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Well-Rounded ideal lattices of cyclic cubic and quartic fields

Dat Tan Tran, Nam Hoai Le, Ha Thanh Nguyen Tran

Abstract. In this paper, we find criteria for when cyclic cubic and cyclic quartic
fields have well-rounded ideal lattices. We show that every cyclic cubic field has at
least one well-rounded ideal. We also prove that there exist families of cyclic quartic
fields that have well-rounded ideals and explicitly construct their minimal bases. In
addition, for a given prime number p, if a cyclic quartic field has a unique prime ideal
above p, then we provide the necessary and sufficient conditions for that ideal to be
well-rounded. Moreover, in cyclic quartic fields, we provide the prime decomposition
of all odd prime numbers and construct an explicit integral basis for every prime
ideal.

1 Introduction

A well-rounded (WR) ideal lattice or a WR ideal is an ideal of a number field for
which the associated lattice is well-rounded. WR ideal lattices can be used to investigate
various problems such as kissing numbers [21], sphere packing problems [18, 17], and
Minkowski’s conjecture [22]. They also have a variety of applications to coding theory
[14, 13]. Previously, Fukshanksy et. al. proved results on WR ideals in real quadratic fields
[12, 11], and Araujo and Costa obtained results on WR lattices (but not necessarily for
WR ideals) of cyclic fields with degrees equal to odd primes [8]. Generalizing this work,
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Damir and Mantilla-Soler [7] construct a parametric family of WR sub-lattices of a tame
lattice with a Lagrangian basis. Another generalization of WR lattices are WR twists of
ideal lattices which are investigated for real quadratic fields in [5] and for imaginary fields
in [19]. In [26], it is shown that for any lattice L there exists a diagonal real matrix D
with determinant equal to one and with positive entries such that DL is WR. Further, [4]
provides an analysis of some WR lattices used in wiretap channels, and [6] shows how to
use WR lattices to optimize coset codes for Gaussian and fading wiretap channels.

In this paper, we investigate WR ideals of cyclic cubic and cyclic quartic fields. In
the cyclic cubic case, let F be a cyclic cubic field with discriminant ∆F and Galois group
Gal(F ) = ⟨σ⟩. If a prime p divides ∆F , it is ramified in F and pOF = P 3 for a unique
prime ideal P and σi(P ) = P for i ∈ {0, 1, 2}. If x is a shortest vector in P and the set
{σi(x) : 0 ≤ i ≤ 2} is linearly independent, then P is WR (see Definition 2.1). This idea is
not valid only for prime ideals: it also works for other ideals whose norms divide ∆F (for
example, ideals of the form

∏
i P

mi
i where Pi are ramified prime ideals and 0 < mi ∈ Z).

We can also do similarly for cyclic quartic fields with some modifications.
Our experiment: To implement the idea outlined above, we do the following: First,

we find the defining polynomials of cyclic cubic and cyclic quartic fields. Using these
polynomials together with Pari/GP [28], we generate a list of all integral ideals of norms
bounded by a certain number for each field. We then test which ideals in the list are WR
by listing the shortest vectors of each ideal, using the function qfminim in Pari/GP. We
check if their conjugates form a set of rank 3 in R3 (for the cyclic cubic case) or rank 4
in R4 (for the cyclic quartic case). After identifying the WR ideals we examined their
properties such as the geometry of their integral bases, the coordinates of shortest vectors
with respect to a given integral basis, etc., and formulated conjectures. Finally, we proved
these conjectures.

Our contributions: Our main contribution is establishing the conditions for the
existence of WR ideal lattices in cyclic number fields of degrees 3 and 4. For cyclic quartic
fields, we consider both the real and complex cases. The results can be seen in Theorems
1.1 – 1.6. This is the first time such results are obtained for these classes of number fields.
Further, we give families of cyclic cubic and cyclic quartic fields that admit WR ideals. We
explicitly construct minimal integral bases of these ideals, which have applications in coding
theory [14, 13]. Our other major contribution is that we provide the type decomposition of
all odd primes in cyclic quartic fields (see Theorem 4.18) and construct an explicit integral
basis for every prime ideal (see Section 4.1).

The results in Theorems 1.1, 1.3, 1.4, 1.5, and the one in Theorem 1.2 where 3 | m are
new and have not been studied before. The WR ideals presented in these theorems are
generally not tame and are hence not mentioned in [7]. In [8], WR ideals of quartic fields
(found in Theorems 1.4 and 1.5) and of cyclic cubic fields with 3 | m (found in Theorem
1.1.ii), Theorems 1.2 and 1.3) are not investigated. For the case of cyclic cubic fields where
3 ∤ m, it has been showed that if m

4
≤ q2 ≤ 4m then Q is WR [8, Theorem 4.1]. For this

last case, we used a different technique to prove that this condition is not only sufficient
but also necessary (see Theorem 1.2). Moreover, the ideals in Theorem 1.1.i) have larger
norms, m2, which fall outside the range of [m/4, 4m], and thus, they are distinct from
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those discussed in [8, Theorem 4.1].
We remark that in this paper, all the ideals are integral, and we only consider the

well-roundedness of an ideal if it is primitive.
The following theorem regarding cyclic cubic fields can be obtained from Propositions

3.7, 3.11 and 3.18.

Theorem 1.1. Every cyclic cubic field F has orthogonal and WR ideal lattices. In partic-
ular, denoting by m the conductor of F , we have the following.

i) If 9 ∤ m, then the unique ideal of norm m2 is orthogonal and WR.

ii) If 9 | m, then the unique ideal of norm m2

27
is orthogonal and WR.

Moreover, we obtain the following theorem by combining Propositions 3.8, 3.15 and 3.20.

Theorem 1.2. Let q be a square-free divisor of the conductor m of a cyclic cubic field F .
There is a unique ideal Q of OF such that N(Q) = q. In this case, Q is WR if and only if
the following conditions are verified:

• m
4
≤ q2 ≤ 4m when 3 ∤ m, or

• 3 | q, m
4
≤ q2 ≤ 4m when 3 | m.

When the conductor of a cyclic cubic field is divisible by 9, we have the following result
(see Proposition 3.25).

