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On lattice constructions D and D’ from q-ary linear codes

Franciele do Carmo Silva, Ana Paula de Souza, Eleonesio Strey and Sueli Irene Rodrigues Costa

Abstract. Multilevel lattice codes, such as those associated with Constructions
C, D, D and D’, have relevant applications in communications. In this paper, we
investigate some properties of lattices obtained via Constructions D and D’ from q-
ary linear codes. Connections with Construction A, generator matrices, expressions
and bounds for the lattice volume and minimum distances are derived. Extensions
of previous results regarding construction and decoding of binary and p-ary linear
codes (p prime) are also presented.

1 Introduction

Lattices are discrete additive subgroups of Rn that have attracted attention, due to
several applications in coding for reliable and secure communications. Through their
rich algebraic and geometric structures, they can achieve the capacity of the additive
white Gaussian channel (AWGN) [20]. Regarding security, lattices have been also used
in coding for wiretap channels [17] and currently compose one of the main approaches
in the so-called Post-Quantum Cryptography [48].
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The association of lattices with codes is natural [15], however, lattice code construction
with good performance and practical decoding is still a hard problem. In order to reduce
the decoding complexity, a possible direction is the construction of multilevel lattices
from a family of nested codes, which allows multistage decoding. Similar techniques
are also applied in a more general sense, as introduced in [30], to obtain multilevel
lattice codes, even when the constructions do not necessarily form a lattice, what include
the so-called Constructions D [27], C [39], C∗ [7], D and D’ [38, 10, 4, 15, 27]. These
constructions are extensively studied, especially for the binary case, and appear in papers
such as [56, 63, 7, 75] and references therein. Recent works deal with generalizations of
Constructions D, D’ and D to linear codes over finite fields [23], codes over the ringZq of
integers modulo q [68, 67] and for cyclic codes over finite fields (Construction D(cyc)) [29].
It is well-known that some remarkable lattices with higher coding gain can be described
via binary code Constructions D and D’, as turbo lattices [59], the Barnes-Wall lattices
[15] and LDPC lattices [57]. Several proposals and analyses of multistage decoding have
been presented in [63, 57, 76, 40].

Regarding codes over finite rings, a great interest came from the discovery of good
nonlinear binary codes connected via the Gray map to linear codes over Z4 [11]. This
study motivated several works to consider codes over more general finite rings, such as
Z2k andZ2k , and their respective Gray maps [71, 3, 19]. In particular, self-dual codes over
Z2k have attracted interest because of their connection with even unimodular lattices
[8, 19]. Under these motivations, in this paper, we focus on Constructions D, D’ and A
from nested linear codes over Zq. Our objective is to study some general properties of
these constructions, such as volume, LP-minimum distance, with 1 ≤ P ≤ ∞, and bounds
for coding gain. For this, we establish some relations between Construction D’ and A
and present bounds for these parameters in terms of their underlying codes or their
duals. We also extend a multistage decoding method with re-encoding to Construction
D’ from q-ary linear codes under specific conditions.

This paper is organized as follows. Concepts and preliminary results are presented
in Section 2. In Section 3, it is pointed out some known properties of Constructions D
and D’ and by the association of Construction D’ with Construction A (Corollary 3.14),
expressions for a generator matrix (Corollary 3.15 and Corollary 3.20), volume (Corollary
3.16 and Remark 3.18) and minimum distance (Corollary 3.19) of this construction are
derived. In Section 4, we obtain a lower and an upper bound, respectively, for the
volume of the lattices obtained by Constructions D and D’ (Theorem 4.1, 4.5) and discuss
specific conditions such that they can be achieved (Theorem 4.4 and Corollaries 4.6 and
4.7). Also, it is characterized by the LP-minimum distance and coding gain of lattices
obtained via these constructions under certain conditions by using the minimum distance
of the nested codes or their duals (Theorems 4.11, Corollaries 4.12, 4.20, 4.29). Specific
minimum distance bounds for lattices from binary codes are derived (Theorem 4.25). In
Section 5, a known multistage decoding method [76] with re-encoding for Construction
D’ over binary codes is extended to q-ary codes under specific conditions. Concluding
remarks are included in Section 6.
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2 Preliminaries

This section is devoted to presenting some concepts, notations and results to be used
in the next sections. We may quote [15] and [73] as general references.

Our notations follow the convention for vectors in Rn, as well as n-tuples in Zn
q ,

in bold letters and 0 denotes the null vector. The mapping ρ : Z → Zq is the natural
reduction ring homomorphism and σ : Zq → Z is the standard inclusion map, extended
to vectors and matrices in a component-wise way. For simplicity, we abuse the notation,
using σ and ρ for Zq and Zn

q and omitting them in the numerical examples. When these
maps are associated with Zqa or Zn

qa , with a > 1, we will refer to them as σqa and ρqa ,
respectively. The order of an element h ∈ Zn

q , denoted by O(h), is defined as the smallest
natural m such that mh = 0 in Zn

q ( i.e., mσ(h) ≡ 0 mod q).
A q-ary linear code C of length n over Zq is a Zq-module of Zn

q , that is, an additive
subgroup of Zn

q . The terminology of q-ary codes is also applied in the study of codes
over finite fields Fq, however, in this work we use q-ary code to refer to a code over Zq.
The code generated by the n-tuples b1, . . . , bk ∈ Zn

q is denoted by C = ⟨b1, . . . , bk⟩. We say
that a set {b1, . . . , bk} is a basis for C if they are linearly independent over Zq and they
generate C. In contrast to codes over finite fields, when q is not a prime number there
are q-ary linear codes that do not admit a basis. Despite this, every q-ary code C can
be characterized by a minimal set of generators, due to its finitely generated module
structure [55, 33]. For a code C, two different minimal sets of generators always have
the same cardinality [55]. A generator matrix for a q-ary code C is a matrix whose rows
constitute a minimal set of generators for C.

The usual inner product of two vectors x and y inRn is denoted by x · y. For each pair
of n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) inZn

q , we define the (Euclidean) semi-inner
product between x and y as x · y := x1y1 + · · · + xnyn ∈ Zq, where xiyi denote the usual
product over the ring Zq for each i = 1, . . . ,n. When q is not a prime number, this is
not an inner product, since there exist nonzero elements whose product is zero. Given
a q-ary linear code C, the set C⊥ :=

{
x ∈ Zn

q : x · y = 0 ,∀y ∈ C
}

is always a linear code
over Zq, which is called the dual code of C. If C1 and C2 are q-ary linear codes such that
C2 ⊆ C1, then C⊥1 ⊆ C

⊥

2 .
A lattice Λ ⊂ Rn is a discrete additive subgroup of Rn. Equivalently, Λ ⊂ Rn is a

lattice if, and only if, there exists a set of linearly independent vectors v1, . . . ,vm ∈ Rn

such that Λ is given by all integer linear combinations of these vectors [13].
Under this description, we call the set {v1, . . . ,vm} a basis of Λ and the number m,

the rank of Λ. When m = n, we say that Λ is a full-rank lattice. The matrix M whose
columns are the vectors v1, . . . ,vm is a generator matrix of Λ. Two matrices M1 and M2

are generator matrices of the same lattice Λ if, and only if, there is a unimodular matrix
U (i.e., a matrix with integer entries and det U = ±1) such that M2 = M1U. Given a
generator matrix M for Λ, we define the associated Gram matrix as G = MTM. The
volume of Λ is defined as volΛ =

√
detG, where G is a Gram matrix for Λ. In this

paper, we deal only with full-rank lattices (m = n) and, in this case, volΛ = |det M|,
where M is a generator matrix for Λ. For a full-rank lattice Λ, the dual is defined as
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Λ∗ =
{
y ∈ Rn : y · x ∈ Z ,∀x ∈ Λ

}
. It can be shown that M is a generator matrix for Λ if,

and only if, (MT)−1 is a generator matrix for Λ∗.
Considering a distance d in Rn, we say that two lattices Λ1,Λ2 ⊂ Rn are d-equivalent

with respect to a distance d if there exist a number k ∈ R∗ and an isometry ϕ in Rn with
respect to d such that Λ2 = kϕ(Λ1). Also, the minimum distance of Λ with respect to
distance d is defined as dd(Λ) := min

{
d(x, y) : x, y ∈ Λ and x , y

}
. The packing radius

rpack,d of a lattice Λ, with respect to a distance d, is half of the minimum distance of Λ
relative to this same distance. We consider here the usual LP-distances in Rn and in Zn

q
associated with the LP-norm. The LP-distance, with 1 ≤ P ≤ ∞, between two elements x
and y in Rn is defined as:

dP(x, y) :=

 n∑
i=1

|xi − yi|
P

1/P

for 1 ≤ P < ∞ and d∞(x, y) := max
{
|xi − yi| : i = 1, . . . ,n

}
.

Given a lattice Λ ⊂ Rn, the minimum LP-distance of Λ is defined as

dP(Λ) = min
{
dP(x, y) : x, y ∈ Λ and x , y

}
.

The Lee distance, introduced by [37] and [69], is the induced L1-distance from Z in Zq

and it is defined as dLee(x, y) = min
{
σ(x − y), q − σ(x − y)

}
and for two n-tuples x, y ∈ Zn

q
is given by

dLee(x, y) :=
n∑

i=1

dLee(xi, yi).

In addition, the correspondent induced LP-distance from Zn in Zn
q (also called P-Lee

distance) [34], for x, y ∈ Zn
q is given by

dP(x, y) :=

 n∑
i=1

dLee(xi, yi)P

1/P

for 1 ≤ P < ∞ and d∞(x, y) := max
{
dLee(xi, yi) : i = 1, . . . ,n

}
.

We denote the LP-norm of a vector x ∈ Zn as ||x||P = dP(x, 0) and, similarly, the P-Lee
norm of y ∈ Zn

q as ||y||P = dP(y, 0). The minimum LP-distance of a linear code C ⊆ Zn
q is

defined as dP(C) := min
{
dP(x, y) : x, y ∈ C and x , y

}
.

For P = 2 (Euclidean distance), we use rpack,d2 , ∆(Λ) and δ(Λ) to denote the packing
radius, density and center density, respectively. The coding gain and the center density
of a full-rank lattice Λ ⊂ Rn are defined, respectively, as

γ(Λ) :=
d2

2(Λ)
(volΛ)2/n and δ(Λ) :=

rn
pack,d2

(Λ)

volΛ
= 2−nγ(Λ)n/2.

