd,
and then later pass to polytopes, using the assumption of convexity.

One of the main utilities of the integer point transform is the special evaluation at the
origin:

σP(0) :=
∑

n∈Zd∩P

1 =
∣∣Zd ∩ P

∣∣ , (3)

the number of integer points in P . So we see that if P is a polytope, then the integer point
transform discretizes the volume of P in this sense. In fact, the integer point transform
was so named because, by using a lattice, it discretizes the Fourier transform of P , which
is defined by

∫
P e2πi⟨ξ,x⟩dx (see [7], for example). We already know from (3) that if we have

any two rational polytopes P ,Q ⊂ Rd, then σP(0) = σQ(0) =⇒ |P ∩Zd| = |Q∩Zd|. But
is it possible that knowledge of σP(ξ), for some finite collection of points ξ ∈ Rd, might
help us to uniquely identify P? This is our main motivating question.

Historically, the importance of the integer point transform σP for a rational polytope
P surfaced naturally in combinatorial geometry, namely in Ehrhart’s theory of integer
point enumeration in polytopes ([2], [7]). In particular, Ehrhart’s main theorem follows
quickly from Brion’s theorem, which enables us to write σP as a finite linear combination
of exponential-rational functions [7] (see Remark 4). The work of Fink, Mészáros, and
Dizier [4] gives applications of integer point transforms to Schubert polynomials. The
recent work of Katharina Jochemko [6] shows that the sequence of integer point transforms
σkP+Q

∣∣
k≥0

satisfies a multivariate linear recursion, where P is an integer polytope, and Q
is any polytope. Here we do not assume knowledge of Ehrhart theory, and rather proceed
from first principles.

The integer point transform (1) clearly lives on the torus - in other words, σP is periodic
on Rd, with a fundamental domain [0, 1)d. We will therefore often restrict attention to the
torus, or equivalently to the half-open cube [0, 1)d.

It is elementary that given any positive integer N , there are infinitely many distinct
d-dimensional integer polytopes P with

∣∣Zd ∩ P
∣∣ = N . Even after we mod out by the

action of the modular group GLd(Z), there are in general many (though finitely many)
distinct integer polytopes P with

∣∣Zd ∩ P
∣∣ = N . It is very natural to ask: “What extra

information do we need in order to uniquely determine P?” To make this question more
rigorous, we formulate it as follows.

Question 1. Given any two integer polytopes P ,Q ⊂ Rd, is there a finite set S ⊂ Rd such
that

σP(ξ) = σQ(ξ) for all ξ ∈ S ⇐⇒ P = Q?
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Question 2. More generally, given any two finite sets of integer points A,B ⊂ Zd, is there
a finite set S ⊂ Rd such that

σA(ξ) = σB(ξ) for all ξ ∈ S ⇐⇒ A = B?

We will answer both of these Questions in the affirmative. Somewhat surprisingly, it
turns out that just one point suffices for both questions. We also prove a similar, but
slightly weaker result, for rational polytopes (Theorem 1.1, part 3 below). Because the
direction (⇐=) is trivial, it suffices to always prove the (=⇒) direction. Throughout the
paper, we will use the special point

ξ∗ := 1
π

(√
2, . . . ,

√
pd

)
∈ Rd, (4)

where we have picked the first d primes 2, 3, 5, 7, . . . pd to ensure that
√
2, . . . ,

√
p
d
are

algebraically independent over Q, and therefore all integer linear combinations of the
coordinates of ξ∗ are distinct.

Theorem 1.1. 1. Fix any two finite sets of integer points A,B ⊂ Zd. Then:

σA(ξ
∗) = σB(ξ

∗) ⇐⇒ A = B.

2. Let P ,Q ⊂ Rd be integer polytopes. Then:

σP(ξ
∗) = σQ(ξ

∗) ⇐⇒ P = Q. (5)

3. Let P ,Q ⊂ Rd be rational polytopes. Then:

σkP(ξ
∗) = σkQ(ξ

∗) ⇐⇒ P = Q, (6)

for any k ∈ Z>0 such that kP and kQ are both integer polytopes.