Theorem 1.3. Let m = 9p1p2 · · · pr(r ≥ 2) and q, q′ be two coprime divisors of p1p2 · · · pr.
The unique ideal of norm 3q2q′ is WR if and only if m

36
≤ qq′2 ≤ 4m

9
.

Combining Theorem 4.18, Propositions 4.19, 4.20, 4.21, 4.22 and 4.23, one obtains the
following theorem.

Theorem 1.4. Let F be a cyclic quartic field defined by a, b, c, d as in (3) and pI | d, qJ | a
such that d is a quadratic non-residue modulo q for each prime divisor q of qJ . Then there
are unique ideals of norms pI and qJ , denoted by PI and QJ respectively. Let

M =
{
16q2Jd, 8|a|d, 4q2Id+ 4|a|d, 16p2Iq2J , 4p2Iq2J + 4|a|d, 4p2Iq2J + 4q2Jd

}
.

Then the ideal PIQJ is WR if and only if

d ≡ 1 (mod 4), b ≡ 1 (mod 2), a+ b ≡ 1 (mod 4),

and p2Iq
2
J + q2Jd+ 2|a|d ≤ minM.

Theorem 1.5. With the notation given in Theorem 1.4, the following hold.

i) The lattice PI is WR if and only if d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4)
and one of the following conditions is satisfied.
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• |a| = 1 and 1
5
d ≤ p2I ≤ 5d,

• |a| = 3 and d ≤ p2I ≤ 9d,

• |a| = 5 and 7
3
d ≤ p2I ≤ 5d.

ii) The lattice QJ is WR if and only if d = 5, b = 2, c = 1 and |a| ≤ q2J ≤ 5|a|.

Note that the proof of Theorem 1.5 is presented after the proof of Proposition 4.23.
For cyclic quartic fields F , considering any odd prime integer p, Theorem 4.18 provides a

classification of classes of prime p based on the ideal factorization of pOF . This can be done
for F because its defining polynomial (see in (3)) has the special form (x2 − ad)

2 − a2b2d.
However, this has not been done for cyclic cubic fields since we do not know how their
defining polynomials (see in (2)) are factorized modulo an arbitrary prime.

Let p be any prime number. Based on the result of Theorem 4.18, we can establish
necessary and sufficient conditions on p to have a unique prime ideal above p. Given this
condition and by Theorem 1.5, we obtain conditions which are equivalent to the well-
roundedness of these prime ideals as below.

Theorem 1.6. Let F be a cyclic quartic field defined by a, b, c, d as in (3) and a prime p.
There is a unique prime ideal of OF above p if and only one of the following conditions is
satisfied.

i) The prime p | d.

ii) The prime p | a and d is a quadratic non-residue modulo p.

iii) The prime p ∤ abcd and d is a quadratic non-residue modulo p.

Moreover, let P denote the unique prime ideal of OF above p. Then P is WR if and only
if the conditions in Theorem 1.5 are satisfied.

Explicit minimal bases of these WR ideals can be seen in the above-mentioned propo-
sitions and Lemmas. Additionally, since ∆F is given in (4), Theorem 1.6 also tells us that
if OF has only one prime ideal P above a given prime p, then P being WR implies that
p | ∆F .

The structure of this paper is as follows. Section 2 serves to provide an initial review of
WR ideal lattices and their properties, defining polynomials, integral bases, discriminants,
and prime factorizations of ideals in cyclic cubic and cyclic quartic fields. We then inves-
tigate WR ideals of cyclic cubic fields in Section 3 and of cyclic quartic fields in Section 4.
Finally, in Section 5 we provide some conclusions and a conjecture related to WR ideals
of these fields for future research.

2 Background

In this section, we will recall some fundamental knowledge about WR ideal latices,
cyclic cubic, and cyclic quartic fields.
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2.1 Well-rounded ideal lattices

Let B = {v1, v2, . . . , vm} be a linearly independent set of vectors in Rn, 1 ≤ m ≤ n.
The set L = {

∑m
i=1 aivi|ai ∈ Z} is called a lattice in Rn of rank m and the set B is said to

be a basis of L. In case m = n, we say that L is a full rank lattice.
The value |L| = min0 ̸=u∈L ∥u∥2 is called the minimum norm of the lattice L ⊂ Rn,

where ∥.∥ denotes the usual Euclidean norm in Rn, and the set of minimum vectors of L
is defined as

S(L) := {u ∈ L : ∥u∥2 = |L|}.

Definition 2.1. Let L be a lattice in Rn.

1. The lattice L is WR if S(L) generates Rn, that is, if S(L) contains n linearly
independent vectors.

2. The lattice L is said strongly WR if S(L) consists of a basis of L. In this case, we
call this basis a minimal basis of L.

For lattices in dimensions at most 3 and most lattices in dimension 4, WRness and
strong WRness are equivalent by [21, Corollary 2.6.10].

We denote by B is an n×m-matrix whose columns are the vectors of B.

Definition 2.2. Let L be a lattice of rank n and its matrix basis B. The determinant
of L, denoted by det(L), is defined det(L) :=

√
det(BTB). In the special case that L is a

full rank lattice, B is a square matrix, then we have det(L) = | det(B)|.
The determinant of a lattice is well-defined since it is independent of our choice of basis

B. Indeed, B1 and B2 are two bases of L, if and only if B2 = B1U for some unimodular
matrix U with integer entries. Hence,√

det(BT
2 B2) =

√
det(UTBT

1 B1U) =
√
det(BT

1 B1).

We recall the following result.

Lemma 2.3. Let L and L′ be two full rank lattices in Rn (n ≥ 1). Assume that L′ ⊆ L
and det(L) = det(L′). Then L′ = L.

Proof. Let B,B′ be bases of L,L′, respectively. Suppose B′ = BA, then

[L : L′] = | det(A)| = | det(B′)|
| det(B)|

=
det(L′)

det(L)
= 1.

Hence, L = L′.

