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Relaxation in one-dimensional tropical sandpile

Mikhail Shkolnikov

Abstract. A relaxation in the tropical sandpile model is a process of deforming a
tropical hypersurface towards a finite collection of points. We show that, in the one-
dimensional case, a relaxation terminates after a finite number of steps. We present
experimental evidence suggesting that the number of such steps obeys a power law.

1 Introduction

The sandpile model was discovered independently several times and in different con-
texts (see [11]). It became especially popular when it was proposed as a prototype for
self-organized criticality [1]. This somewhat vague concept can be defined in various com-
plementing ways, the most straightforward is that the system has no tuning parameters
and demonstrates power-laws. We describe a very simple model (see Figure 4) having such
property.

Until very recently [3], the tropical sandpile model has been discussed only in two-
dimensional case. It arises as a scaling limit of the original sandpile model in the vicinity
of the maximal stable state (this is formally stated in the case of lattice polygonal domains
in [8] and proven for general convex domains in [7]) and was studied numerically in [5],
where it was shown to exhibit a power law providing the first example of a continuous
self-organized criticality. The later direction is further explored in [6].

The setup for the tropical sandpile model is as follows. Consider a compact convex
domain Ω ⊂ Rd. A function F : Ω → [0,∞) is called an Ω-tropical series if it vanishes on
∂Ω and can be presented as

F (z) = inf
v∈Zd

(av + z · v).

The numbers av ∈ R are called the coefficients of F. The coefficients of F are not uniquely
defined. However, there is a canonical choice, i.e. we set them to be as minimal as possible.
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Figure 1: A plot of the tropical series z 7→ infv∈Z2\{0}(|v|+ z · v) on the unit disk.

For example, take Ω to be a disk {z ∈ R2 : |z| ≤ 1}. Then, infv∈Z2\{0}(|v|+ z · v) is an
Ω-tropical series (see Figure 1 for the plot of this function). We see that the “monomial”
corresponding to 0 ∈ Z2 doesn’t participate in the formula, but in the canonical choice of
the coefficients we need to take a0 to be 1, that is the maximal value of the series, which
is attained at the origin.

The initial state of the model 0Ω is an Ω-tropical series vanishing on the whole Ω.
Its coefficient corresponding to 0 ∈ Zd is 0 and, in the canonical form, its coefficient for
v ∈ Zd\{0} is −minz∈Ω z · v.

For a point p ∈ Ω◦, we define an idempotent operator Gp acting on the space of Ω-
tropical series. In short, GpF is the result of increasing at most one coefficient in the
canonical form of F, so that it attains a break (i.e. becomes not smooth) at p. More
explicitly, if F is linear at p, then there exist a unique w ∈ Zd such that F (z) = aw + z ·w
for z in a neighborhood of p, and we take GpF to be z ∈ Ω 7→ infv∈Zd(bv + z · v), where
bv = av for v ∈ Zd\{w},

bw = min
v∈Zd\{w}

(av + p · v)− p · w

and av are the canonical coefficients of F. See Figure 3 for a one-dimensional example and
Figure 2 for a two-dimensional geometric version. Observe, also, that the series plotted on
Figure 1 is Gp0Ω for Ω equal to the unit disk and p equal to its center.

The operator Gp is a tropical counterpart of adding a grain at p, relaxing and then
removing the grain in the sandpile model, when one works in the tropical sector, where
all states are made of sandpile solitons. In its infinitesimal form, i.e. that increasing a
coefficient of a tropical polynomial corresponds to sending a wave, this statement appears
as Corollary 2.13 in [10], in the planar case, and as Proposition 3.5 [4], for arbitrary
dimension. For its finite form, i.e. after applying enough waves, see, for example “A
sketch of a proof” of Lemma 1 in [5].

Consider a collection of points p1, . . . , pn ∈ Ω◦. A relaxation is a sequence of the form:

Fm = Gpkm
Gpkm−1

. . . Gpk1
0Ω (1)

of Ω-tropical series, where k1, k2, · · · ∈ {1, . . . , n} is a sequence of indices taking each value
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Figure 2: Two-dimensional illustration of the geometric interpretation of the operator Gp

seen as a result of a continuous process that shrinks a face to which the point p belongs.

infinitely many times. For d = 2, it was shown in [9] that Fm uniformly converges to
G{p1,...,pn}0Ω, the minimal Ω-tropical series not smooth at p1, . . . , pn. In fact, the argument
works equally well for all d (see [3]).