Proof. We suppose that σA(ξ
∗) = σB(ξ

∗). Then we have:

0 =
∑
n∈A

e2πi⟨n,ξ
∗⟩ −

∑
n∈B

e2πi⟨n,ξ
∗⟩ (7)

=
∑
n∈A

e2i(n1

√
2+···+nd

√
pd) −

∑
n∈B

e2i(n1

√
2+···+nd

√
pd). (8)

To prove part 1, suppose to the contrary, that A ̸= B. Then (8) gives us a finite nontrivial
vanishing sum of an integer linear combination of exponentials, all of which have the form
eα, with α algebraic. But this contradicts the celebrated Lindemann–Weierstrass theorem:
if α1, . . . , αn are distinct algebraic numbers, then eα1 , . . . , eαn are algebraically independent
over Q ([1], Theorem 1.4).

To prove part 2, suppose that P and Q are integer polytopes. Part 1 applies to the
two sets of integer points A := Q ∩ Zd and B := P ∩ Zd, and therefore Q ∩ Zd = P ∩ Zd.
By invoking the very simple Lemma 2.1 below, we conclude that P = Q.
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To prove part 3, suppose that P and Q are any rational polytopes that enjoy the
hypothesis σkP(ξ

∗) = σkQ(ξ
∗). The positive integer dilate k allows us to conclude that kP

and kQ are both integer polytopes. By part 2, σkP(ξ
∗) = σkQ(ξ

∗) =⇒ kP = kQ, which
in turn implies that P = Q.

We note that no assumption had to be made about the dimensions of P or Q. Fur-
thermore, it is important to remark that the proof shows that more is true: we may pick
any algebraic numbers in the exponents of our exponentials in equation (8), so in choosing
ξ∗, there is clearly a dense set of vectors to choose from.

2 Passing from finite point sets to polytopes

Let us start with a non-example, which will show the importance of convexity when
passing from arbitrary sets of integer points in Zd to the family of integer polytopes.
Suppose we have two non-convex polytopes P ,Q ⊂ Rd. It would be nice to say that if
P∩Zd = Q∩Zd, then P = Q. Unfortunately, even in R2 we have simple counterexamples,
as Figure 1 shows.

Fortunately, we have the very easy fact (Lemma 2.1 below) that in the context of
convex polytopes we do have such an implication, as follows.

Figure 1: Bottom: a finite set of 5 integer points. Top: two distinct, nonconvex polygons
built on the same set of 5 integer points.

Lemma 2.1. Let P ,Q ⊂ Rd be two convex integer polyhedra.

If P ∩ Zd = Q∩ Zd, then P = Q.
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Proof. Each vertex of P is an integer point, say v ∈ Zd, and is by assumption also a point
of Q. Therefore, the convex hull of the vertices (extreme points) of P (which is P itself,
using the convexity of P) must be contained in Q, using the convexity of Q. So we have
P ⊆ Q. By using an identical argument, we also have Q ⊆ P and therefore P = Q.

We will use Lemma 2.1 repeatedly in the sequel, when moving from a formal result
about finite sets of integer points to results about polyhedra (and in particular polytopes).

3 Some examples

Example 3.1. Let P := conv{(−1, 0), (1, 0), (0, 1)}. Its integer point transform is

σP(ξ1, ξ2) = e2πi(−ξ1) + e2πiξ1 + e2πiξ2 ∈ C.