Let F be a number field of degree n and signature (r1, r2). Then F has r1 + r2 em-
beddings up to conjugation: σ1, . . . , σr1+r2 where the first r1 of them are real, and the
remaining r2 are complex. We denote by Φ : F ↪→ F ⊗ R ∼= Rr1 × Cr2 the map defined
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by Φ(f) = (σ1(f), · · · , σr1+r2(f)). Here Rr1 × Cr2 is a Euclidean space with the scalar
product: ⟨u, v⟩ =

∑r1
i=1 uivi + 2

∑r2
i=r1+1ℜ(uivi) where vi is the complex conjugate of vi.

Let Q be a (fractional) ideal of F . Then it is known that Φ(Q) is a lattice in Rr1 ×Cr2

by [1]. By identifying Q and Φ(Q), one has that Q is an ideal of F and also a lattice in
Rr1 ×Cr2 . Hence, we call ideals of F ideal lattices, see [1] and also [25, Section 4] for more
details. An ideal lattice Q is called WR if the lattice Φ(Q) is WR.

2.2 Cyclic cubic fields

Let F be a cyclic cubic field with conductor m. By [20, pp.6-10], one has

m =
a2 + 3b2

4
(1)

where a and b are integers satisfying one of the following conditions,

• a ≡ 2 (mod 3), b ≡ 0 (mod 3) and b > 0 for 3 ̸ |m;

• a ≡ 6 (mod 9), b ≡ 3 or 6 (mod 9) and b > 0 for 3|m.

We recall that the conductor m of F has the form

m = q1q2 · · · qr,

where r ∈ Z>0 and q1, · · · , qr are distinct integers from the set

{9} ∪ {q : q is prime and q ≡ 1 (mod 3)} = {7, 9, 13, 19, 31, 37, . . . }.

The discriminant of F is ∆F = m2. See Hasse [15] for more details. From [20], the following
polynomial, denoted by df , can be used to define F ,

df(x) =

{
x3 − x2 + 1−m

3
x− m(a−3)+1

27
, if 3 ̸ | m

x3 − m
3
x− am

27
, if 3|m . (2)

Let m = p1 · · · pr or m = 9 ·p1 · · · pr, where all the pi are distinct prime numbers congruent
to 1 modulo 3. We arrange the pi such that 3 = p0 < p1 < p2 < · · · < pr.

From now on, we denote by α a root of the defining polynomial df(x) in (2).

Lemma 2.4. Let id3 = [OF : Z[α]]. Then pi does not divide the index id3 for all i ≥ 0.

Proof. We suppose by contradiction that there exists i ≥ 0 such that pi|id3. By (2), we
can calculate the discriminant of df as

∆df =
m2(4m− a2)

27
.

Since F has discriminant m2, one must have id2 divides 4m−a2

27
or equal to 4m−a2

27
. Thus,

p2i divides 4m−a2

27
. Moreover, pi|m. It leads to p2i |m which implies that pi = 3 since 3 is

the only prime of which square divides the conductor m given in (1). In other words, 3|m
and hence 9 divides 4m−a2

27
= b2

9
which is a contradiction since b ≡ 3 or 6 (mod 9) in (1).

Thus, pi ̸ |id3 for all i.
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We prove the following.

Lemma 2.5. Let g ∈ OF\Z. Then Tr(g) ̸= 0 if and only if {g, σ(g), σ2(g)} is R-linearly
independent.

Proof. It is implied from the following equality∣∣∣∣∣∣
g σ(g) σ2(g)

σ(g) σ2(g) g
σ2(g) g σ(g)

∣∣∣∣∣∣ = −1
2
(g + σ(g) + σ2(g))

(
(g − σ(g))2

+(σ(g)− σ2(g))2 + (σ2(g)− g)2
)
.

2.3 Cyclic quartic fields

We first recall the facts about cyclic quartic fields and their properties. See [16] for
more details. Let F = Q(β) where a, b, c, d are integers such that a is squarefree and odd,

d = b2 + c2 is squarefree, b > 0, c > 0, gcd(a, d) = 1 and β =
√
a(d− b

√
d). If a > 0 then

F is a totally real cyclic quartic field. If a < 0 then F is a totally imaginary cyclic quartic
field.

A defining polynomial of F , which is also the minimum polynomial of β, is

df(x) = x4 − 2adx2 + a2c2d. (3)

It is easy to verify that the discriminant of df(x) is ∆df = 256a6b4c2d3 and by [16], the
discriminant of F is

∆F =


28a2d3 if d ≡ 0 (mod 2),

26a2d3 if d ≡ 1 (mod 2), b ≡ 1 (mod 2),

24a2d3 if d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4),

a2d3 if d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4).

(4)

Let id4 be the index of Z[β] in OF . Then, by (4), id24 divides the following quantity

∆df

∆F

=


a2b2c if d ≡ 0 (mod 2),

2a2b2c if d ≡ 1 (mod 2), b ≡ 1 (mod 2),

22a2b2c if d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4),

24a2b2c if d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4).

(5)

For K = Q(
√
d), we always have the tower of field extensions

Q ≤ K ≤ F. (6)

The field F has four embeddings: 1, σ, σ2, σ3 where

σ : β 7−→ σ(β), σ(β) 7−→ −β,
√
d 7−→ −

√
d. (7)
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In case a < 0, the field F is totally complex and the four roots of df(x) are the following:

β,−β, σ(β) =
√
a(d+ b

√
d),−σ(β), which are all in Ri. Here one has 1 = σ2 and σ = σ3.

Thus F has two embeddings 1 and σ up to conjugation. For δ ∈ F , we embed it to
(δ, σ(δ)) ∈ C2 which is then can be viewed as (ℜ(δ),ℑ(δ),ℜ(σ(δ)),ℑ(σ(δ))) ∈ R4. The
four roots of df(x) are totally imaginary hence, they have the form (0, z1, 0, z2) for some
z1, z2 ∈ R when embedded in R4.

In case a > 0, the field F is totally real and the 4 roots of df(x) are the following:

β,−β, σ(β) =
√
a(d+ b

√
d),−σ(β), which are all in R. When we embed an element

δ ∈ F in R4, we obtain the vector (δ, σ(δ), σ2(δ), σ3(δ)).
Although the embeddings of imaginary and the totally real fields are different, we can

still verify that if δ = s1 + s2
√
d + s3β + s4σ(β) ∈ F where si ∈ Q for all i ∈ {1, 2, 3, 4},

then

∥δ∥2 = 4
(
s21 + s22d+ |a|ds23 + |a|ds24

)
. (8)

In particular,
∥β∥2 = 4|a|d.