The strong association between lattices in Zn and linear codes in Zn
q comes from

the fact that given a subset S ⊆ Zn
q , ρ−1(S) is a lattice if, and only if, S is a q-ary linear

code [16]. This leads to Construction A definition [15, 73, 16]. Given a linear code
C ⊆ Zn

q , the Construction A lattice associated with C, denoted by ΛA(C), is defined as
ΛA(C) = ρ−1(C) = σ(C) + qZn. It is shown in [73] that ΛA(C) is always a full-rank lattice.
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3 Construction D and D’: general properties

In this section, we present some general properties of Construction D and D’. For this,
we first need to establish connections between Constructions D and D’ and, subsequently,
with Construction A. More details about these connections can be seen in [68, 67].

In the following, the results and definitions cited are adapted versions of [68] using
the scaled version of Construction D presented next.

Definition 3.1 (Construction D). Let Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca be a family of nested linear

codes such that Cℓ = ⟨b1, . . . , bkℓ⟩with ℓ = 1, 2, . . . , a for a set of n-tuples {b1, . . . , bk1} in Zn
q ,

with integers k1 ≥ k2 ≥ · · · ≥ ka ≥ 0 =: ka+1. The lattice ΛD is defined as

ΛD =

qaz +
a∑

s=1

ks∑
i=ks+1+1

α(s)
i qa−sσ(bi) : z ∈ Zn and 0 ≤ α(s)

i < qs

 .
Equivalently, we can write

ΛD =

qaz +
a∑

s=1

ks∑
i=ks+1+1

α(s)
i qa−sσ(bi) : z ∈ Zn and 0 ≤ α(s)

i < O(bi)qs−1

 ,
where O(bi) is the order of bi over Zq for each i = 1, . . . , k1.

Remark 3.2. The setΛD is a full-rank lattice inRn [68]. Also, when a = 1, the Construction
D coincides with the Construction A. If q is prime, each linear codeCℓ is a vector subspace
of Zn

q and we can always choose as parameters kℓ = dimCℓ (ℓ = 1, . . . , a) and n-tuples
linearly independent b1, . . . , bk1 ∈ Z

n
q such that Cℓ =

〈
b1, . . . , bkℓ

〉
. When q = 2, the

Definition 3.1 restricted to these parameters coincides with the original version of the
Construction D presented in [4, 15] without the restriction on the minimum distance.

Remark 3.3. It is important to observe that Construction D depends not only on the
nested codes as a whole but also on their generators chosen [68]. As an example, consider
the chains of nested linear codes C2 ⊆ C1 ⊆ Z3

5 and Ĉ2 ⊆ Ĉ1 ⊆ Z3
5, where C2 = ⟨(1, 2, 0)⟩,

C1 = ⟨(1, 2, 0), (0, 0, 1)⟩, Ĉ2 = ⟨(3, 1, 0)⟩ and Ĉ1 = ⟨(3, 1, 0), (0, 0, 1)⟩. Note that C1 = Ĉ1 and
C2 = Ĉ2, but the associated Construction D provides different lattices as can be seen from
next Theorem 3.7, once it guarantees that this construction can be seen as a Construction
A where the generator matrices for the associated codes in Z3

25 are, respectively,

G =
[

1 2 0
0 0 5

]
and Ĝ =

[
3 1 0
0 0 5

]
.

As described in [16], generator matrices for the associated Construction A lattices are
obtained by the Hermite Normal Form of matrices which have the code generators for the
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two first columns added by the three columns which vectors (25, 0, 0), (0, 25, 0), (0, 0, 25)
are the following:

M =

 1 0 0
2 25 0
0 0 5

 and M̂ =

 1 0 0
17 25 0
0 0 5

 ,
That is, M and M̂ are generators matrices of the Constructions D lattices ΛD and Λ̂D

obtained from the chains C2 ⊆ C1 ⊆ Z3
5 and Ĉ2 ⊆ Ĉ1 ⊆ Z3

5 with the above chosen

generators, respectively. Note that ΛD , Λ̂D since U = M̂
−1

M is not unimodular.
Moreover, as d2(ΛD) =

√
5, d2(Λ̂D) =

√
10 and volΛD = 125 = vol Λ̂D, we have that center

packing densities of these lattices are δ(ΛD) ≈ 0.011 and δ(Λ̂D) ≈ 0.032 , so these lattices
are not equivalent. In this case, they have the same volume, but in general, it is not always
true. If we consider C̃2 = ⟨(3, 1, 0), (4, 3, 0)⟩ and C̃1 = ⟨(3, 1, 0), (4, 3, 0), (0, 0, 1)⟩ overZ5, the
chain remains the same with different choice of generators. Now d2(ΛD) =

√
5 = d2(Λ̃D),

but vol Λ̃D = 25.

A more natural construction from nested codes, but which does not always produce
a lattice, is the Construction D also known as Construction by Code Formula [26].

Definition 3.4 (Construction D). Let Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca be a family of nested linear

codes, the set ΓD is defined as follows

ΓD = qaZn + qa−1σ(C1) + · · · + qa−iσ(Ci) + · · · + q1σ(Ca−1) + σ(Ca).

When a = 1, the Construction D coincides with the Construction A for linear codes
over Zq and therefore produces a lattice. The set ΓD ⊆ Z

n is not always a lattice, what
leads to define ΛD as the smallest lattice with respect to the natural inclusion. In this
sense, ΓD ⊆ ΛD and if Λ ⊇ ΓD is a lattice, then ΛD ⊆ Λ. An equivalent description of ΛD
can also be found in [68, Thm 8].

The following theorem states a necessary and sufficient condition for the Construction
D to be a lattice. For this, in [68] it is proposed an operation in Zn

q called zero-one
addition and denoted by ∗, which is defined for each pair of tuples x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Zn

q as
x ∗ y = (x1 ∗ y1, . . . , xn ∗ yn),

where

xi ∗ yi =

0, if 0 ≤ σ(xi) + σ(yi) < q
1, if q ≤ σ(xi) + σ(yi) ≤ 2(q − 1)

for each i ∈ {1, . . . ,n}. When q = 2 the zero-one addition coincides with the Schur product
[35]. We say that a family of nested linear codes Zn

q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca is closed under
the zero-one addition if and only if for any c1, c2 ∈ Cℓ, then c1 ∗ c2 ∈ Cℓ−1 for all ℓ = 2, . . . , a.

Theorem 3.5 ([68, Thm 4.3]). Given a family of nested linear codes Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca,

the following statements are equivalent:
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1. ΓD is a lattice.

2. Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca is closed under the zero-one addition.

3. ΓD = ΛD = ΛD.

Remark 3.6. An immediate consequence of the previous theorem is that if Zn
q ⊇ C1 ⊇

C2 ⊇ · · · ⊇ Ca is closed under the zero-one addition then Construction D is the same as
Construction D and, therefore, it depends only on the codes C1,C2, . . . ,Ca (and not on
their generators).

The next theorem, proposed in [68], establishes a relation between Constructions D
and A. A version of this result for Construction D from a family of linear codes over Zp,
with p prime, can be also found in [23, Prop 2].

Theorem 3.7 ([68, Thm 3.5]). Let G1 be a matrix whose rows are the vectors σ(b1), . . . , σ(bk1)
and C ⊆ Zn

qa the linear qa-ary code generated by the rows of the matrix ρqa(G), where G = DG1,
with D the diagonal matrix given by

d j j =


1, for 1 ≤ j ≤ ka;
q, for ka < j ≤ ka−1;
...

qa−1, for k2 < j ≤ k1;

Then ΛD = ΛA(C), i.e, ΛD is a qa-ary lattice.

The next definition of Construction D’ for q-ary linear codes [67, 68] is an extension of
the one presented in [4, 15].

Definition 3.8 (Construction D’). Let Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca be a family of nested linear

codes. Given integers r1, r2, . . . , ra satisfying 0 ≤ r1 ≤ r2 ≤ · · · ≤ ra and a set {h1, . . . ,hra} in
Zn

q such that C⊥ℓ = ⟨h1, . . . ,hrℓ⟩ for ℓ = 1, 2, . . . , a where C⊥ℓ is the dual code of Cℓ, the set
ΛD′ consists of all vectors x ∈ Zn such that

x · σ(h j) ≡ 0 mod qi+1

for each pair of integers (i, j) satisfying 0 ≤ i < a and ra−i−1 < j ≤ ra−i, where r0 := 0.

Remark 3.9. The congruence equations in Definition 3.8 can be rewritten via a check
matrix denoted by H, providing an equivalent characterization to Construction D’ which
is presented in [57, 68, 76]. Indeed, let Ha be the matrix whose rows are the vectors
σ(h1), . . . , σ(hra) and C the qa-ary linear code generated by the rows of ρqa(H), where
H = DHa, with D the diagonal matrix defined as in Theorem 3.7, with ki = ra−i+1 for
each i = 1, . . . , a. Then, ΛD′ =

{
x ∈ Zn : Hx ≡ 0 mod qa

}
. Throughout this text, we

call a matrix H a check matrix (also known as an a-level matrix) associated to ΛD′ as in
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[57, 63]. We point out that there exists another definition of a check matrix associated
with low-density lattice codes, which is presented in [64] and used in [76].

In general, Construction D’ depends on the choice of code generators, as can be seen
in the example below.

Example 3.10. Consider Z2
6 ⊇ C1 = Ĉ1 ⊇ C2 = Ĉ2 a family of nested linear codes such

that C⊥1 = ⟨(4, 2)⟩ ⊆ C⊥2 = ⟨(4, 2), (0, 1)⟩ and Ĉ⊥1 = ⟨(2, 4)⟩ ⊆ Ĉ⊥2 = ⟨(2, 4), (0, 1)⟩. As in
Remark 3.9, we have that

H =
[

4 2
0 6

]
and Ĥ =

[
2 4
0 6

]
are check matrices of ΛD′ and Λ̂D′ , respectively. Equivalently, we have

ΛD′ =
{
(x, y) ∈ Z2 : 4x + 2y ≡ 0 mod 36 and 6y ≡ 0 mod 36

}
and

Λ̂D′ =
{
(x, y) ∈ Z2 : 2x + 4y ≡ 0 mod 36 and 6y ≡ 0 mod 36

}
.