Evaluation at the special value ξ∗ :=
(√

2
π
,
√
3

π

)
gives us a unique ‘signature’ for this

polygon P . Namely, Theorem 1.1 tells us that P is the only integer polygon associated to

the special value σP

(√
2

π
,
√
3

π

)
= e−i2

√
2 + 2ei2

√
3. □

Figure 2: The polygons P and 2P , of Example 3.2

Example 3.2. Let P be the symmetric parallelogram whose vertices are given by

{(1, 0), (1, 1), (−1, 0), (−1,−1)},

as in Figure 2. Its integer point transform is

σP(ξ1, ξ2) = 1 + e2πi(ξ1) + e2πi(−ξ1) + e2πi(ξ1+ξ2) + e2πi(−ξ1−ξ2)

= 1 + 2 cos(2πξ1) + 2 cos(2π(ξ1 + ξ2)). □
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Example 3.3. Let P be the integer tetrahedron in R3 whose vertices are given by

(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1).

The integer point transform of P is

σP(ξ) = 1 + e2πi(ξ1+ξ2) + e2πi(ξ2+ξ3) + e2πi(ξ1+ξ3).

In Example 5.5 of Section 5, we will use the same tetrahedron.
The graph belies a symmetry, as follows. If we replace any coordinate ξk by 1− ξk, the

integer point transform in this example stays invariant. For example, when k = 1:

σP(1− ξ1, ξ2, ξ3, · · · ξd) =
∑

n∈Zd∩P

e2πi
(
n1(1−ξ1)+n2ξ2+···ndξd

)
=

∑
n∈Zd∩P

e2πi
(
−n1ξ1+n2ξ2+···ndξd

)
. □

4 The Fourier transform and integer point transform of a general
polyhedron, as complete invariants

Here we extend Theorem 1.1 to show that the Fourier transform of a rational polytope
P uniquely determines P by evaluating the Fourier transform at a single algebraic point.
Given a d-dimensional compact set S ⊂ Rd, we define the continuous Fourier transform of
S by

F(S)(ξ) :=

∫
S

e−2πi⟨ξ,x⟩dx, (9)

for each ξ ∈ Rd. The present notation F is used to distinguish the Fourier transform (9)
from the notation that we used for the Fourier transform over a finite abelian group, namely
FG.

Theorem 4.1. We are given two rational polytopes P ,Q ⊂ Rd, and the algebraic point ξ∗

from (4). Then we have:

F(1P)(ξ
∗) = F(1Q)(ξ

∗) ⇐⇒ P = Q.

Proof. We first recall Brion’s theorem ([7], Theorem 8.3):∫
P
e−2πi⟨u,ξ⟩ du =

∑
v∈V

e−2πi⟨v,ξ⟩

(2πi)d

M(v)∑
j=1

detKj(v)∏d
k=1⟨wj,k(v), ξ⟩

,

for all ξ ∈ Rd such that none of the denominators vanish:
∏d

k=1⟨wj,k(v), ξ⟩ ≠ 0. At each
vertex v ∈ P , the vertex tangent cone Kv is triangulated into simplicial cones, using the
notation Kv = K1(v) ∪ · · · ∪ KM(v)(v).
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By assumption, all of the edge vectors wj,k(v) are integer vectors, the vertices v are
rational vectors (for all vertices of both P and Q), and all the determinants detKj(v) are
polynomial functions of the vertices v, and are therefore rational numbers. If we have
F(1P)(ξ

∗) = F(1Q)(ξ
∗), then

∑
v∈V (P)

e−2πi⟨v,ξ∗⟩

(2πi)d

M(v)∑
j=1

detKj(v)∏d
k=1⟨wj,k(v), ξ∗⟩

=
∑

v∈V (Q)

e−2πi⟨v,ξ∗⟩

(2πi)d

M(v)∑
j=1

detKj(v)∏d
k=1⟨wj,k(v), ξ∗⟩

holds, and this may be rewritten as

0 =
∑

v∈V (P)

cP(v, ξ
∗)e−2πi⟨v,ξ∗⟩ −

∑
v∈V (Q)

cQ(v, ξ
∗)e−2πi⟨v,ξ∗⟩, (10)

where the coefficients cP(v, ξ
∗) and cQ(v, ξ

∗) are polynomial functions of the coordinates of
the rational vertices v, with algebraic coefficients, due to the appearance of ξ∗. Supposing
that P ̸= Q, we have arrived at a nontrivial linear combination of exponentials of the form
eα1 , . . . , eαn , with algebraic coefficients, and with α1, . . . , αn distinct algebraic numbers, by
our choice of ξ∗. But this contradicts the Lindemann–Weierstrass theorem ([1], Theorem
1.4).