Remark 2.6. The following integral basis B = {γ′1, γ′2, γ′3, γ′4} in this order of F is provided
in [16] which we will use in the later sections.

i)
{
1,
√
d, σ(β), β

}
, if d ≡ 0 (mod 2);

ii)
{
1, 1

2
(1 +

√
d), σ(β), β

}
, if d ≡ b ≡ 1 (mod 2);

iii)
{
1, 1

2
(1 +

√
d), 1

2
(σ(β) + β), 1

2
(σ(β)− β)

}
, if

d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4);

iv)
{
1, 1

2
(1 +

√
d), 1

4
(1 +

√
d+ σ(β)− β), 1

4
(1−

√
d+ σ(β) + β)

}
, if

d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4), a ≡ −c (mod 4);

v)
{
1, 1

2
(1 +

√
d), 1

4
(1 +

√
d+ σ(β) + β), 1

4
(1−

√
d+ σ(β)− β)

}
, if

d ≡ 1 (mod 2), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4), a ≡ c (mod 4);

where β =
√
a(d− b

√
d) and σ(β) =

√
a(d+ b

√
d).

Lemma 2.7. Let δ ∈ OF\Z. Then Tr(δ) ̸= 0 if and only if the set {δ, σ(δ), σ2(δ), σ3(δ)} is
R-linearly independent.
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Lemma 2.8. One has the following results.

N
(√

d
)
= d2, N (β) = a2c2d, N

(
β + σ(β)

2

)
=
a2b2d

4
, (9)

β ·
√
d = cσ(β)− bβ, σ(β) ·

√
d = cβ + bσ(β). (10)

Proof. It is easy to verify all equalities in (9). Hence, we only claim two equalities in (10).
It is sufficient to show that β

√
d = cσ(β)− bβ. Indeed, one has

β
√
d =

acd

σ(β)
= c

β2 + σ(β)2

2σ(β)
= c

(β + σ(β))2 − 2σ(β)β

2σ(β)
= c

(β + σ(β))2

2σ(β)
− cβ.

Moreover,

c
(β + σ(β))2

2σ(β)
= c

ad+ ac
√
d√

ad+ ab
√
d
= cσ(β) + (c− b)β.

Therefore β
√
d = cσ(β)− bβ.

Lemma 2.9. Let a, b, c, d, F, β in (2) and p be a prime number. Then:

i) If p | d then pOF = P 4 where P = ⟨p, β⟩ is the unique prime ideal of OF above p.

ii) Assume that p is odd, p ∤ abcd and d is not a quadratic residue modulo p. Then pOF

is inert in F .

iii) Assume that p is odd, p ∤ abcd and d is a quadratic residue modulo p where z is such
that d ≡ z2 (mod p).

If ad+ abz, ad− abz are quadratic residues modulo p with

ad+ abz ≡ t21, ad− abz ≡ t22 (mod p),

then pOF totally splits in F , i.e, pOF = P1P2P3P4 where

P1 = ⟨p, β + t1⟩, P2 = ⟨p, β − t1⟩, P3 = ⟨p, β + t2⟩, P4 = ⟨p, β − t2⟩

are all prime ideals of OF above p. Otherwise, pOF = P1P2 where

P1 = ⟨p, abz + ab
√
d⟩, P2 = ⟨p, abz − ab

√
d⟩

are all prime ideals above p.

Proof. In all the above cases, the prime p is not a divisor of index id4 (see (5)). By using
the result on the decomposition of primes [2, Theorem 4.8.13], the prime composition of
pOF can be obtained by factorizing df(x) over Zp. Note that df(x) = (x2 − ad)

2 − a2b2d.
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i) If p | d, then df(x) ≡ x4 (mod p) and thus pOF = P 4 where P = ⟨p, β⟩ and P is a
unique prime ideal above p.

ii) To prove ii, it is sufficient to prove df(x) is irreducible in Zp[x]. By contradiction,
suppose that the polynomial df(x) is reducible over the field Fp. Since d is not a
quadratic residue modulo p, df(x) has no root in Zp. We now claim that df(x) cannot
be decomposed into the product of two quadratic polynomials. Indeed, if

df(x) ≡
(
x2 + Ax+B

) (
x2 + Cx+D

)
(mod p),

then

A+ C ≡ 0, B +D + AC ≡ 2ad, AC +BD ≡ 0, BD ≡ a2c2d (mod p).

This implies that

A ≡ −C, C (B −D) ≡ 0, BD ≡ a2c2d (mod p).

The integer C must be nonzero because otherwise BD = 0 = a2c2d and thus p | acd,
contradicting the assumption that p ∤ abcd.
From A ≡ −C (mod p), C (B −D) ≡ 0 (mod p) and C being nonzero, one obtains
B ≡ D (mod p) and thus D2 ≡ BD ≡ a2c2d (mod p), which also contradicts the fact
that d is a quadratic non-residue modulo p. This means df(x) is irreducible over Zp

and hence pOF is prime.

iii) One has

df(x) ≡
(
x2 − ad

)2 − a2b2z2 ≡
(
x2 − (ad− abz)

) (
x2 − (ad+ abz)

)
(mod p).

If x2− (ad− abz) and x2− (ad+ abz) are irreducible over Fp, then pOF = P1P2 where

P1 = ⟨p, abz + ab
√
d⟩, P2 = ⟨p, abz − ab

√
d⟩. Otherwise,

df(x) ≡ (x− t1) (x+ t1) (x− t2) (x+ t2) (mod p).

Thus, pOF = P1P2P3P4 where

P1 = ⟨p, β + t1⟩, P2 = ⟨p, β − t1⟩, P3 = ⟨p, β + t2⟩, P4 = ⟨p, β − t2⟩

are all prime ideals of OF above p.

In the Lemmas 2.10 and 2.11, we will consider prime divisors of the index of the field.
In these cases, we cannot apply the result on the decomposition of primes [2, Theorem
4.8.13], instead, we can apply [2, Proposition 6.2.1].