Solving each system of equations, we get generator matrices forΛD′ and Λ̂D′ , respectively,
given by

M =
[

9 −3
0 6

]
and M̂ =

[
18 −12
0 6

]
.

Since volΛD′ = |det M| = 54 , 108 = |det M̂| = vol Λ̂D′ , these lattices are different (and
also non equivalents) and then in this case the Construction D’ depends on the choice of
the generators.

The Construction D’ is connected with the Construction D using codes which are
dual of the original ones [68].

Definition 3.11. Let Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca be a family of nested linear codes,

parameters r1, r2, . . . , ra satisfying 0 ≤ r1 ≤ r2 ≤ · · · ≤ ra and n-tuples h1, . . . ,hra in Zn
q

such that C⊥ℓ = ⟨h1, . . . ,hrℓ⟩ for ℓ = 1, 2, . . . , a. We define ΛD⊥ as the lattice obtained via
Construction D from a family of nested linear codes C⊥1 ⊆ C

⊥

2 ⊆ · · · ⊆ C
⊥

a ⊆ Z
n
q .

Theorem 3.12 ([67, Thm 1] ). Let Zn
q ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Ca be a family of nested linear codes.

Then, ΛD′ = qaΛ∗D⊥ .

Remark 3.13. If we consider ΛD⊥ the lattice obtained via Construction D as in Definition
3.11, we have an analogous result of Theorem 3.5 [67, Cor 1]. In other words, if the
chain of dual codes is closed under the zero-one addition, then Construction D’ does not
depend on the choice of the code generators. One can observe that lattices obtained in
Example 3.10 are distinct and the chain of dual codes is not closed under the zero-one
addition since (4, 2) ∗ (4, 2) = (1, 0) < C⊥2 .
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For the next result, we connect Construction D’ with Construction A and, from this
connection, we describe how to obtain a generator matrix for lattice ΛD′ in the general
case, calculate its volume, and show an expression for its minimum distance. From
Theorem 3.12, we have that M is a generator matrix of ΛD⊥ if and only if qa(M−1)T is a
generator matrix for ΛD′ . By applying Theorem 3.7, we get the following results.

Corollary 3.14. Let ΛD′ be the lattice obtained via Construction D′ from Definition 3.8. Then,
ΛD′ = qaΛ∗A(C), where C ⊆ Zn

qa is the linear code generated by the rows of matrix ρqa(H), with H
as in Remark 3.9.

Corollary 3.15 (Generator matrix for ΛD′). A generator matrix for ΛD′ is given by

M = qa
(
B−1

)T
,

where B is the Hermite Normal Form (HNF) of
[

HT qae1 . . . qaen

]
and {e1, . . . , en} is the

canonical basis of Rn.

Proof. From Corollary 3.14, we have that ΛD′ = qaΛ∗A(C), where C ⊆ Zn
qa is the linear code

obtained for the rows of the matrix ρqa(H). Since C is a linear code in Zn
qa , from [16, Prop.

3.3], it follows that ΛA(C) has a generator matrix (in column form) given by the Hermite
Normal Form of [

HT qae1 . . . qaen

]
.

Denote B the Hermite Normal Form from the previous matrix. Then, a generator matrix

for Λ∗A(C) is
(
B−1

)T
[16]. Finally, since ΛD′ = qaΛ∗A(C), we conclude that qa

(
B−1

)T
is a

generator matrix for ΛD′ . □

Corollary 3.16 (Volume of ΛD′). The volume of ΛD′ is given by

vol ΛD′ = |det M| = |C|,

where C is the qa-ary linear code of Corollary 3.14 and |C| is the cardinality of C. In particular,
an upper bound for the volume of ΛD′ is vol ΛD′ ≤ qara . Furthermore, if the rows of ρqa(H) are
linearly independent in Zn

qa , then we have equality.

Proof. For the description of ΛD′ in Corollary 3.14 and as ΛD′ is a full-rank lattice in Rn,
we have

vol ΛD′ = qan vol Λ∗A(C) =
qan

vol ΛA(C)
=

qan

qan/|C|
= |C|.

To finish the proof, it is enough to observe that ρqa(H) is a matrix ra × n and C is the qa-ary
linear code generated by the rows of this matrix (Remark 3.9), which can be linearly
independent or not. □
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Given a linear code C ⊆ Zn
q , we can see that ΛA(C⊥) = qΛ∗A(C) [41, 33]. In fact, we

have

x ∈ ρ−1(C⊥) ⇔ ρ(x) · y = 0, ∀y ∈ C ⇔ ρ(x) · ρ(h) = 0, ∀h ∈ ρ−1(C)
⇔ x · h = qk, for some k ∈ Z ⇔ x ∈ qΛ∗A(C).

The next theorem is straightforward from Corollary 3.14 replacing qaΛ∗A(C) by ΛA(C⊥),
and describes ΛD′ as a Construction A.

Theorem 3.17. Under the notation of Definition 3.8, we can express the lattice ΛD′ as

ΛD′ = σqa(C⊥) + qaZn = ΛA(C⊥),

where C⊥ = ΛD′ ∩ [0, qa)n is the dual code qa-ary with check matrix ρqa(H), where H is as in
Remark 3.9.

Remark 3.18. It follows directly from the above theorem and from [16, Prop. 3.2] that
vol ΛD′ = qan/|C⊥|. It should be noticed that this result is also presented in [63, Eq. 9] for
Construction D’ from a chain of binary codes.

We can calculate the LP-distances and volume of the latticeΛD′ by using its association
with Construction A and results of [16].

Corollary 3.19 (Minimum distance of ΛD′). Consider the distance LP, with 1 ≤ P ≤ ∞. Then,
the minimum distance of ΛD′ is

dP(ΛD′) = min
{
dP(C⊥), qa} .

Motivated by the work of [76], we investigate an alternative way to obtain a generator
matrix for the lattice ΛD′ . We finish this section with a generator matrix for this lattice
without using the Hermite Normal Form, under specific conditions. This result is a direct
consequence of Theorem 3.17 and extends, for q-ary linear codes and a larger number
of lattices, the Proposition 1, proposed and demonstrated in [76] to binary linear codes,
with appropriate notation adjustments.

Corollary 3.20 (Generator matrix for ΛD′). Let Ca ⊆ Ca−1 ⊆ · · · ⊆ C1 ⊆ Zn
q be a family of

nested linear codes. Given r1, . . . , ra ∈ N satisfying r0 := 0 ≤ r1 ≤ r2 ≤ · · · ≤ ra = n and
{h1, . . . ,hn} ⊆ Zn

q such that C⊥ℓ = ⟨h1, . . . ,hrℓ⟩ for 1 ≤ ℓ ≤ a, where C⊥ℓ is the dual of Cℓ.
Consider the lattice obtained via Construction D′ from that chain using the above parameters.
Let H = DHa as in the Corollary 3.14. Suppose that σ (h1) , . . . , σ (hn) are linearly independent.
Then, qaH−1 is a matrix of integer entries if and only if qaH−1 is a generator matrix of the lattice
ΛD′ .

Proof. (⇒) Since ra = n and σ (h1) , . . . , σ (hn) are linearly independent, we have that D
and Ha are invertible matrices of order n. Then, H = DHa is also an invertible matrix of
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order n. So,

x ∈ ΛD′ ⇔ x ∈ Zn and Hx ≡ 0 mod qa

⇔ x ∈ Zn and x = qaH−1z for some z ∈ Zn

⇔ x ∈
{(

qaH−1
)

z : z ∈ Zn
}
,

since all entries of the matrix qaH−1 are integers. Therefore, qaH−1 is a generator matrix
for ΛD′ .
(⇐) The reciprocal is immediate, since ΛD′ is an integer lattice. □

Remark 3.21. The condition that the matrix qaH−1 has integer entries is not always
satisfied. Consider Z2

3 ⊇ C1 ⊇ C2 such that C⊥1 = ⟨(1, 0)⟩ and C⊥2 = ⟨(1, 0), (0, 2)⟩ . In this
example, we have

D =
[

1 0
0 3

]
and H2 =

[
1 0
0 2

]
,

but

32 (DH2)−1 = 9
[

1 0
0 6

]−1

=

[
9 0
0 3/2

]
does not have integer entries and, therefore, cannot generate the lattice ΛD′ .

Example 3.22. LetZ2
6 ⊇ C1 ⊇ C2 be a family of nested linear codes such that C1 = ⟨(1, 2)⟩

and C2 = ⟨(2, 4)⟩ . Note that C⊥1 = ⟨(4, 1)⟩ and C⊥2 = ⟨(4, 1), (3, 0)⟩. Applying Construction
D’, we get

ΛD′ =
{
(x, y) ∈ Z2 : 4x + y ≡ 0 mod 36 and 3x ≡ 0 mod 6

}
.

Since

D =
[

1 0
0 6

]
and H2 =

[
4 1
3 0

]
,

B := 62 (DH2)−1 = 36
[

4 1
18 0

]−1

= 36
[

0 1/18
1 −2/9

]
=

[
0 2

36 −8

]
,

has integer entries, Corollary 3.20 guarantees that B is a generator matrix of ΛD′ .

Remark 3.23. Consider the notation of Corollary 3.20, with ra = n and h1, . . . ,hn linearly
independent over Zq. Suppose that ρqa(Ha) is a unimodular matrix over Zq. Then qaH−1

is a generator matrix for the lattice ΛD′ and

vol ΛD′ = |det G| = qan
|det H−1

| = qan
|det H−1

a | · |det D−1
| = qan

|det D−1
| =

a−1∏
i=0

(
qan−i

)ri+1−ri
.

We highlight that when q = 2 this result corresponds exactly to Proposition 1 of [76]. In
[76], the set of vectors {h1, . . . ,hra} is completed in such a way that Ha is a unimodular
matrix.
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4 Volume and Minimum Distance of Construction D and D′

In Section 3, we relate Constructions D and D’ with Construction A in such a way
that the volume and distance of these lattices can be described through this association.
Other descriptions of these lattice parameters under special conditions will be presented
in this section.

4.1 Volume
The next theorem provides an upper bound for the cardinality of a linear code over

Zq whose generator matrix can be written as in Theorem 3.7.