5 Integer sublattices generated by the integer points in a polytope,
and absolute maxima of integer point transforms

Let P ⊂ Rd be an integer polytope. We define

LP ⊂ Zd

to be the integer sublattice of Zd that is generated by the integer span of all the points in
|Zd∩P|. We’ll call LP the spanning lattice of the set P∩Zd. It is a trivial fact—perhaps
as old as the hills themselves—that for 2-dimensional integer polygons, we always have
LP = Z2. The proof is easy: we can always triangulate any integer polygon into unimodular
triangles, and the vertices of any such unimodular triangle already generate Z2.

Whenever LP = Zd, P is called a spanning polytope. In dimensions d ≥ 3, there are
integer polytopes that are not spanning polytopes, because a unimodular triangulation is
not always available for an arbitrary integer polytope.

Example 5.1. Given any positive integer h, the Reeve tetrahedron Th ⊂ R3 has vertices
(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (1, 1, h). It is an exercise that Th is not a spanning polytope, for
any h ≥ 2. □

In the recent work [5], Hofscheier, Katthän, and Nill develop an Ehrhart-type theory for
spanning lattice polytopes. Here we may ask another natural question about the integer
point transform:
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Question 3. Which values of ξ ∈ Rd give us the absolute maxima of |σP(ξ)|?
It turns out that the dual lattice L∗

P comes in naturally here, and it satisfactorily
answers Question 3.

Theorem 5.2. For an integer polytope P ⊂ Rd that contains the origin, we have:

|σP(ξ)| =
∣∣Zd ∩ P

∣∣ ⇐⇒ ξ ∈ L∗
P ,

the dual of the spanning lattice.

Proof. The triangle inequality for complex numbers tells us that

|σP(ξ)| ≤
∑

n∈Zd∩P

∣∣e2πi⟨n,ξ⟩∣∣ = ∑
n∈Zd∩P

1 =
∣∣Zd ∩ P

∣∣ , (11)

for all ξ ∈ Rd. Let us fix ξ ∈ Rd such that |σP(ξ)| =
∣∣Zd ∩ P

∣∣. By (11), the latter equality
means ∣∣∣∣∣ ∑

n∈Zd∩P

e2πi⟨n,ξ⟩

∣∣∣∣∣ = ∑
n∈Zd∩P

∣∣e2πi⟨n,ξ⟩∣∣ , (12)

which in turn occurs exactly when all of the complex numbers e2πi⟨n,ξ⟩ point in the
same direction:

(12) ⇐⇒ e2πi⟨n,ξ⟩ = e2πi⟨x0,ξ⟩ for some x0 ∈ P , and for all n ∈ Zd ∩ P (13)

⇐⇒ ⟨n− x0, ξ⟩ ∈ Z for all n ∈ Zd ∩ P . (14)

We recall that by definition LP is generated by the integer span of all n ∈ Zd ∩ P . So
the condition (14) holds if and only if ⟨n, ξ⟩ ∈ Z for all n ∈ LP , by the linearity of the
inner product. By definition, this means that ξ ∈ L∗

P , the dual lattice.

We notice that if replace the polytope P by any finite subset of integer points S ⊂ Zd,
then the proof of Theorem 5.2 remains valid, with the following definition. We define
LS ⊂ Zd to be the lattice generated by the integer span of all n ∈ S. We obtain the
following immediate consequence from the proof of Theorem 5.2.

Corollary 5.3. Given any finite set of integer points S ⊂ Zd, we have

1. |σS(ξ)| ≤ |S| for all ξ ∈ Rd.