Lemma 2.10. Let a, b, c, d, F,K, β be as in (2) and p be a prime number. Then:
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i) Assume p | a. If d is a quadratic non-residue modulo p, then there is a unique prime
ideal P above p and pOF = P 2. If d is a quadratic residue modulo p then there are
exactly two prime ideals P1, P2 above p and pOF = P 2

1P
2
2 .

ii) Assume p | c and p ∤ a. If 2a is a quadratic non-residue modulo p, then there are exactly
two prime ideals P1, P2 above p and pOF = P1P2. In this case, P1 = ⟨p, ad − ab

√
d⟩

and P2 = ⟨p, ad + ab
√
d⟩. Otherwise, let 2a ≡ l2 (mod p). Then pOF = P1P2P3P4

where P1, P2, P3, P4 are all prime ideals of OF above p, with

P1 = ⟨p, β − lb⟩, P2 = ⟨p, β + lb⟩, P3P4 = ⟨p, β2⟩,

and each ideal P3 and P4 is coprime with the ideals P1 and P2.

Proof. i) We have p|a, hence p|∆F by (4). Thus, p is ramified in F , i.e., one has that the
prime decomposition of pOF is of the form P 4, P 2

1QP
2
2 or P 2 where P, P1, P2 are prime

ideals above p of OF since F is Galois. On the other hand, we have gcd(a, d) = 1, so
p ∤ d and

(
d
p

)
̸= 0 and therefore p is unramified in K = Q(

√
d). As a result, pOF is

not of the form P 4 but instead pOF = P 2
1P

2
2 or pOF = P 2. Now, if d is a quadratic

residue modulo p, it implies that p splits in K. It follows that pOF = P 2
1P

2
2 . In the

other cases, d is not a quadratic residue modulo p, which implies p is inert in K and
hence pOF = P 2.

ii) If p | c then d ≡ b2 (mod p), b ̸≡ 0 (mod p) and thus df(x) ≡ x2 (x2 − 2ad) (mod p).
If 2a is a quadratic non-residue modulo p, then x2 − 2ad is irreducible modulo p. By
[2, Proposition 6.2.1], we have pOF = P1P2 where P1 = ⟨p, β2⟩, P2 = ⟨p, β2−2ad⟩ and
P1, P2 are co-prime. Since x2−2ad is irreducible, P2 is prime, and thus P1 is also prime
as F is Galois. Hence, there are only two prime ideals ofOF above p, namely P1 and P2.
Similarly, considering the remaining case and by [2, Proposition 6.2.1], one has that
df(x) = (x− lb) (x+ lb)x2 and pOF = P1P2A where P1 = ⟨p, β− lb⟩, P2 = ⟨p, β+ lb⟩,
A = ⟨p, β2⟩. Moreover, [2, Proposition 6.2.1] also yields that P1, P2 are prime and due
to the Galois property of F , A = P3P4.

Lemma 2.11. Let a, b, c, d, F,K, β be as in (2) and p be an odd prime divisor of b such
that p ∤ a. Then:

i) If a is a quadratic non-residue modulo p, then there are at most two prime ideals above
p in OF and pOF is equal to the product of these prime ideals.

ii) If a is a quadratic residue modulo p, then there are at least two prime ideals above p
in OF and pOF is equal to the product of these prime ideals.

Proof. One has df(x) ≡ (x2 − ad)
2

(mod p). We consider the first case in which x2 − ad
is irreducible. According to [2, Proposition 6.2.1], if P is a prime ideal such that P | pOF ,
then N (P ) = pm where m ≥ 2. This implies that pOF is a product of at most two prime
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ideals. In the remaining case, df(x) is the square of the product of two linear polynomials.
By using [2, Proposition 6.2.1], pOF is a product of two nontrivial coprime ideals. Hence,
there are at least two prime ideals in the prime decomposition of pOF .

The following lemma tells us the factorization of 2OF when ∆F is even. In the case
where ∆F is odd, the factorization of 2OF will have one of the three forms: P , P1P2, or
P1P2P3P4.

Lemma 2.12. Assume that 2 | ∆F . Then:

i) If d is even, then there exists a unique prime ideal P0 above 2 and N (P0) = 2.

ii) If d ≡ 5 (mod 8), then there exists a unique prime ideal P0 above 2 and N (P0) = 4.

iii) If d ≡ 1 (mod 8), then 2OF = P 2
1P

2
2 , where P1, P2 are two distinct prime ideals and

N (P1) = N (P2) = 2.

Proof. If d is even, then by Lemma 2.9.i), one has that P0 = ⟨2, β⟩ is a unique prime ideal
above 2. If d ≡ 1, 5 (mod 8), then 2 ramifies in F since 2 | ∆F . Thus, the factorization of
2OF has one of the forms R4, R2

1R
2
2, R

2 for some prime ideals R,R1, R2 above 2 (since F

is Galois). Let K = Q
(√

d
)
. Then

dfK(x) = x2 − x− d− 1

4

is a defining polynomial of K and 2 does not ramify in K. Hence 2OF ̸= R4. In the case
where d ≡ 5 (mod 8), dfK(x) is irreducible modulo 2 and thus 2 is inert in K. Hence
2OF = R2. If d ≡ 1 (mod 8) then dfK(x) is reducible modulo 2 and thus 2 splits in K.
Hence 2OF = P 2

1P
2
2 .

3 Well-rounded ideal lattices of cyclic cubic fields

Let F be a cyclic cubic field with conductor m. In this section, we will find WR ideals
of F and compute minimal bases of these ideals.

We denote by Pi the unique prime ideal above the prime pi | m for each i ≥ 0 and α a
root of the defining polynomial df(x) as in (2). We will fix these notations for the whole
section.

3.1 The case 9 ∤ m
Let m = p1 · · · pr with 7 ≤ p1 < p2 · · · < pr, and pi ≡ 1 (mod 3) for all i and r ≥ 1. In

this section, we will show that:
1) the ideal (P1 · · ·Pr)

2 is orthogonal and WR – this result has not been proven before;
and

2) if I ⊂ {1, . . . , r}, then
∏

i∈I Pi is WR if and only if m
4
≤
(∏

i∈I pi
)2 ≤ 4m.
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Lemma 3.1. The sets {α, σ(α), σ2(α)} and {1, α, σ(α)} are two integral bases of OF .