However, unless Ω is a lattice polytope and p1, . . . , pn ∈ Zd, it is not clear if a relaxation
terminates after a finite number of steps. We prove the following.

Theorem 1.1. If d = 1, then the sequence Fm stabilizes.

It is reasonable now to consider a question: What is the distribution for the length of
relaxation?

To make this question more precise, for points p1, . . . , pn we define the length of relax-
ation L(p1, . . . , pn) as the minimal number N such that

(Gpn . . . Gp1)
N0Ω = G{p1,...,pn}0Ω.

We want to look at the distribution of L(p1, . . . , pn) when p1, . . . , pn ∈ Ω◦ are taken as
independent uniform random variables. Our computer simulation suggests the presence of
power-laws (see Figure 7), surprisingly, already for n = 2.

2 Stabilization

The operator Gp has a nice geometric interpretation in terms of hypersurfaces. An Ω-
tropical series F defines its Ω-tropical hypersurface H as a locus of all points z ∈ Ω◦ where
F is not smooth. If p ∈ H then GpF = F. Otherwise, the hypersurface defined by GpF
may be thought as the result of shrinking the connected component of Ω◦\H containing p
(see Figure 2). We will describe explicitly how this works in the one-dimensional case.

Let Ω be an interval. A hypersurface defined by an Ω-tropical series F is just a discrete
set of points H ⊂ Ω◦ over which the graph of F breaks. We incorporate multiplicities
µ : H → Z≥1 for these points by computing the second derivative, i.e.

d2

dx2
F (x) = −

∑
h∈H

µ(h)δ(x− h), (2)
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Figure 3: One-dimensional illustration of the operator Gp. Plots of F and GpF are shown
in bold, the slopes of linear pieces are written near them in gray. In this example, the
original hypersurface H defined by F contains a point of multiplicity two, since there is
an extra monomial (its plot is shown in gray) in the canonical form of F contributing at
this point, or, equivalently, since the slope jumps by two at this point. Applying Gp at the
level of tropical polynomials means increasing the coefficient of the constant term (moving
upwards the horizontal segment of the plot in this example) until the function has a break
at p. At the level of sets of non-linearity of tropical polynomials, Gp moves two points
towards p until at least one of them coincides with p.

where δ is the Dirac delta function. In other words, if p ∈ H then µ(p) is equal to the
difference between the slopes of the linear pieces of F to the left and to the right from p.

In the rest of this note, we assume that H is finite, i.e., F is the restriction to Ω of a
tropical polynomial vanishing on ∂Ω. We call such F an Ω-tropical polynomial.

One can restore F from H and µ (note that there is no constant and linear term
ambiguity since F has to vanish at the boundary of the interval Ω). However, not every
finite collection of points with multiplicities is defined by an Ω-tropical polynomial. Indeed,
performing twice an indefinite integration of the right-hand side of (2), we get a two-
dimensional space of functions of the form Fα,β(x) = f(x)+αx+β, where f is a piece-wise
linear function with integral slopes and α, β are any real numbers. There is a unique choice
of α and β such that F = Fα,β vanishes on ∂Ω. Unless α is an integer, F fails to be an
Ω-tropical polynomial. We will use the following criterion.

Proposition 2.1. Let Ω = [0, 1]. A finite set H ⊂ (0, 1) with multiplicities µ is defined by
an Ω-tropical polynomial if and only if

∑
h∈H µ(h)h is an integer.
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Proof. For h ∈ (0, 1) let fh(x) be a definite double integral of −δ(x− h), i.e.,

fh(x) = −
∫ x

0

∫ t

0

δ(s− h)dsdt.

Note that fh(x) = min(0, h− x). Therefore, its value at 0 is 0 and at 1 is h− 1. To make
αx+

∑
h∈H µ(h)fh(x) vanish at 1 we should take α = −(

∑
h∈H(h−1))x, which is an integer

if and only if
∑

h∈H h is an integer.

To express Gp in a closed form, it will be convenient to encode F by a function

MF : Ω → Z≥0 ∪ {∞}

defined as MF (∂Ω) = {∞}, MF (Ω
◦\H) = {0} and MF |H = µ. Assume p belongs to a

connected component (a, b) of the complement of H in Ω◦. Then

MGpF (x) = MF (x)− δa,x − δb,x + δa+c,x + δb−c,x,

where δ·,· is the Kronecker delta and c = min(p− a, b− p). In plain words, Gp moves by c
the ends of the connected component towards p, see Figure 3.

Remark 2.2. Gp doesn’t produce points with multiplicities greater than 2.