2. |σS(ξ)| = |S| ⇐⇒ ξ ∈ L∗
S.

Using the definition of a spanning polytope, together with Theorem 5.2, we immediately
obtain the following consequence as well.

Corollary 5.4. For an integer polytope P ⊂ Zd, the following are equivalent:



The integer point transform as a complete invariant 165

1. P is a spanning polytope.

2. |σP(ξ)| =
∣∣Zd ∩ P

∣∣ ⇐⇒ ξ ∈ Zd.

Given the nice structure of the aboslute maxima given by Theorem 5.2, it is also natural
to ask:

Question 4. How many inequivalent absolute maxima are there, modulo Zd?

We have the sublattice containments LP ⊆ Zd ⊆ L∗
P . Question 4 asks for the value of

[L∗
P : Zd], which has a simple answer:

[L∗
P : Zd] =

detZd

detL∗
P
=

1

(1/ detLP)
= detLP . (15)

Example 5.5. Let us use Theorem 5.2 to find all of the absolute maxima of the integer
point transform for the tetrahedron in Example 3.3. We recall that

P := conv{(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)},
had σP(ξ) = 1 + e2πi(ξ1+ξ2) + e2πi(ξ2+ξ3) + e2πi(ξ1+ξ3). Here the integer span of the 4 integer
points that comprise P ∩ Z3 gives us the sublattice LP := M(Z3), with

M :=

1 1 0
1 0 1
0 1 1

 .

This is a sublattice of index 2 in Z3, because det c = detM = 2. Here the dual lattice L∗

has a generator matrix:

M−T :=


1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

 .

Let us check Corollary 5.3, part 2 concerning the locations of absolute maxima. First, one
of the absolute maxima of σP is |σP(0)| = 4. Now, we have

v :=


1
2

1
2

1
2

 ∈ L∗
P ,

because v equals the sum of the three columns of M−T . Let us check if v gives us another
absolute maxima, as predicted by Corollary 5.3, part 2:

|σP(v)| =
∣∣∣∣1 + e

2πi
(
1
2
+
1
2

)
+ e

2πi
(
1
2
−1
2

)
+ e

2πi
(
1
2
−1
2

)∣∣∣∣ = 4,

so indeed it does. Due to the relation (15), we know that the total number of inequivalent
absolute maxima in [0, 1)d is equal to detLP = 2, so we found both of them. □
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6 Integer point transforms on a finite abelian group

The finite sum of exponentials that defines σP(ξ) lends the feeling that we should be
studying a connection to the finite Fourier transform of some finite abelian group. To make
this feeling rigorous, we develop this connection here. Although there are many possible
choices for our finite abelian group, we first choose a box

B :=

[
−k1

2
,
k1
2

]
× · · · ×

[
−kd

2
,
kd
2

]
, (16)

and then consider the set of integers points in it, namely Zd ∩ B. Clearly, any integer
polytope P is contained in the interior of the box B, for some appropriately chosen integers
k1, . . . , kd. To avoid ambiguities when we take the quotient, we assume that each vertex
of P is contained in the slightly smaller box [−k1

2
+ 1

2
, k1

2
− 1

2
]× · · · × [−kd

2
+ 1

2
, kd

2
− 1

2
].

Now we consider the finite abelian group G := Z/k1Z × · · ·Z/kdZ, which we identify
with the integer points in the torus R/k1Z×· · ·×R/kdZ, and which can also be thought of
as the box B after identifying its opposite facets. Although the choice of integers k1, . . . kd
is not canonical, such an embedding of the integer points of P into a finite abelian group
will prove to be worthwhile. In other words, we have, by definition:

P ∩ Zd := the domain of 1P , as a function on G.