From now on, we will use one of the integral bases as mentioned in Lemma 3.1 depending
on which one is convenient for our calculation.

By [24, page 166], also [9, page 2] and by [20], we obtain Lemma 3.2.

Lemma 3.2. Let z = z1α + z2σ(α) + z3σ
2(α) ∈ OF where zi ∈ Z, 1 ≤ i ≤ 3. Then

∥z∥2 = Tr(z2) = m(z21 + z22 + z23) +
(1−m)(z1 + z2 + z3)

2

3
.

Moreover, one can rewrite this expression as

∥z∥2 = m

3

(
(z1 − z2)

2 + (z2 − z3)
2 + (z3 − z1)

2
)
+

1

3
(z1 + z2 + z3)

2.

Since α is a root of the defining polynomial df(x) (see (2)), using [29, Proposition 2.2],
one can show that Tr(α) = 1 and α is a shortest vector in OF\Z with ∥α∥2 = 2m+1

3
.

For ℓ ∈ Z and ℓ > 0, as in [8], we define

Mℓ = {z = z1α + z2σ(α) + z3σ
2(α) ∈ OF : z1 + z2 + z3 ≡ 0 (mod ℓ)}.

For all ℓ, the set Mℓ is a Z-module.
We remark that in [8], it is proved that the sublattice Mℓ of OF has index ℓ and it is

WR if ℓ ≡ 1 (mod 3) and
√

m
4
≤ ℓ ≤

√
4m. Thus, if an ideal of OF of norm satisfies these

conditions, then that ideal is also WR. We prove the following.

Lemma 3.3. The set Mℓ is an ideal of OF if and only if ℓ|m.

Proof. See Appendix A.

Lemma 3.4. Assume that pi = 3ni + 1. Then piOF = P 3
i , where Pi = ⟨pi, α + ni⟩ is the

unique prime ideal above pi. Moreover, one has −α+σ(α) ∈ Pi, ∥−α+σ(α)∥2 = 2m and

∥α + ni∥2 = 2m+p2i
3

.

Proof. See Appendix A.

Lemma 3.5. We have Mpi = Pi. As a consequence, pi|Tr(z) for all z ∈ Pi.

Proof. When pi | m, by Lemma (3.3), Mpi is an ideal. Moreover, it is a prime ideal above
pi as its index is pi. Therefore Mpi = Pi.

Lemma 3.6. Let m = p1 · · · pr (r ≥ 1) and 9 ∤ m. Let ρ = α − σ(α). Then ρ ∈ Pi for all
i = 1, . . . , r and ∥ρ2∥2 = Tr(ρ4) = 2m2.

Proof. By Lemma 3.5, we have Pi = ⟨pi, α − ni⟩. The statement g ∈ Pi is implied from
the equalities α− σ(α) = (α− ni) + (σ(α)− ni) and σ(Pi) = Pi, ∀i = 1, . . . , r.
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Now, we compute ∥ρ2∥2. First, one has

∥ρ2∥2 = (α− σ(α))4 + (σ(α)− σ2(α))4 + (σ2(α)− α)4. (11)

The right side of (11) is a symmetric polynomial in the variables

δ1 = α + σ(α) + σ2(α) = 1,

δ2 = ασ(α) + σ(α)σ2(α) + σ2(α)α =
1−m

3
,

δ3 = ασ(α)σ2(α) =
m(a− 3) + 1

27
.

Expressing it in terms of these, one deduces ∥ρ2∥2 = 2m2.

The following result is new and has not been studied before. We remark that our WR
lattice P in Proposition 3.7 is not one of the sublattices mentioned in [7, Theorem 4.9]
since its norm is m2.

Proposition 3.7. Let m = p1 · · · pr where r ≥ 1 and let P = P1 · · ·Pr. Then P 2 is
an orthogonal WR ideal lattice with a minimal basis {κ, σ(κ), σ2(κ)}, where the element
κ = m− (α− σ(α))2.

Proof. One has Tr(κ) = m and ∥κ∥2 = m2. By Lemma 2.5, the set {κ, σ(κ), σ2(κ)} is R−
linearly independent. It is clear m ∈ P 2 and thus κ ∈ P 2 by Lemma 3.4.

Now, we prove κ is a shortest vector in P 2. First, consider the sublattice of P 2 defined
as L = Zκ+Zσ(κ) +Zσ2(κ)Z. We remark that κ+ σ(κ) = Tr(κ)− σ2(κ) = (α− σ2(α))2.
It leads to

∥κ∥2 + ∥σ(κ)∥2 + 2Tr(κσ(κ)) = ∥(α− σ2(α))2∥ = 2m2 (12)

by Lemma 3.6. Since ∥κ∥2 = ∥σ(κ)∥2 = m2, the equality in equation (12) implies that
Tr(κσ(κ)) = 0. It follows that κ, σ(κ), σ2(κ) are pairwise orthogonal. As a consequence,
det(L) = m3 = det(P 2) and κ is a shortest vector of L. By Lemma 2.3, one has L = P 2.
Thus, P 2 is an orthogonal WR ideal lattice with a minimal basis {κ, σ(κ), σ2(κ)}.

Let I be a non-empty subset of set {1, . . . , r}, pI =
∏

i∈I pi and PI =
∏

i∈I Pi. As a

consequence of Lemma 3.5, PI = MpI . By [9, Theorem 4.1], if pI ∈
[√

m
2
, 2
√
m
]
then PI

is WR. Moreover, by using a different technique, independent of the proof of [9, Theorem

4.1], we can prove a stronger result: the condition pI ∈
[√

m
2
, 2
√
m
]
is not only necessary

but also sufficient for PI to be WR.

Proposition 3.8. Let m = p1 · · · pr be the conductor of F and let Pi be the prime ideals
above pi for all i = 1, . . . , r. For each nonempty subset I of {1, . . . , r}, let PI =

∏
i∈I Pi,

pI =
∏

i∈I pi and nI =
pI−1
3

. Then PI is WR if and only if m
4
≤ p2I ≤ 4m. In this case, PI

has a minimal basis α + nI , σ(α) + nI , σ
2(α) + nI .
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Proof. By Lemma 3.4, Pi = ⟨pi, α+ ni⟩ where ni =
pi−1
3

for all i ∈ I. This implies that

Z (α + nI) + Z (σ(α) + nI) + Z
(
σ2(α) + nI

)
⊂ PI .