Theorem 4.1. Let ΛD = ΛA(C) be the lattice obtained from Construction D as in Definition 3.1,
where C is the qa-ary code generated by the rows of the matrix ρqa(G) as in Theorem 3.7. Then,
the cardinality of C satisfies

|C| =
∣∣∣ΛD ∩ [0, qa)n

∣∣∣ ≤ a∏
s=1

 ks∏
i=ks+1+1

O(bi)qs−1

 = q
a∑
ℓ=1

kℓ

k1∏
i=1

q
O(bi)

= q
a∑
ℓ=2

kℓ
k1∏

i=1

O(bi),

and, hence, the volume of Construction D satisfies

volΛD ≥ q
an−

a∑
ℓ=1

kℓ

 k1∏
i=1

q
O(bi)

 .
Furthermore, if b1, . . . , bk1 are linearly independent over Zq, then

|C| =
∣∣∣ΛD ∩ [0, qa)n

∣∣∣ = q
a∑
ℓ=1

kℓ
and volΛD = q

an−
a∑
ℓ=1

kℓ
.

Proof. It is enough to prove the first upper bound since the second is a direct consequence
of [16, Prop 3.2] and Theorem 3.7. By Definition 3.1,

ΛD ∩ [0, qa)n =

 a∑
s=1

ks∑
i=ks+1+1

α(s)
i qa−sσ(bi) mod qa : 0 ≤ α(s)

i < O(bi)qs−1

 .
In other words, the vectors of ΛD inside the box [0, qa)n are completely determined by
the choices of α(s)

i , where ks+1 + 1 ≤ i ≤ ks and 1 ≤ s ≤ a. Also, each α(s)
i can be chosen

in O(bi)qs−1 different ways. Since the choices of α(s)
i are independent, the Fundamental

Counting Principle states that

|C| =
∣∣∣ΛD ∩ [0, qa)n

∣∣∣ ≤ a∏
s=1

 ks∏
i=ks+1+1

O(bi)qs−1

 .
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On the other hand, some calculations provide

a∏
s=1

 ks∏
i=ks+1+1

O(bi)qs−1

 = a∏
s=1

(
qs−1

)ks−ks+1
·

k1∏
i=1

O(bi) =

a∏
s=1

(
qs)ks−ks+1

·

k1∏
i=1
O(bi)

a∏
s=1

qks−ks+1

=

a∏
s=1

(
qs)ks−ks+1

·

k1∏
i=1
O(bi)

qk1
=

a∏
s=1

(
qs)ks−ks+1

k1∏
i=1

q
O(bi)

=
q

a∑
ℓ=1

kℓ

k1∏
i=1

q
O(bi)

= q
a∑
ℓ=2

kℓ
k1∏

i=1

O(bi),

by using that
a∏

s=1

(
qs)ks−ks+1 = qk1−k2

(
q2

)k2−k3 (
q3

)k3−k4
(
q4

)k4−k5
· · ·

(
qa)ka−ka+1

= qk1+k2+k3+k4+···+ka = q
a∑
ℓ=1

kℓ
.

For the case where b1, . . . , bk1 are linearly independent over Zq, we have O(bi) = q for
every i = 1, . . . , k1. From this hypothesis, we also have that different choices of α(s)

i
yields n-tuples that are necessarily distinct inside the box ΛD ∩ [0, qa)n. This proves the
expression obtained for |C|. For the volume of ΛD, it is enough to apply Theorem 3.7 and
[16, Prop 3.2] □

The particular case of Theorem 4.1, where the generators are linearly independent
overZq, is stated in [68, Thm 3.4] for q-ary codes and in [4, 15], for binary codes (Theorem
1 and Theorem 13, respectively).

Remark 4.2. Under the notation used, if C1 = ⟨b1, . . . , bk1⟩ and Ĉ1 = ⟨b̂1, . . . , b̂k1⟩ are both
generated by k1 linearly independent n-tuples overZq, then both associated Construction
D lattices will have the same volume. The following example illustrates this fact in a
case where the lattices are not equivalent.

Example 4.3. Consider C2 ⊆ C1 ⊆ Z2
6 and Ĉ2 ⊆ Ĉ1 ⊆ Z2

6, where C2 = ⟨(1, 5)⟩, C1 =

⟨(1, 5), (4, 1)⟩ = Ĉ1 and Ĉ2 = ⟨(4, 1)⟩. Let us denote ΛD and Λ̂D, respectively, as the lattices
obtained from these chains. From Theorem 3.7, we have ΛD = ΛA(C) and Λ̂D = ΛA(Ĉ),
where C and Ĉ are the 62-ary linear codes generated, respectively, by the rows of the
matrices

G =
[

1 5
24 6

]
and Ĝ =

[
4 1
6 30

]
.

Thus, ΛD and Λ̂D are generated, respectively, by

M =
[

1 0
5 6

]
and M̂ =

[
2 0
2 3

]
.
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Therefore, volΛD = vol Λ̂D = 6, as expected by Theorem 4.1. However, it is easy to see
that these lattices are non equivalent since they have the same volume but different
minimum (Euclidean) distances.

In the upcoming discussion, we will present a sufficient condition to achieve equality
in Theorem 4.1 even for tuples that are not linearly independent. This extends Corollary
3.8 of [68].

Theorem 4.4. Let b1, . . . , bk1 ∈ Z
n
q be nonzero n-tuples such that:

1. Cℓ = ⟨b1, . . . , bkℓ⟩, for each ℓ = 1, 2, . . . , a.

2. Some row permutation of the matrix M whose rows are b1, . . . , bk1 forms an “upper
triangular” (respectively, “lower triangular”) matrix in the row echelon form.

3. The first nonzero component (respectively, the last component) of each vector σ(bi), with
i = 1, . . . , k1, divides q as well as all the other components of this vector.

Let ΛD be the lattice obtained from the chain Ca ⊆ · · · ⊆ C1 ⊆ Zn
q via Construction D under this

choice of parameters. Then, if k1 = n, it holds

|C| =
∣∣∣ΛD ∩ [0, qa)n

∣∣∣ = q
a∑
ℓ=1

kℓ

n∏
i=1

q
O(bi)

.

Proof. Let us assume without loss of generality that M is an upper triangular matrix. By
the proof of [68, Thm 3.6], denoting α j as the first nonzero component of σ(b j), we know
that

vol ΛD = qn−k1

 k1∏
j=1

α j

 a∏
s=1

(qa−s)ks−ks+1 = q(a−1)k1

 k1∏
j=1

α j

 q
n−

a∑
ℓ=1

k̂ℓ
.

Moreover, we have O(b j) = q/α j for all j = 1, 2, . . . , k1. In fact, the third condition assures
the existence of integers m1, . . . ,mi such that σ(b j) =

(
0, . . . , 0, α j,m1α j, . . . ,miα j

)
and,

therefore,
q
α j
σ(b j) =

q
α j

(
0, . . . , 0, α j,m1α j, . . . ,miα j

)
=

(
0, . . . , 0, q,m1q, . . . ,miq

)
∈ qZn.

Thus, it follows that
(
q/α j

)
b j = 0 in Zn

q , from where O(b j) ≤ q/αi. Since the other
inequality is trivial, we conclude thatO(b j) = q/α j for all j = 1, . . . , k1. Finally, considering
ΛD = ΛA(C) as in Theorem 3.7, we obtain ([16, Prop 3.2])

|C| =
∣∣∣ΛD ∩ [0, qa)n

∣∣∣ = qan

q(a−1)k1

(
k1∏
j=1

q
O(b j)

) q
n−

a∑
ℓ=1

kℓ
 =

q
a∑
ℓ=1

kℓ

n∏
j=1

q
O(b j)

,

where the second equality occurs since k1 = n. □
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Through connections between Constructions D and D’ (Theorem 3.12), the previous
results on Construction D are adapted next to Construction D’. We note that Corollary
4.6 is also presented in [4, 15, 57] for the binary case and in [10, Thm 2], which deals
with an extension of Construction D, called Construction E, over p-ary codes (p prime).
Furthermore, an equivalent expression to the one presented in Corollary 4.7 can be also
found in [66, Thm 3.2.8].

Theorem 4.5. Consider C⊥1 ⊆ · · · ⊆ C
⊥

a ⊆ Z
n
q a family of linear codes. Let ΛD⊥ = ΛA(C) be

as in Definition 3.11, where C is the qa-ary code generated by the rows of the matrix ρqa(G)
as in Theorem 4.4 for this chain of dual codes. Let ΛD′ be the associated lattice obtained via
Construction D′. Then, the cardinality of C and volume of ΛD′ satisfy

vol ΛD′ = |C| =
∣∣∣ΛD⊥ ∩ [0, qa)n

∣∣∣ ≤ a∏
s=1

 ra−s+1∏
i=ra−s+1

O(hi)qs−1

 = q
a∑
ℓ=1

rℓ

ra∏
i=1

q
O(hi)

.

In particular, if q = p is prime, this upper bound is equivalent to p
a∑
ℓ=1

rℓ
.

Proof. Theorem 3.12 guarantees that ΛD′ = qaΛ∗D⊥ = qaΛ∗A(C), where C is the qa-ary linear
code generated by the rows of the matrix ρqa(H), as in Remark 3.9. So, by Corollary 3.16,
we have vol ΛD′ = |C| and the result follows since the upper bound is analogous to the
one presented in Theorem 4.1 under appropriate adjustments of notation. □

Corollary 4.6. Following the notation above, if h1, . . . ,hra are linearly independent over Zq,
then

vol ΛD′ = |C| =
∣∣∣ΛD⊥ ∩ [0, qa)n

∣∣∣ = q
a∑
ℓ=1

rℓ
.

Corollary 4.7. Under the conditions of Theorem 4.4 applied to the dual chain [67, Thm 2] and if
ra = n, we have

vol ΛD′ = |C| =
∣∣∣ΛD⊥ ∩ [0, qa)n

∣∣∣ = q
a∑
ℓ=1

rℓ

n∏
i=1

q
O(hi)

.

Remark 4.8. Although the upper bounds presented in this section involve the order
of each code generator, we must emphasize that just these orders are not enough to
determine the volume of the lattice. For instance, the generators taken in Example 3.10
have the same order in Z2

6 and provide lattices with different volumes.

4.2 Minimum Distance

In this subsection, we explore, under specific conditions, the minimum LP-distance
of lattices from Constructions D and D’ by using the minimum distance of the nested
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codes or their duals. The results presented here extend to lattices constructed from codes
over Zq and to LP-distance results from [57], which deals with the squared Euclidean
minimum distance of lattices from binary codes, and from [66], regarding L1-distance of
lattices obtained from q-ary codes.