We will freely use the usual fact that the Pontryagin dual Ĝ (simply the group of characters
of G) is in this case isomorphic to G. Even though the full geometry of P may not be
immediately apparent in this discrete setting, we will be able to shed some additional light
on the integer points P ∩ Zd ⊂ B. It is now natural to consider the indicator function 1P
as a function on G, and therefore expand it into its finite Fourier series. Precisely, each
element ξ ∈ G gives us a character χξ : G → S1 defined by

χξ(n) := e
2πi

(
ξ1n1
k1

+···+ ξdnd
kd

)
.

The first theorem of finite Fourier analysis gives us:

1P(n) =
∑
ξ∈G

cξχξ(n),

where the (finite) Fourier coefficients have the form

cξ =
∑
g∈G

1P(g)χξ(g),

and where we have used the isomorphism G ∼= Ĝ. So by definition we have the finite
Fourier transform

FG(1P )(ξ) := cξ.
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Let us “massage” cξ a bit. For each ξ ∈ G, we have:

FG(1P )(ξ) = cξ =
∑
g∈G

1P(g)χξ(g) (17)

=
∑
g∈G

1P(g)e
−2πi

(
g1ξ1
k1

+···+ gdξd
kd

)
(18)

=
∑

m∈P∩Zd

e
−2πi

(
m1ξ1
k1

+···+mdξd
kd

)
(19)

:= σP

(
− ξ1
k1

, . . . ,− ξd
kd

)
, (20)

by definition of the integer point transform. We will also use the latter identification in
Section 7 below, by giving an equivalent condition for central symmetry in terms of finite
Fourier transforms—or equivalently the integer point transform.

We now notice that we have never required P to be a polytope in the theory above,
but merely that we have:

any finite subset of the integer lattice.

One reason for initially using the integer points that belong to a polytope, as opposed to
just any finite set of integer points, is that the applications that use polytopes are perhaps
the most naturally occurring.

Next, suppose that we want an analogue of Theorem 1.1, but we want to evaluate the
integer point transform at integer lattice points, rather than evaluating it at the algebraic
point ξ∗ := 1

π

(√
2, . . . ,

√
pd
)
. Then we need to evaluate at more points, and the next

result, namely Theorem 6.1, part 2, gives a sufficient condition to choose such points.

Theorem 6.1. Suppose that S ⊂ Zd is a finite subset of the half-open box

B :=

[
−k1

2
,
k1
2

)
× · · · ×

[
−kd

2
,
kd
2

)
.

With the notation above, the following hold:

1.

FG(1S)(ξ) = σS

(
− ξ1
k1

, . . . ,− ξd
kd

)
.

2. S is uniquely determined by the finite set of special values{
σS

(
ξ1
k1

, . . . ,
ξd
kd

)
| ξ ∈ B ∩ Zd

}
.
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Proof. Part 1 follows from the definition of σS and our discussion of finite Fourier trans-
forms above. For part 2, we will use the uniqueness of the inverse Fourier transform over
the finite abelian group G defined above. In particular, suppose that we have two sets
S1, S2 ⊂ B, or equivalently S1, S2 ⊂ G. Then we have FG(1S1)(ξ) = FG(1S2(ξ) for all
ξ ∈ G. By Fourier inversion, we have

1S1(ξ) = FG (FG(1S1)) (−ξ) = FG (FG(1S2)) (−ξ)

= 1S2(ξ),

for all ξ ∈ G. Therefore 1S1 = 1S2 , and so S1 = S2.

7 Centrally symmetric sets of integer points and centrally symmetric
polytopes

In this brief section we give an equivalence for central symmetry in terms of the integer
point transform, for any finite set A ⊂ Zd of integer points. As a consequence, we get an
equivalence for the central symmetry of any integer polytope (of arbitrary codimension) in
terms of special evaluations of the integer point transform. We will use here the machinery
of Section 6.

In this section we will use the box B :=
[
−k

2
, k
2

)d
, for any positive integer k. We will

suppose that A ⊂ Zd∩B is any centrally symmetric set of integer points that is contained
in B.