For example, let Ω = [a, b] and p = p1 ∈ (a, b). If 2p ̸= a + b, then the set of points
defined by Gp0Ω is {p, a + b − p}, and the multiplicity of each point is 1. If 2p = a + b,
then the set consists of a single point p with multiplicity 2. We see that for one point, the
relaxation terminates after one step.

For a less trivial and more concrete example of a relaxation process, take Ω = [0, 9],
p = p1 = 4, and q = p2 = 3. Then, Gp0Ω defines points 4 and 5; GqGp0Ω defines points
1, 3 and 5; GpGqGp0Ω defines 1 with multiplicity 1 and 4 with multiplicity 2; finally,
GqGpGqGp0Ω defines 2, 3, and 4 (see Figure 4).

We now proceed to proof of the stabilization Theorem.

Proof. We describe first F∞ = G{p1,...,pn}0Ω, the limit of Fm defined by (1). Without loss
of generality, assume that Ω is [0, 1] and that the points p1, p2 . . . pn ∈ (0, 1) are distinct.
Let q ∈ [0, 1) be the fractional part of −

∑n
j=1 pj.

Lemma 2.3. The structure of the set H∞ with multiplicities µ∞ defined by F∞ depends on
the position of q:

• if q = 0, then H∞ = {p1, . . . , pn} and all multiplicities are 1;

• if there exist j ∈ {1, . . . , n} such that q = pj, then H∞ = {p1, . . . , pn} and all
multiplicities are 1 except for µ∞(pj) = 2;

• otherwise, H∞ = {q, p1, . . . , pn} and all multiplicities are 1.
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Figure 4: Relaxation for points p = 4 and q = 3 on Ω = [0, 9], represented by hypersurfaces
(denoted by collections of circles – two concentric circles circle mean a point of multiplicity
two) defined by Ω-tropical polynomials 0Ω, Gp0Ω, GqGp0Ω, GpGqGp0Ω, etc. The lowest
picture is stable, i.e. the points p and q belong to the hypersurface defined by the result
of the relaxation.

Proof. Notice that the number of points in (H∞, µ∞) counted with multiplicities is equal
to the difference of slopes of F∞ at 0 and 1, and the absolute values of these slopes are
minimized by F∞ in the class of Ω-tropical polynomials not smooth at p1, . . . , pm, since
F∞ is the pointwise minimum of all such functions (Definition 5.3 and [9, Proposition 6.1])
Therefore, (H∞, µ∞) is determined by the condition that it is the smallest multi-set con-
taining all pi and satisfying the criterion of the Proposition.

Consider the third (generic) case when q ̸= 0 and q ̸= pj for all j. The convergence
of Fm to F∞ implies that the set Hm defined by Fm converges to H∞. Take ε > 0 to be
smaller than the half of a minimal distance between two points of H∞. There exists mε

such that for all m ≥ mε the ε-neighborhood of every point in H∞ contains a unique point
of Hm, and vice versa. Let pm,i ∈ Hm be the point in the ε-neighborhood of pi.

Denote by Pl the set of all pi smaller than q and by Pr the set of all pi greater than q.
We prove the stabilization of relaxation separately for Pl and Pr, the proofs are identical.

Let ps be the smallest element of Pl. Note that pmε,s cannot be greater than ps since
otherwise at some further step ms > mε of the relaxation, when applying Gps , we would
increase the number of points in Hms as compared with Hms−1. Therefore, pm,s = ps for
m ≥ ms. This implies that for the second smallest point pk in Pl we have pk ≥ pmk,k,
otherwise, applying Gpk at some further step mk > ms would violate pmk,s = ps. Thus,
pm,k = pk for m ≥ mk. Etcetera.

Going from smaller pi to greater ones we have a chain of stabilizations at points of
Pl. This chain is interrupted by the point of Hm in the neighborhood of q, so we need to
launch another chain of stabilizations over Pr, going from greater to smaller points.

In the first case of the Lemma, we don’t have this effect, so we need to do a single
chain. In the second case, we proceed as in the third case and prove the stabilization at
pj = q after we work out all other points (just before the last step mlast the point pj is
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between two nearby points of Hmlast−1).

A similar argument should work in all dimensions. Instead of one or two linear chains
of stabilizations, for a generic configuration of points p1, . . . , pn, there might be several
tree-like chains. However, a special care is needed for non-generic configurations when
cycles in these chains may appear.