Besides the Euclidean distance (P = 2), other LP-distances have been considered either
theoretically, such as the search for perfect and quasi-perfect codes under P-Lee distance
[12, 74, 51, 72], or for applications in Cryptography and communications. Several works in
lattice-based cryptography, for instance, analyze the complexity of certain computational
problems related to lattices in the LP-norms, such as the closed and the shortest vector
problems (CVP and SVP) [47] and the bounded decoding distance (BDD) [5]. Under
a cryptography perspective and aiming at possible applications to error-detection in
lattice-based communications, in [14] it has been proposed the study of a computational
problem called local testability for membership in lattices, for LP-distances. It should be
noted that, in order to obtain nearly matching bounds on the complexity, the authors of
[14] focus on families of lattices constructed by Code Formula from a chain of binary
Reed-Muller codes closed under the Schur product.

Particularly, the use of L1 and L∞-distances plays a role in communications. As
mentioned in [21], the Lee-distance had been considered for BCH codes over fields
used in constrained and partial-response channels in [54], for generalized Reed-Muller
codes over Z2r , with r ∈ N, applied to orthogonal frequency-division multiplexing in
[60], for general linear codes over Zp, with p prime, in coding for multidimensional
bursterror-correction [22] and also for error-correction in the rank modulation scheme for
flash memories [32]. Regarding the L∞-distance, in [61] it is shown that sphere decoding
under these distance provides a much smaller computational complexity with a marginal
performance loss for independent and identically distributed (i.i.d) Rayleigh fading
multiple-input multiple-output (MIMO) channels.

We establish a formula for the minimum LP-distance of Construction D, from which
we can derive a result for Construction D. This formula will be presented in what follows
after the statement of some auxiliary results.

Lemma 4.9. Let C ⊆ Zn
q be a nonzero linear code. Then, for any 1 ≤ P ≤ ∞, we can assert that

there exists x, y ∈ C such that
||σ(x) − σ(y)||P = dP(C).

Proof. The proof is straightforward from the fact that the LP-norm in Zn
q is induced by

the LP-norm in Zn for any 1 ≤ P ≤ ∞ [34, Prop 2]. □

Lemma 4.10. Let z = (z1, z2, . . . , zn) and r = (r1, r2, . . . , rn) be vectors ofZn such that 0 ≤ ri < q
for all i ∈ {1, . . . ,n}. Then ||qz + r||P ≥ ||µ||P, where µ := (µ1, . . . , µn) and µi := min

{
q − ri, ri

}
for all i ∈ {1, . . . ,n}.

Proof. Since the largest negative integer of the form qzi + ri is −q + ri and the smallest
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positive integer is ri, it follows that |qzi + ri| ≥ min
{
| − q + ri|, |ri|

}
= min{ri, q − ri}. Then

||qz + r||P =

 n∑
i=1

|qzi + ri|
P

1/P

≥

 n∑
i=1

min{ri, q − ri}
P

1/P

= ||µ||P.

□

The next result provides a formula for LP-distances of Construction D. When P = 1,
the Theorem 4.11 was proved in [67, Thm 3] and when P = 2, for a chain of binary codes,
in [57, Thm 3].

Theorem 4.11. Let {0} ⊊ Ca ⊆ Ca−1 ⊆ · · · ⊆ C1 ⊆ Zn
q be a family of nested linear codes.

Consider the LP-distance, with 1 ≤ P ≤ ∞, and denote the minimum LP-distance of Cℓ by dP(Cℓ).
Then, the minimum LP-distance of ΓD in Rn satisfies

dP(ΓD) = min
1≤ j≤a

{
qa, qa− jdP(C j)

}
.

Proof. We use arguments such as the ones in [68, Thm 3]. For each 1 ≤ ℓ ≤ a, by Lemma
4.9 that there exist xℓ, yℓ ∈ Cℓ such that ||σ(xℓ) − σ(yℓ)||P = dP(Cℓ). Fix 1 ≤ ℓ ≤ a. Since
qa−ℓσ(Cℓ) ⊆ ΓD, it follows that qa−ℓσ(xℓ), qa−ℓσ(yℓ) ∈ ΓD. One the one hand, we have

||qa−ℓσ(xℓ) − qa−ℓσ(yℓ)||P = qa−ℓ
||σ(xℓ) − σ(yℓ)||P = qa−ℓdP(Cℓ).

On the other hand, qaZn
⊆ ΓD so that dP(ΓD) ≤ qa, what proves that

dP(ΓD) ≤ min
1≤ j≤a

{
qa, qa− jdP(C j)

}
.

For the other inequality, let x, y ∈ ΓD be distinct elements, with x = qsv and y = qkw,
where v,w ∈ Zn and v,w . 0 mod q. Assume s ≥ k without loss of generality.

(i) If k ≥ a, we have dP
P(x, y) = dP

P(qsv, qkw) = qkPdP
P(qs−kv,w) ≥ qaP since 0 , qs−kv −w ∈

Zn.

(ii) If 0 ≤ k ≤ a − 1, then there exist c1 ∈ C1, . . . , ca−k ∈ Ca−k and z ∈ Zn such that

y = qaz + qa−1σ(c1) + · · · + qkσ(ca−k),

which implies
w = qa−kz + qa−1−kσ(c1) + · · · + q0σ(ca−k).

Note that w mod q = q0σ(ca−k) ∈ σ(Ca−k). Denote w := ρ(w) and v := ρ(v), where
ρ : Zn

→ Zn
q is the reduction map modulo q. Since w mod q = q0σ(ca−k), we have

w = ca−k ∈ Ca−k and, thus, qs−kv −w ∈ Ca−k by using that s ≥ k. Moreover, due the
fact that w . 0 mod q and w , v, this is a nonzero vector, which guarantees

dP(x, y) = dP(qsv, qkw) = qkdP(qs−kv,w) = qkdP(qs−kv −w, 0) ≥ qkdP(Ca−k),

where the last inequality follows from

|qs−kvi − wi| ≥ min
{
σ(qs−kvi − wi), q − σ(qs−kvi − wi)

}
, for each i ∈ {1, . . . ,n}.
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Finally, we conclude that dP(x, y) ≥ min
1≤ j≤a

{
qa, qa− jdP(C j)

}
, completing the proof. □

Corollary 4.12. Under the hypothesis of Theorem 4.11, if ΛD is the smallest lattice that contains
ΓD, then

dP(ΛD) =min
1≤ j≤a

{
qa, qa− jdP(C j)

}
.

Moreover, it holds that dP(ΛD) ≥ min1≤ j≤a

{
qa, qa− jdP(C j)

}
, with equality if the chain is closed

under the zero-one addition. In particular, if dP(Cℓ) ≥ qℓ for each 1 ≤ ℓ ≤ a, then dP(ΛD) = qa.

Proof. Since ΓD ⊆ ΛD and by Theorem 4.11, we already have

d(ΛD) ≤ dP(ΓD) = min
1≤ j≤a

{
qa, qa− jdP(C j)

}
.

Thus, it is sufficient to prove that dP(ΛD) ≥ min
1≤ j≤a

{
qa, qa− jdP(C j)

}
. Following a similar

approach to the proof of Theorem 4.11, let x, y ∈ ΛD be distinct elements. By the
characterization of the elements of ΛD [68, Thm 3.14], there exist z,w ∈ Zn and α(i)

j , β
(i)
j ∈{

0, 1, . . . , q − 1
}

such that

x = qaz +
a∑

i=1

qa−i
∑
c j∈Ci

α(i)
j σ(c j) and y = qaw +

a∑
i=1

qa−i
∑
c j∈Ci

β(i)
j σ(c j).

So ρ(x), ρ(y) ∈ Ca, since

x ≡
∑
c j∈Ca

α(a)
j σ(c j) mod q and y ≡

∑
c j∈Ca

β(a)
j σ(c j) mod q.

Therefore,

min
1≤ j≤a

{
qa, qa− jdP(C j)

}
≤ dP(Ca) ≤ dP

(
ρ(x), ρ(y)

)
=

 n∑
i=1

(
min

{
σ
(
ρ(xi) − ρ(yi)

)
, q − σ

(
ρ(xi) − ρ(yi)

)})P

1/P

≤

 n∑
i=1

|xi − yi|
P

1/P

= dP(x, y),

where the last inequality follows from

min
{
σ
(
ρ(xi) − ρ(yi)

)
, q − σ

(
ρ(xi) − ρ(yi)

)}
≤ |xi − yi| for all i ∈ {1, . . . ,n}

as in Theorem 4.11. The arguments are analogous for the L∞-distance. This shows that
min
1≤ j≤a

{
qa, qa− jdP(C j)

}
≤ dP(ΛD). The inequality dP(ΛD) ≥ min

1≤ j≤a

{
qa, qa− jdP(C j)

}
follows directly

from the fact ΛD ⊆ ΛD [68, Thm 3.14] and the particular case from Theorem 3.5. □
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The first part of Corollary 4.12, when P = 1, corresponds to Conjecture 1 proposed in
[67].

Remark 4.13. We can see that in the proof of Theorem 4.11 the condition of the codes
being nested (required for Construction D) was not used. We could then have considered
the more general Construction C for linear codes, which is not approached here, and
get an analogous expression. This generalized the result of [15] and [7] regarding the
Euclidean minimum distance of Construction C to LP-distances.

Example 4.14. Considering the family of codes given in Example 4.3, observe that both
chains are closed under the zero-one addition, since C1 = Ĉ1 = Z2

6. Thus, in this case, by
Theorem 4.11 the LP-distance of the codesC2 and Ĉ2 determine completely the LP-distance
of ΛD and Λ̂D, respectively. Specifically, for P = 2 (Euclidean minimum distance), we
obtain d2(ΛD) = min {36, 6, 1} = 1 and d2(Λ̂D) = min

{
36, 6,

√
5
}
=
√

5.