Moreover, this sublattice of PI and PI have the same indices in OF and thus

PI = Z (α + nI) + Z (σ(α) + nI) + Z
(
σ2(α) + nI

)
.

Let δ be a nonzero vector of PI . There exist integers x1, x2, x3 such that

δ = x1 (α + nI) + x2 (σ(α) + nI) + x3
(
σ2(α) + nI

)
.

By Lemma 3.2, we have

∥δ∥2 = m

3

(
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2)+ (3nI + 1)2

3
(x1 + x2 + x3)

2 .

Now, we will find the minimum value of ∥δ∥2 when δ ̸= 0. Note that z1z2z3 ̸= 0. We
consider all cases as below.

(i) If z1 + z2 + z3 = 0, then

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 2.

Here (z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 is an even non-negative integer. If

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ∈ {2, 4},

then two of the three numbers z1, z2, z3 are zero. Without loss of generality, we can
assume z1 = z2. This implies that z3 = −2z1 and thus (z1−z2)2+(z2−z3)2+(z3−z1)2
is a multiple of 9. Hence,

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 6,

and therefore, ∥δ∥2 ≥ 2m in this case. The equality occurs if and only if

δ ∈ {± (α− σ(α)) ,±
(
σ(α)− σ2(α)

)
,±
(
σ2(α)− α

)
}.

(ii) If (z1−z2)2+(z2−z3)2+(z3−z1)2 = 0, then z1 = z2 = z3 = z ∈ Z and thus δ = 3zpI .
Hence ∥δ∥2 ≥ 3p2I . The equality occurs if and only if δ ∈ {±pI}.

(iii) If z1+ z2+ z3 ̸= 0 and (z1− z2)
2+(z2− z3)

2+(z3− z1)
2 ̸= 0, then (z1+ z2+ z3)

2 ≥ 1

and (z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 2. Thus ∥δ∥2 ≥ p2I+2m

3
. The equality occurs

if and only if
δ ∈ {± (α + nI) ,± (σ(α) + nI) ,±

(
σ2(α) + nI

)
}.

Therefore, we conclude that PI is WR if and only if
2m+p2I

3
≤ min{2m, 3p2I}, which is

equivalent to m
4
≤ p2I ≤ 4m.
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3.2 The case 9 | m
Let m = p20p1 · · · pr where 3 = p0 < p1 < p2 · · · < pr and r ≥ 0. For each nonempty

subset I of {1 · · · , r}, we denote PI =
∏

i∈I Pi. In this section, we will show that:

i) if m = 9, then P0 is WR;

ii) the ideal P0(P1 · · ·Pr)
2 is orthogonal and WR;

iii) if I is a nonempty subset of {1, 2, · · · , r}, then P0PI is WR if and only if m
36

≤ p2I ≤ 4m
9
;

and

iv) if r ≥ 2 and I, J are two nonempty and disjoint subsets of {1, 2, · · · , r}, then P0P
2
I PJ

is WR if and only if m
36

≤ pIp
2
J ≤ 4m

9
. The field F is not tame, and hence is not studied

in [7] and [8]. Indeed, all of our results in this subsection are new and have not been
investigated before.

By [20], one has {1, α, σ(α)} is an integral basis. It can be easily verified that α satisfies
∥α∥2 = 2m

3
and thus it is a shortest vector in OF\Z (see [29] for more details).

Lemma 3.9. Let m = 9p1 · · · pr where r ≥ 0. Then piOF = P 3
i where Pi is the unique

prime ideal above pi. Moreover, P0 = ⟨3, α− 1⟩ and Pi = ⟨pi, α⟩ for all 1 ≤ i ≤ r.

Proof. To compute generators for Pi we can apply the decomposition of primes [2, Theorem
4.8.13] since Lemma 2.4 says that pi does not divide the index [OF : Z[α]]. In other words,
the result is obtained by factoring the defining polynomial df(x) over the finite field Fpi

and by using the fact that pi|m, and a ≡ 6 (mod 9).

In case m > 9, using Lemma 3.9 and the fact that 2m
3
> 27 = ∥3∥2 leads to the

following.

Corollary 3.10. Let m > 9. Then the vector α is a shortest vector in the set Pi\Z for all
1 ≤ i ≤ r, and ∥α∥2 = 2m

3
. In the ideal P0, the element p0 is shortest and ∥p0∥2 = 27.

Proposition 3.11. Let m = 9. Then P0 is orthogonal and WR with a minimal basis
{α− 1, σ(α)− 1, σ2(α)− 1}.

Proof. Note that α− 1 ∈ P0 and this element has trace −3 since Tr(α) = 0, thus the three
elements α−1, σ(α)−1 and σ2(α)−1 are all in P0 and are linearly independent by Lemma
2.5. To show that P0 is WR, it is sufficient to show that α− 1 is shortest in P0.

We have that ∥α − 1∥2 = ∥α∥2 + ∥ − 1∥2 = 2m
3

+ 3 = 9 because α has trace 0. One
can easily compute all the shortest vectors of the ideal lattice P0 (see the Fincke–Pohst
algorithm – Algorithm 2.12 in [10]) and verify that α− 1 is indeed shortest in P0.

Lemma 3.2 cannot be applied to the case 9 | m. Therefore, we recalculate the length
of vectors in OF in this case as follows.
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Lemma 3.12. Let δ = m1 +m2α +m3σ(α) ∈ OF . Then

∥δ∥2 = 3m2
1 +

2m

3
(m2

2 +m2
3 −m2m3).

Proof. See Appendix A.

Next, we claim that P0P
2 is an orthogonal and WR lattice where P = P1 · · ·Pr and

r ≥ 1. To prove that, we need some Lemmas below.

Lemma 3.13. For all 1 ≤ i ≤ r, we have Pi = Zpi ⊕ Zα⊕ Zσ(α).