3 Length of relaxation

In this section, we will touch on the behavior of L(p1, . . . , pn) defined at the end of
the introduction. Specific choice of a segment Ω is irrelevant (one can apply an affine
reparameterization); therefore, we restrict our attention to Ω = [0, 1].

First we note that there is an obvious symmetry

L(p1, . . . , pn) = L(1− p1, . . . , 1− pn). (3)

On the other hand, L is sensitive to the order of its arguments. The closures of loci
L(p1, . . . , pn) = const are non-empty polytopal complexes with rational slopes.

For n = 1, the situation is very simple, i.e. L(p) = 1 for all p ∈ (0, 1). For n = 2, we
derive the following pictures.

Figure 5: Numerical approximations for loci of (p, q) ∈ (0, 1)2 with length of relaxation
L(p, q) equal to 1, 2, 3, 4, 5 or 6 (left to right, up to down). The pictures are made in R.
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It is easy to verify that the locus of L(p, q) = 1 has area 1
4
. It is less trivial to

reproduce by hand the locus of L(p, q) = 2 whose closure consists of two triangles of area
1
8
, four triangles of area 1

16
and two triangles of area 1

80
, giving 21

40
in total. The loci of

L(p, q) = N ≥ 2 are similar to one another, and their areas decrease. Their closures consist
of eight triangles (see Figure 3) which go in pairs with respect to the symmetry (3).

The formula (it is derived simply by summing up the areas of triangles shown on
Figure 3 – using equations of their sides, it is easy to find coordinates of all their vertices
and compute the areas through determinants) computes the total area as:

3(9N2 − 18N + 7)

(3N − 1)(3N − 2)(3N − 4)(3N − 5)

which is asymptotically equal to 1
3
N−2 for large N. We conjecture that a similar result

holds true for an arbitrary number of points n.
To justify this, we performed numerical experiments. For a given n, we choose points

p1, . . . , pn ∈ (0, 1) uniformly at random and gather the statistics of the length of relaxation
L(p1, . . . , pn). Apart from an anomalous behavior to the left and a noise to the right (due
to sporadic appearances of improbably large values), the power-laws are visible (Figure 7).

The computer simulations of relaxations were performed using a program written on
OCaml. The data generated through numerous experiments was visualized in R, and the
log-log plots in Figure 7 are obtained using the package poweRlaw [2].

Of course, when looking at the left-hand side of the plots, one can justly object that
these are not power-laws in a strict mathematical sense. However, our observable L is
conceptually different from those studied in related literature since it can take arbitrarily
large values (which is an advantage of the scale-free nature of the model) so we can speak
directly about its asymptotic behavior. We conjecture that for every n ≥ 2 there exist
λn < 0 and cn > 0 such that

Measure({p ∈ (0, 1)n : L(p) = N}) ∼ cnN
λn as N → ∞.

Finally, we clarify that spacial observables measuring sizes of avalanches in relaxations
are not interesting in the one-dimensional case. For example, we could quantify changes
when passing from Gp1,...pn0(0,1) to Gp1,...pn,pn+10(0,1) by measuring the length of a set In+1

over which these two functions are not equal. This set is easy to find explicitly: let
qn ∈ [0, 1) be the fractional part of −(p1 + · · · + pn); if pn+1 < qn, then In+1 = (0, qn);
if pn+1 > qn, then In+1 = (qn, 1); and pn+1 ̸= qn for generic p1, . . . pn+1. If p1, . . . pn+1

are independent uniform random variables, then qn is uniform and independent with pn+1.
Thus, the distribution of Length(In+1) doesn’t depend on n ≥ 1. Its density function is
x ∈ [0, 1] 7→ 2x.
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Figure 6: For N ≥ 2, the closure of the locus L(p, q) = N consists of eight triangles
bounded by lines with equations written near them. The author has found this picture by
carefully considering various cases for the positions of the points p and q; an interested
reader is encouraged to reproduce this picture by themselves. Hint: imagine first, how a
relaxation goes if two points p and q are close to each other – each intermediate operator
Gp or Gq will change a coefficient of a tropical polynomial by |p − q|, while the points p
and q are competing for a single break point (we were depicting such movable points by
circles on the previous pictures) and until another break point would reach them.
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Figure 7: Statistics for the length of relaxation. The y-axis to the log of the complementary
cumulative distribution function and the x-axis corresponds to log(L(p1, . . . , pn)). From
left to right and from top to bottom: n = 2 in 108 experiments, n = 7 in 2·105 experiments,
n = 8 in 105 experiments and n = 16, 20 or 30 in 104 experiments.
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