Example 4.15. Consider the chain of nested codes C2 ⊆ C1 ⊆ Z3
3, where C2 = ⟨(1, 1, 1)⟩

and C1 = ⟨(1, 1, 1), (0, 0, 1)⟩. Let ΛD be the lattice obtained from Construction D under the
generators above. From Theorem 3.7, ΛD = ΛA(C), where C is the 9-ary code generated
by the rows of the matrix

G =
[

1 1 1
0 0 3

]
Thus, by using Hermite Normal Form [16], we get a generator matrix for ΛD given by

M =

 1 0 0
1 9 0
1 0 3

 .
It is straightforward to see that for P = 2, 1 and ∞, the Euclidean, Lee and maximum
distance of ΛD are d2(ΛD) =

√
3, d1(ΛD) = 1 and d∞(ΛD) = 1, respectively. On the other

hand, the minimum distances of the codes C1 and C2 in these distances are d2(C1) = 1,
d2(C2) =

√
3, d1(C1) = 1 = d1(C2) and d∞(C1) = 1 = d∞(C2). So, for P = 1, 2,∞, we

can verify that dP(ΛD) = min {9, 3dP(C1), dP(C2)}. Finally, the chain is closed under the
zero-one addition since (1, 1, 1) ∗ (1, 1, 1) = (0, 0, 0) ∈ C2 and (2, 2, 2) ∗ (2, 2, 2) = (1, 1, 1) ∈ C2.
This illustrates Corollary 4.12 for the LP-distances, with P = 1, 2,∞.

In order to provide some bounds for LP-distances of Construction D’ for a certain
chain of q-ary linear codes, we present an auxiliary result. This is one of the so-called
Transference’s Theorems, which relate some properties of a latticeΛ and its dual latticeΛ∗.
The following version is a consequence of the First and Second Minkowski’s Theorems
[62, 45] and can be also viewed as a particular case of Banaszczyk’s Theorem for successive
minima [2, Thm 2.2].

Theorem 4.16 ([2, 62]). Let Λ ⊂ Rn be a full-rank lattice. Then, the minimum Euclidean
distances ofΛ andΛ∗ satisfy d2(Λ)·d2(Λ∗) ≤ n. Another inequality also satisfied is d2(Λ)·d2(Λ∗) ≤
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γn, where γn is the Hermite’s constant in dimension n, that is, γn = 4δ2/n
n , and δn is the maximum

center density for lattices in dimension n.

Remark 4.17. It is worth noticing that γn ≤ n/4+1 for all n, as shown in [45], what means
that the bound with Hermite’s constant is more restrictive than with n. Unfortunately,
the exact value of γn is only known for dimensions 1 ≤ n ≤ 8 and n = 24.

Some well-known inequalities involving the LP-distances in Rn allow us to directly
derive a consequence from the theorem above.

Corollary 4.18. For a full-rank lattice Λ ⊂ Rn, we have

dP(Λ) · dP(Λ∗) ≤ γn ≤
n
4
+ 1 for 2 < P ≤ ∞; (1)

dP(Λ) · dP(Λ∗) ≤
(
n

1
p−

1
2
)2
γn ≤

(
n

1
p−

1
2
)2 (n

4
+ 1

)
for 1 ≤ P < 2. (2)

Proof. Recall that from the Holder’s inequality for LP-norm [36], if 2 < P < ∞, then
||x||P ≤ ||x||2 ≤ n

1
2−

1
P ||x||P, and for P = ∞, we have ||x||∞ ≤ ||x||2. Thus, (1) follows from

Theorem 4.16. For P < 2, we have ||x||P ≤ n
1
P−

1
2 ||x||2 and, then (2) holds from Theorem 4.16.

□

Remark 4.19. Banaszczyk’s Theorem [2] states that d2(Λ) · d2(Λ∗) ≤ n and this result is
considered tight up to a constant. Under this approach, in [42] it is presented another
bound

d2(Λ) · d2(Λ∗) ≤
n

2π
+

3
√

n
π
.

There is a result shown by [43, Thm 9.5] which asserts the existence of a sequence of
self-dual lattices that satisfy d2(Λ) = Θ(

√
n), i.e., bounded below and above by a constant

multiple of
√

n. For such lattices, we have d2(Λ) · d2(Λ∗) = Ω(n), where Ω(n) denote a
quantity bounded below by a constant multiple of n.

The Corollary 4.18 states an upper bound for the LP-distance of the dual lattice Λ∗

related to the LP-distance of Λ. Nevertheless, since they are obtained by simply applying
inequalities relating to Euclidean minimum distance, they certainly can be improved. In
this sense, in [42] it is also proposed an upper bound for the L1-distance [42, Thm 3.9],
namely

d1(Λ) · d1(Λ∗) ≤ 0.154264n2

1 + 2π

√
3
n

2

.

To establish a result similar to Corollary 4.12 for LP-distances of Construction D’
lattice, we use Corollary 4.18 applied to the chain of dual codes jointly to Theorem 3.12.

Corollary 4.20. Let Ca ⊆ · · · ⊆ C1 ⊊ Zn
q be a family of nested linear codes. Consider ΛD′ the

lattice obtained from Construction D′ and a fixed LP-distance, with 1 ≤ P ≤ ∞. Denote by
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dP(C⊥ℓ ) the minimum LP-distance of C⊥ℓ for each 1 ≤ ℓ ≤ a. Thus,

dP(Λ∗D′) ≥ min
1≤ j≤a

{
1, q− jdP(C⊥a− j+1)

}
,

and the equality holds if the chain of dual codes is closed under the zero-one addition. In particular,
the LP-distances of ΛD′ satisfy

dP(ΛD′) ≤
γn

min
1≤ j≤a

{
1, q− jdP(C⊥a− j+1)

} ≤ n
4 + 1

min
1≤ j≤a

{
1, q− jdP(C⊥a− j+1)

} for 2 ≤ P ≤ ∞

dP(ΛD′) ≤
(
n

1
p−

1
2
)2
·

γn

min
1≤ j≤a

{
1, q− jdP(C⊥a− j+1)

} ≤ n
4 + 1

min
1≤ j≤a

{
1, q− jdP(C⊥a− j+1)

} for 1 < P < 2,

where γn is the Hermite’s constant in dimension n.

Proof. These bounds are a simple consequence of Corollary 4.12 and Theorem 4.16, since
ΛD′ = qaΛ∗D⊥ , as proved in Theorem 3.12. The second part follows directly from Corollary
4.18. □

Corollary 4.21. Under the hypothesis of Corollary 4.20, for 2 ≤ P ≤ ∞, if dP(C⊥ℓ ) ≥ qℓ for each
1 ≤ ℓ ≤ a, it follows that dP(Λ∗D′) = q1−a and dP(ΛD′) ≤ min

{
γn,n

}
· qa−1.

Remark 4.22. Note that the required condition of the corollary above is assumed for
binary codes and P = 2 in [15, 4].

The next example shows that the conditions of the chain of nested dual codes in
Construction D′ being closed under the zero-one addition cannot be omitted in Corollary
4.20 in order to attain the equality.

Example 4.23. Let C2 ⊆ C1 ⊆ Z2
6 be the family of nested linear codes, where C⊥1 = ⟨(4, 2)⟩

and C⊥2 = ⟨(4, 2), (0, 1)⟩ (as in Example 3.10). We know that ΛD′ and 36Λ∗D′ are generated,
respectively, by

M1 =

[
9 −3
0 6

]
and M2 =

[
4 0
2 6

]
.

Let C ⊆ Z2
36 be the linear code such that 36Λ∗D′ = ΛA(C). Thus, the Euclidean minimum

distance of Λ∗D′ follows by the Euclidean minimum distance for C, namely d2(Λ∗D′) =
min

{
2
√

5/36, 36/36
}
=
√

5/18. On the other hand, we have

min
{
1, 6−1d2(C⊥2 ), 6−2d2(C⊥1 )

}
= min

{
1, 1/6, 6−2(2

√

2)
}
=
√

2/18 <
√

5/18.

Note that the chain C2 ⊆ C1 ⊆ Z2
6 is not closed under the zero-one addition.



194 Franciele do Carmo Silva, Ana Paula de Souza, Eleonesio Strey and Sueli Irene Rodrigues Costa

(a) Code C⊥1 = ⟨(4, 2)⟩ ⊆ Z2
6 (b) Code C⊥2 = ⟨(4, 2), (0, 1)⟩ ⊆

Z2
6

Figure 1: Dual codes used for Construction D’.

For binary codes, it is also possible to obtain a lower bound for the minimum LP-
distance without restrictions under the chain. These bounds are related to the minimum
distance of the original codes and not of their dual codes. We present next some of
them, which extend to LP-distances results previously known for Euclidean distance
from binary codes [57, Thm 3.1] and the ones known for L1-distance from q-ary linear
codes [67, Thm 4].

Lemma 4.24. Let {0} ⊊ Ca ⊆ · · · ⊆ C1 ⊊ Zn
2 be a family of nested binary linear codes,

0 ≤ r1 ≤ · · · ≤ ra and h1, . . . ,hra ∈ Z
n
2 such that C⊥ℓ =

〈
h1, . . . ,hra

〉
for each ℓ = 1, . . . ,n.

If x ∈ Zn has at least one odd coordinate and x · σ(h j) ≡ 0 mod 2 for 1 ≤ j ≤ rk, then
||x||P ≥ dP(Ck).

Proof. Let x = c + 2z, where z ∈ Zn and c = (c1, . . . , cn), with ci = 0 or 1. According
to the hypothesis, c , 0 and c · σ(h j) ≡ 0 mod 2 for 1 ≤ j ≤ rk. Thus, ρ(c) ∈ Ck and,
consequently, ||c||P ≥ dP(Ck). On the other hand, by taking µ = c, since min {2 − ci, ci} = ci

for all i = 1, . . . ,n, it follows that ||x||P ≥ ||c||P ≥ dP(Ck) by Lemma 4.10.
□

Theorem 4.25. Let {0} ⊊ Ca ⊆ · · · ⊆ C1 ⊊ Zn
2 be a family of nested binary linear codes,

0 ≤ r1 ≤ · · · ≤ ra and h1, . . . ,hra ∈ Z
n
2 such that C⊥ℓ =

〈
h1, . . . ,hra

〉
for each ℓ = 1, . . . ,n.

Denote by ΛD′ the lattice obtained via Construction D′ using the parameters above and dP(C) the
LP-distance of Cℓ for each ℓ = 1, . . . , a. Then,

min
1≤ j≤a

{
2a, 2a− jdP(C j)

}
≤ dP (ΛD′) ≤ 2a.