It is immediate that for such a set A, its integer point transform is real-valued for any
ξ ∈ Rd:

σA(ξ) :=
∑
n∈A

e2πi⟨n,ξ⟩ := 1 +
1

2

∑
m∈A
m ̸=0

e2πi⟨m,ξ⟩ +
1

2

∑
m∈−A
m ̸=0

e2πi⟨m,ξ⟩ (21)

:= 1 +
1

2

∑
m∈A
m ̸=0

e2πi⟨m,ξ⟩ +
1

2

∑
m∈A
m ̸=0

e2πi⟨−m,ξ⟩ (22)

= 1 +
∑
m∈A
m ̸=0

cos (2π⟨m, ξ⟩) ∈ R. (23)

In particular, for centrally symmetric polytopes, their minima and maxima may be studied
without having to take norms.

Theorem 7.1. Let A ⊂ Zd be a finite collection of integer points. The following are
equivalent:

1. A is centrally symmetric.

2. σA(
1
k
ξ) ∈ R for all ξ ∈ A.
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Proof. For the easy direction that (1) =⇒ (2), we have already seen the proof in (23).
Now suppose that σA(

1
k
ξ) ∈ R for all ξ ∈ A, and we must show that A = −A. We

therefore have σA(
1
k
ξ) = σA(

1
k
ξ), and using equation (20) (with all kj = k) we may rewrite

this condition in terms of the finite Fourier transform as

FG(1A) (ξ) = FG(1A) (ξ) (24)

=
∑
m∈A

e
2πi

(
m1ξ1

k
+···+mdξd

k

)
(25)

=
∑

m∈(−A)

e
−2πi

(
m1ξ1

k
+···+mdξd

k

)
(26)

= FG(1{−A}) (ξ) , (27)

for all ξ ∈ A. Finally, we now take the inverse Fourier transform of both sides, to conclude
that 1A (ξ) = 1{−A} (ξ) for all ξ ∈ A. Therefore A = −A.

8 Integer point transforms and Fourier transforms of integer cones
are also complete invariants

Using exactly the same proof ideas of Theorem 1.1 and Theorem 4.1, we also obtain
the following corollaries.

Corollary 8.1. Given any two integer cones K1,K2 ⊂ Rd, we have:

F(1K1)(ξ
∗) = F(1K2)(ξ

∗) ⇐⇒ K1 = K2,

where F (1K) is the Fourier-Laplace transform of the cone K.

Proof. A standard and known computation [7, Corollary 8.1] gives us the Fourier transform
of a cone K:

F (1K)(ξ) =

∫
K
e−2πi⟨u,ξ⟩ du =

M∑
j=1

e−2πi⟨v,ξ⟩

(−2πi)d
detKj∏d

k=1⟨wj,k, ξ⟩
, (28)

for all ξ ∈ Rd such that none of the denominators vanish. Here we’ve triangulated the
cone K into simplicial cones K1, . . . ,KM .

We note that, initially, formula (28) holds for a complex vector ξ that allows the defining
integral over K to converge. However, by meromorphic continuation, we may later plug in
any real ξ ∈ Rd, as long as the denominators in (28) do not vanish. The rest of the proof
is identical to the proof of Theorem 4.1.

Corollary 8.2. Given any two integer cones K1,K2 ⊂ Rd, we have

σK1(ξ
∗) = σK2(ξ

∗) ⇐⇒ K1 = K2.
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Proof. We recall an elementary lemma (for example [7, Theorem 10.2]), which tells us that
the integer point transform σK of a simplicial integer cone K has the following finite form,
as a rational function:

σK(ξ) =
σΠ(ξ)∏d

k=1 (1− e⟨wk,ξ⟩)
, (29)

where Π := {λ1w1 + · · · + λdwd | all 0 ≤ λj < 1}, and where w1, . . . , wd ∈ Zd are the
integer edge vectors of K. Here, σΠ(ξ) is the integer point transform of a finite set of integer
points, and hence a (Laurent) polynomial. For any (possibly non-simplicial) integer cone
K, it is also a fact that its integer point transform is a finite linear combination over Z, of
rational functions identical to (29).