Proof. Let x ∈ ΛD′ \ {0}. Since x is a nonzero vector, we can choose an integer k ≥ 0 such
that 2−kx ∈ Zn, but 2−k−1x < Zn. If k < a, then 2−kx · σ(h j) ≡ 0 mod 2 for 1 ≤ j ≤ ra−k. In
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fact, we have

x ∈ ΛD′ ⇔ x · σ(h j) ≡ 0 mod 2i+1 for all 0 ≤ i ≤ a − 1 and ra−i−1 < j ≤ ra−i

⇒ x · σ(h j) ≡ 0 mod 2k+1 for all k ≤ i ≤ a − 1 and ra−i−1 < j ≤ ra−i

⇔ 2−kx · σ(h j) ≡ 0 mod 2 for 1 ≤ j ≤ ra−k.

Thus, by Lemma 4.24, ||x||P ≥ 2kdP(Ca−k). In the other case (that is, if k ≥ a), we have
x = 2az for some z ∈ Zn and consequently

||x||P = ||2az||P = 2a
||z||P ≥ 2a.

Therefore
min
1≤ j≤a

{
2a, 2a− jdP(C j)

}
≤ dP (ΛD′) .

To obtain the upper bound for dP(ΛD′), it is sufficient to use that 2aZn
⊆ ΛD′ . □

The next examples illustrate that both bounds in Theorem 4.25 can be attained.

Example 4.26. Let us consider the family of linear codes given by C2 ⊆ C1 ⊆ Z4
2, where

C
⊥

2 = ⟨(0, 0, 0, 1), (1, 1, 1, 1)⟩ and C⊥1 = ⟨(1, 1, 1, 1)⟩. We use Theorem 4.25 to estimate the
Euclidean minimum distance of ΛD′ . Since the Euclidean minimum distance of the codes
C1 and C2 are d2(C1) =

√
2 = d2(C2), it follows that min {4, 2d2(C1), d2(C2)} =

√
2, which

implies
√

2 ≤ d2(ΛD′) ≤ 4 by Theorem 4.25. One can show that, in this case, the lower
bound is attained. Indeed, by Theorem 3.17 we know that ΛD′ = ΛA(C⊥), where C⊥ is the
4-ary linear code whose check matrix is

H =
[

1 1 1 1
0 0 0 2

]
.

Thus, from Corollary 3.15, we get a generator matrix for ΛD′ given by

M =


4 −1 −1 −2
0 1 0 0
0 0 1 0
0 0 0 2

 ,
from where the Euclidean minimum distance of ΛD′ is

√
2.

Example 4.27. Consider the family of linear codes C2 ⊆ C1 ⊆ Z4
2, where C⊥1 =

⟨(−1, 0, 1, 0), (0,−1, 0, 1)⟩ and C⊥2 = ⟨(−1, 0, 1, 0), (0,−1, 0, 1), (1, 0, 0, 0), (0, 0, 0, 1)⟩. By The-
orem 3.17 we have that ΛD′ = ΛA(C⊥), where C⊥ is the 4-ary linear code with check
matrix

H =


−1 0 1 0
0 −1 0 1
2 0 0 0
0 0 0 2

 .
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So, from Corollary 3.15, a generator matrix for ΛD′ is given by

M =


4 0 −2 0
0 4 0 −2
0 0 2 0
0 0 0 2

 ,
from where the Lee minimum distance of ΛD′ is 4 which is the upper bound of Theorem
4.25.

Remark 4.28. The main difficulty of extending the previous result to LP-distances for
a chain of q-ary linear codes is the Lemma 4.24, which cannot be true under these
conditions, unless P = 1 or q = 2. To the best of our knowledge, it appears that there is
no similar result for the general case.

4.3 Coding Gain
As a consequence of the expressions obtained for the minimum Euclidean distance

and the volume of the lattices from Constructions D and D’, we derive next bounds
for the coding gain under specific conditions. For the binary case of Construction D’
and a choice of linearly independent generators, Corollary 4.29-(iii) is related to what
is presented in [57, Cor 3.1] with appropriate notation adjustments. The next result
follows immediately from the bounds obtained for volume (Theorem 4.1 and Theorem
4.5, respectively) and Euclidean minimum distance (Corollary 4.12 and Corollary 4.20,
respectively) of ΛD and ΛD′ .

Corollary 4.29. LetΛD (respectively,ΛD′) be the lattice obtained via Construction D (respectively,
Construction D′) following the usual notation and choice of parameters. For a chain {0} , Ca ⊆

· · · ⊆ C1 ⊆ Zn
q (respectively, a associated dual chain {0} , C⊥1 ⊆ · · · ⊆ C

⊥

a ⊆ Z
n
q ), we have the

following results:

(i) Under the conditions of Theorem 4.4 and if k1 = n, we have

γ(ΛD) ≥
min
1≤ j≤a

{
q2a, q2(a− j)d2

P(C j)
}

(q2)
a−

a∑
ℓ=1

kℓ
n

(
k1∏

i=1

q
O(bi)

)2/n
.

(ii) If the chain is closed under zero-one addition, then

γ(ΛD) ≤
min
1≤ j≤a

{
q2a, q2(a− j)dP(C j)

}
(q2)

a−
a∑
ℓ=1

kℓ
n

(
k1∏

i=1

q
O(bi)

)2/n
.

In particular, if the conditions of (i) and (ii) are satisfied the equality holds.
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(iii) Under the conditions of Theorem 4.4 for the dual chain and if ra = n, we have

γ(ΛD′) ≤
γnq2a

·

(
ra∏

i=1

q
O(hi)

)2/n

(q2)
a∑
ℓ=1

rℓ
n min

1≤ j≤a

{
q2a, q2(a− j)dP(C⊥j )

} ≤
(

n
4 + 1

)
q2a
·

(
ra∏

i=1

q
O(hi)

)2/n

(q2)
a∑
ℓ=1

rℓ
n min

1≤ j≤a

{
q2a, q2(a− j)dP(C⊥j )

} .

Remark 4.30. The coding gain and the center density of a lattice Λ are related by
δ(Λ) = 2−nγ(Λ)n/2, from what similar bounds for the center density with respect to the
Euclidean distance are given.

We emphasize that, under the conditions of Corollary 4.29-(i) for Construction D, it is
possible to obtain good lattices in low dimensions with respect to packing density. This
is the case, for instance, of the constructions of lattices via Construction D from a family
of linear codes over Z4 equivalent to E8, BW16 and Λ24, as presented in [66, 68].

Regarding the upper bound given in Corollary 4.29-(ii), it is interesting to note that
some chains of generalized linear Reed-Muller over Zq, where q is a prime power [6],
are closed under the zero-one addition. In order to verify this, let us denote the r-th
generalized Reed-Muller code of length 2m, RMZq(r,m), where 0 ≤ r ≤ m(p− 1) and q = ps,
with p prime. Using the concept of generalized Boolean functions, RMq(m, r) is defined
as the linear code over Zq generated by the set of all monomials of order at most r in
m variables. Equivalently, RMq(m, r) is obtained from all the Zq-linear combinations of
the rows of the generator matrix for the classical binary Reed-Muller codes [46]. The
next result presents a chain of generalized Reed-Muller codes that is closed under the
zero-one addition, as well as in the binary case [15, 35].

Theorem 4.31. Under the above notation, the following chain is closed under the zero-one
addition

RMZq(m, 2
0) ⊆ RMZq(m, 2) ⊆ RMZq(m, 2

2) ⊆ · · · ⊆ RMZq(m, 2
log2 2m

) = Z2m

q .

Proof. In fact, note that the sum of two monomials with a degree at most than r results in
a monomial of degree at most 2r, and the zero-one addition can not increase the order of
a monomial. Since in this case r is a power of 2, follows that the previous chain is closed
under the zero-one addition. □

We point out that the class of generalized Reed-Muller codes have good properties
for decoding purposes, as shown in [46, 60]. Certain special families of quaternary linear
Reed-Muller codes have been attracted attention due to their relation with the associated
binary linear Reed-Muller codes obtained from Gray map [9, 50, 49]. Also, it is known
that a family of binary Reed-Muller codes allows constructing Barnes-Wall lattices from
Construction D [26].
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5 Coding and Decoding of Construction D′ for certain q-ary codes
Several methods for encoding and multistage decoding for binary Constructions D

and D’ have been proposed recently, with approaches using re-encoding [40, 76, 70, 75],
by computing cosets [63] and by applying a min-sum algorithm at each level of decoding,
as proposed in [57, 56, 58]. In this paper, we focus on multistage decoding with re-
encoding following the approach proposed by [76]. We extend some results to a class of
lattices obtained by Construction D’ from nested q-ary linear codes. The original method
performs re-encoding via the check matrix in the sense of [76, 64], that is, as an inverse of
a generator matrix for the lattice. In what follows, the notation of [75] is applied to our
approach.

5.1 Encoding Method B
In [76], two equivalent encoding methods are given, called Encoding Method A and

Encoding Method B. The first requires that the check matrix is in the ALT form and can be
efficient when the matrix is sparse [75]. The second one requires that the generators are
linearly independent overZ2 and the check matrix is square. We focus here on Encoding
Method B.

Following the established notation and adopting an approach completely analogous
to [76], let ΛD′ be the lattice obtained via Construction D′ from a chain of q-ary linear
codes Ca ⊆ · · · ⊆ C1 ⊆ Zn

q =: C0 similarly to Definition 3.8, that is,

ΛD′ =
{
x ∈ Zn : Hx ≡ 0 mod qa

}
,

and assume that the linearly independent generators h1, . . . ,hra over Zq are completed
with hra , . . . ,hn in such a way that Ha is invertible over Zq. Only in this section, for
simplicity, we consider that r0 denotes the number of generators for C0 obtained from the
code generators of the underlying codes. Let x ∈ ΛD′ be a lattice vector, denote Hx = qab,
where b ∈ Zn, and write

b j = z j for 1 ≤ j ≤ r1;
b j = u1 j + qz j for r1 < j ≤ r2;
b j = u2 j + qu1 j + q2z j for r2 < j ≤ r3;
...

...
...

b j = u(a−2) j + qu(a−3) j + · · · + qa−3u1 j + qa−2z j for ra−2 < j ≤ ra−1;
b j = u(a−1) j + qu(a−2) j + q2u(a−3) j + · · · + qa−2u1 j + qa−1z j for ra−1 < j ≤ ra;
b j = uaj + qu(a−1) j + q2u(a−2) j + q3u(a−3) j + · · · + qa−1u1 j + qaz j for ra < j ≤ n,

(3)

where ui = (ui1, . . . ,ui(n−ri))
T
∈ Z(n−ri), ui j ∈ σ∗(Zq) for each i = 0, . . . , a − 1 and j = 1, . . . ,n,

and z ∈ Zn. Here, σ∗(Zq) denote a choice of centralized representatives class, i.e.,

σ∗(Zq) :=
{
−

q − 1
2
,−

q − 3
2
, . . . , 0, . . . ,

q − 3
2
,

q − 1
2

}
if q is odd;

σ∗(Zq) :=
{
−

q
2
,−

q − 2
2
, . . . , 0, . . . ,

q − 4
2
,

q − 2
2

}
if q is even .
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Similarly to [76], we consider ũ′i as obtained from ui = (ui(ri+1), . . . ,uin)T with adjunction
of zero coordinates. To preserve the adopted notation, the null coordinates will be added
at the beginning, as follows

ũ′i := (0, . . . , 0︸  ︷︷  ︸
ri

,ui(ri+1), . . . ,uin)T
∈ Zn

q .

Lemma 5.1. Let b = (b1, . . . , bn)T
∈ Zn as in (3). Considering the vectors ũ′i as before, we have

b = D(q−aũ′0 + q−(a−1)ũ′1 + q−(a−2)ũ′2 + · · · + q−1ũ′a−1 + z),

where D is the diagonal matrix presented in Remark 3.9.

Proof. Denote

c := D(q−aũ′0 + q−(a−1)ũ′1 + q−(a−2)ũ′2 + · · · + q−1ũ′a−1 + z) =: Dc̃.

We can write c̃ = q−a(0, . . . , 0,u0(r0+1), . . . ,u1(n−r0))T+ · · ·+q−1(0, . . . , 0,u(a−1)(ra−1), . . . ,u(a−1)n)T+
(z1, . . . , zn)T. Now, multiplying each term by the matrix D, we get Dc̃ = b, as described in
(3). □

In a natural extension of the binary case, observe that a vector x ∈ ΛD′ can be written
as

x = x0 + qx1 + · · · + qaxa =

a∑
i=0

qixi, (4)

where the components xi ∈ Zn depend on ũ′i for i = 0, . . . , a − 1. Thus, if we denote
Hx = qab =: b̃, it follows

b̃ = D(ũ′0 + qũ′1 + · · · + qa−1ũ′a−1 + qaz).

Under these conditions, since b̃ ∈ qaZn is known, we can calculate the components of x
by using the relations below

Haxi = ũ′i for each i = 0, . . . , a − 1,
Haxa = z.

5.2 Decoding of Construction D’

A natural extension of the decoding approach developed in [76] for Construction D’
of a family of q-ary linear codes, under the previous conditions, is described next. We
state a generalization to Proposition 2 of [76] for q-ary linear codes, when Ha is invertible
over Zq and the proof is analogous to the binary case, with the appropriate notation
adjustments.

Proposition 5.2. For Construction D’, the lattice component xi is congruent modulo q to a
codeword x̃i ∈ Ci, for each i = 0, . . . , a − 1.
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Proof. Denote x̃i := xi mod q for each i = 0, . . . , a − 1. By the definition of the lattice
components, we know that xi satisfies Haxi = ũ′i , where the first ri components of ũ′i are
zero. Thus, it results that Ha,ix̃i ≡ 0 mod q, where ρ(Ha,i) is the check matrix of Ci (i.e.,
corresponds to the first ri rows of the matrix Ha). Equivalently, we can write σ(h j) · xi ≡ 0
mod q, i.e., h j · x̃i = 0 in Zn

q , for 1 ≤ j ≤ ri. Therefore, by using the definition of Ci by its
check matrix, we conclude x̃i ∈ Ci. □

Under these conditions, the decoding algorithm of Construction D’ for a chain of
q-ary linear codes is essentially the algorithm proposed by [76]. Since the Construction
D’ was defined for q-ary codes from an arbitrary set of tuples in Zn

q , one point that we
should be careful about is requiring that h1, . . . ,ha are linearly independent overZq. This
hypothesis is crucial for certain stages of the algorithm (specifically, lines 4 and 9) and
guarantees that the entries of Ha are not zero divisors of Zq, which in practice would
weak the distance spectrum of the codes and inhibit the completion convergence of the
decoders [65].

In what follows, a message is a lattice point x ∈ ΛD′ and the channel output is
y = x +w, where w is the noise. Also, u denotes the vector with all coordinates equal to
⌊q/2⌋ (integer part) and mod q(yi + u) denotes the vector obtained by reducing modulo
q. The decoder Deci calculates a codeword ˆ̃xi closest to y′i in the q-ary linear code Ci,
which is an estimate of x̃i.

In a theoretical view, the next theorem provides a necessary condition for the
decoders Deci to find the closest n-tuple over Zq to a received vector y′i over an additive
white Gaussian noise (AWGN). Similar results are proposed for decoding binary turbo
Construction D′ lattices [59] and decoding the Leech lattice [25].

Theorem 5.3. Given an n-uple y′i , if there exists a point x̃i ∈ Ci such that ||y′i − x̃i||2 ≤

d2(ΛA(Ci))/2, then at each step in the line 8 the algorithm decoders y′i to x̃i, i.e., ˆ̃xi = x̃i. In
particular, if the noise w satisfies ∣∣∣∣∣∣∣∣ mod ∗

q

(
w
qi

) ∣∣∣∣∣∣∣∣
2
≤

1
2
,

where mod ∗ denotes the “triangular function”, that is, mod∗q(w) := | mod q(w+u)−u|, then
the algorithm decoders y′i to x̃i.

Proof. Based on the geometric uniformity of lattices, it suffices to consider x = 0 and,
hence, under the notation of decomposition (4), xi = 0 for each i = 0, 1, . . . , a. Let us say
that there is an error at step k if ˆ̃xk , 0.

Assume that there have been no errors at former steps 0 ≤ k < i. Since x̂k = 0 for
k = 0, . . . , i − 1, in the i-th step we have yi = w/qi and, then,

y′i =
∣∣∣∣ mod ∗

q

(
yi−1

q
+ u

)
− u

∣∣∣∣ = ∣∣∣∣ mod ∗

q

(
w
qi + u

)
− u

∣∣∣∣ = mod ∗

q

(
w
qi

)
.
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Under the hypothesis
∣∣∣∣∣∣∣∣ mod ∗

q

(
w
qi

) ∣∣∣∣∣∣∣∣
2
≤

d2(Ci)
2

, the vector y′i is in the sphere packing

of ΛA(Ci) and hence no errors occur. It is sufficient to note that d2(C0) ≤ · · · ≤ d2(Ca) to
complete the proof.

□

Algorithm 1: Decoding Construction D’ Lattices
Input: finite ring Zq, received message with noisy y, full-rank matrix Ha.
Output: estimated lattice point x̂ ∈ ΛD′ .

1 y0 ← y;
2 y′0 ← | mod q(y0 + u) − u|;
3 ˆ̃x0 ← Dec0(y′0);
4 ˆ̃u′1 ← Ha ˆ̃x0 mod q, then solve Hax̂0 = σ( ˆ̃u′1);
5 for 1, 2, . . . , a − 1 do
6 yi ← (yi−1 − x̂i−1)/q;
7 y′i ← | mod q(yi + u) − u|;
8 ˆ̃xi ← Deci(y′i);
9 ˆ̃u′i+1 ← Ha ˆ̃xi mod q, then solve Hax̂i = σ( ˆ̃u′i)

10 end
11 ya ← (ya−1 − x̂a−1)/q;
12 x̂a ← ⌊ya⌉;
13 x̂← x̂0 + qx̂1 + · · · + qa−1x̂a−1 + qax̂a.

Multilevel lattice constructions based on codes have the promise of attain a manageable
decoding complexity. On the other hand, it is worth emphasizing that the decoding
algorithms for a code Ci in each interaction must be an efficient one. In a practical view,
some nearest-neighbor lattice decoding schemes may not be feasible to implement even
for p-ary linear codes, where p is prime [63]. Motivated by the construction of lattices
with good performance over AWGN channels and a manageable decoding complexity,
several works focus on certain families of nested codes for Construction D and D′ over
a field. Among these, there are designs and decoding processes for lattices based on
p-ary linear low-density parity-check (LDPC) codes, which can be decoded by belief
propagation (BP) or min-sum algorithms [57], generalized low density (GLD) codes, by
BP decoding [18] and turbo codes, by using soft-input soft-output (SISO) and soft-input
hard-output (SIHO) decoding algorithms [59].

Although those classes of codes allow generalizations to codes over Zq, the ring size,
as in Zp, with p prime, can affect the decoding complexity. Especially for algorithms
based on belief decoding, this leads most works to consider codes over rings that admit
a fast Fourier transform, which can provide a reasonable decoding complexity [28].
These classes include nested codes over Z2k and Zpr , with p prime, with good decoding
properties, such as LDPC codes [1, 24], turbo codes [52], low-rank parity-check codes
(LRPC) [53], BCH, Reed-Solomon [31], generalized Reed-Muller codes [46] overZ2k, and
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Reed-Solomon codes over Zpr [44]. It is expected that for families of codes belonging to
these classes, Deci chosen as the proper mentioned decoder to be applied at each level i in
the Decoding Construction D′ lattice algorithm above could provide efficient decoding.

6 Conclusion

The volume and LP-distances of Construction D and D′ are investigated here con-
sidering generator matrices for these constructions. An upper bound for the volume
by using a generator and a check matrix, respectively, is presented. We also provide
an expression for LP-distances of Construction D in terms of the minimum distance of
underlying codes and derive some bounds for LP-distances of Construction D and D’,
under certain conditions. In addition, it is established bounds for the coding gain and a
sufficient condition for achieving it. A multistage decoding method with re-encoding
applied to Construction D’ from q-ary linear codes under specific conditions is adapted
from [76]. Further work in the directions presented here includes the discussion of
efficient decoding for Construction D’ for q-ary lattices considered in a more general
context and possible dependency of the decoding complexity and coding gain on certain
lattice parameters, such as the choice of generators.
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