If σK1(ξ
∗) = σK2(ξ

∗), then using (29) we arrive at an identical equation to (10), and
the rest of the proof is identical to the proof of Theorem 4.1.

9 Further remarks and questions

For further rumination, we mention a few threads that appeared naturally in this line
of research which remain open.

1. Perhaps the most fascinating question now is how to find the unique polytope (or
set of integer points) that is guaranteed by the uniqueness property of Theorem 1.1.

For example, suppose we seek to discover the 1-dimensional polytope P := [0, N ],
and suppose its integer point transform σP(ξ

∗) = C is given to us, with ξ∗ as in (4).
Then we have

C =
N∑
k=0

e2πikξ
∗
=

e2πi(N+1)ξ∗ − 1

e2πiξ∗ − 1
.

Here, it is easy to solve this equation with respect to the vertex N of P , by taking
complex logs, with some care being taken for picking the principal branch. However,
even for an arbitrary finite set P of integer points in Z, or for example an integer
triangle in R2, the problem already appears to become formidable.

2. Similarly, it would be important to reconstruct a rational polytope from the unique-
ness guaranteed by the 1-point evaluation of its continuous Fourier transform, as in
Theorem 4.1. This direction for future research, as well as the previous problem,
involves transcendental equations. It would be very interesting to solve them over
the integers, namely the coordinates of the vertices of P .

A similar open problem is to solve for the unique integer cone that Corollary 8.1 and
Corollary 8.2 guarantee, respectively.

3. Is it possible to strengthen Theorem 1.1, part 2, so that we can eliminate the dilation
factor k, as follows?
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Conjecture 1. If P ,Q ⊂ Rd are any rational polytopes, then we have:

σP(ξ
∗) = σQ(ξ

∗) =⇒ P = Q,

with ξ∗ as in (4). □

4. Historically, the integer point transform σP for a rational polytope P appeared in
the work of Brion [3] in 1988, who proved the important result that we may write σP
as a finite linear combination of exponential-rational functions of the vertex tangent
cones Kv of P :

σP(ξ) =
∑

vertex v of P

σKv(ξ), (30)

valid for almost all ξ ∈ Rd (see [2], [7] for more details). We have slightly abused
notation in (30) by writing σKv(ξ) to mean the meromorphic continuation of these
integer point transforms, which are initially defined by σKv(ξ) :=

∑
n∈Kv∩Zd e2πi⟨ξ,n⟩.

By an elementary lemma (for example [7, Theorem 10.2]), each such σKv for a sim-
plicial cone K also has the following finite form, as a rational-exponential function:

σKv(ξ) =
σΠ+v(ξ)∏d

k=1 (1− e⟨wk,ξ⟩)
,

where Π + v := {λ1w1 + · · ·+ λdwd + v | all 0 ≤ λj < 1}, and where w1, . . . , wd are
the edge vectors of the vertex tangent cone Kv.

5. Regarding possible extensions, it is tempting extend the integer point transform to
arbitrary lattices, as follows. Suppose we are given any full-rank lattice L := M(Zd),
and we define the integer point transform of a given rational polytope P ⊂ Rd,
relative to L, by

σP,L(ξ) :=
∑

n∈L∩P

e2πi⟨n,ξ⟩,

for all ξ ∈ Rd. Offhand, it may seem like we have a new extension, but in fact we
may easily rewrite it as follows:

σP,L(ξ) :=
∑

n∈M(Zd)∩P

e2πi⟨n,ξ⟩ =
∑

k∈Zd∩P

e2πi⟨Mk,ξ⟩ =
∑

k∈Zd∩P

e2πi⟨k,M
T ξ⟩ := σP(M

T ξ).

Since M is invertible (L has full-rank), and ξ varies over all of Rd, there is noth-
ing really new in this particular extension, so we may use the usual integer point
transform to sum over any lattice.
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