Proof. It is clear that Li = Zpi⊕Zα⊕Zσ(α) is the sublattice of Pi and det(Li) = det(Pi).
Therefore Pi = Li by Lemma 2.3.

By using the same technique as in the proof of Lemma 3.13, one has the following
result.

Corollary 3.14. Let I be a subset of {1, . . . , r}. Then PI = ZpI+Zα+Zσ(α). In particular,
P1 · · ·Pr = Zm

9
⊕ Zα⊕ Zσ(α).

Proposition 3.15. Let I be a subset of {1, . . . , r}. Then PI is not WR.

Proof. By Corollary 3.14, we have PI = ZpI + Zα + Zσ(α). If we let δ ∈ PI , then
δ = z1pI + z2α + z3σ(α) where z1, z2, z3 ∈ Z. By applying Lemma 3.12, one obtains

∥δ∥2 = 3z21p
2
I +

2m

3
(z22 + z23 − z2z3).

Now, we will find the minimum value of ∥δ∥2 when δ ̸= 0. We consider all cases as below.

1. If z1 = 0, then ∥δ∥2 ≥ 2m
3

(since z22 + z23 − z2z3 ≥ 1), here the equality occurs when
z2 = 1, z3 = 0 or z2 = 0, z3 = 1, therefore δ ∈ {α, σ(α)}.

2. If z1 ̸= 0, then ∥δ∥2 ≥ 3z21p
2
I +

2m
3
(z22 + z23 − z2z3) ≥ 3z21p

2
I ≥ 3p2I , here the equality

occurs when z2 = z3 = 0, z1 = 1 and thus δ = pI .

In conclusion, minδ ̸=0 ∥δ∥ ∈ {∥α∥2, ∥pI∥2} =
{

2m
3
, 3p2I

}
. Note that 2m

3
̸= 3p2I , so in the case

∥pI∥2 < ∥α∥2, we have ±pI are the only two shortest vectors in PI . Therefore, PI is not
WR. In another case ∥pI∥2 > ∥α∥2 and hence α is shortest in PI .

We will next compute the set of all shortest vectors L of PI . Let δ ∈ OF such that
∥δ∥ = ∥α∥. Since OF = Z ⊕ Z[σ] · α (see [29, Proposition 2.2 and Proposition 2.3]),
we can show easily that δ ∈ L = {±α,±σ(α),±σ2(α)}. Moreover, one can observe that
Tr(α) = α + σ(α) + σ2(α) = 0 and {α, σ(α), α2(α)} linearly dependent. Therefore, there
does not exist three independent vectors from L. In other words, PI is not WR.

Lemma 3.16. There exist integers A,B such that

A2 − AB +B2 =
m

9
, and α2 =

2m

9
+ Aα +Bσ(α).
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Proof. See Appendix A.

Lemma 3.17. Let α,A,B be in Lemma 3.16 and let κ = m
9
+ Aα + Bσ(α). Then

P0(P1 · · ·Pr)
2 = Zκ⊕ Zσ(κ)⊕ Zσ2(κ).

Proof. It is clear that the two lattices P0(P1 · · ·Pr) and Zκ⊕Zσ(κ)⊕Zσ2(κ) have the same
index in OF and thus it is sufficient to prove that Zκ⊕ Zσ(κ)⊕ Zσ2(κ) is a sublattice of
P0(P1 · · ·Pr). It is obvious that

m
9
∈ (P1 · · ·Pr)

2. Since κ = α2−m
9
, one has κ ∈ (P1 · · ·Pr)

2.
Moreover,

κ = α2 − m

9
= (α− 1)(α + 1) + (p1 · · · pr − 1) ∈ P0

as P0 = ⟨3, α − 1⟩ and p1 ≡ 1 (mod 3). Hence, κ ∈ P0(P1 · · ·Pr)
2. As a consequence,

σ(κ), σ2(κ) ∈ P0(P1 · · ·Pr)
2.

Lemma 3.17 gives us an integral basis of P0(P1 · · ·Pr)
2. Let

δ = z1κ+ z2σ(κ) + z3σ
2(κ) ∈ P0(P1 · · ·Pr)

2.

One has

δ =
m

9
(z1 + z2 + z3) + (Az1 −Bz2 + (B − A)z3)α + (Bz1 + (A−B)z2 − Az3)σ(α).

We then apply Lemma 3.12, to obtain that

∥δ∥2 = m2

27
(z1 + z2 + z3)

2 +
2m

3
(A2 − AB +B2)(z21 + z22 + z23 − z1z2 − z1z3 − z2z3). (13)

Since m
9
= A2 − AB +B2, the following result follows.

Proposition 3.18. The ideal P0(P1 · · ·Pr)
2 is orthogonal and WR with a minimal basis

{κ, σ(κ), σ2(κ)} with κ as in Lemma 3.17.

Proof. Let δ ∈ P0(P1 · · ·Pr)
2. Then there exist integers z1, z2, z3 such that we can express

δ as δ = z1κ + z2σ(κ) + z3σ
2(κ) by Lemma 3.17. Since m

9
= A2 − AB + B2, the equality

in (13) implies that

∥δ∥2 = m

9
(z21 + z22 + z23).

When δ ̸= 0, it is clear that ∥δ∥2 ≥ m2

9
as at least one of z1, z2, z3 is a nonzero integer.

Equality holds if and only if δ ∈ {±κ,±σ(κ),±σ2(κ)}. Hence {±κ,±σ(κ),±σ2(κ)} is the
set of all shortest vectors of P0(P1 · · ·Pr)

2. Therefore, P0(P1 · · ·Pr)
2 is WR. Moreover, we

can verify that Tr (κσ (κ)) = 0 and thus P0(P1 · · ·Pr)
2 is also orthogonal.

From now on, for each nonempty subset I of {1, 2, · · · , r}, we denote by pI =
∏

i∈I pi
and PI =

∏
i∈I Pi.
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For each i ∈ {1, . . . , r}, let ρi = pi + α + σ(α). Since

ρi = (pi − 1) + (α− 1) + (σ(α)− 1) ∈ P0

and clearly pi ∈ Pi, then ρi ∈ P0Pi. Hence Zρi + Zσ(ρi) + Zσ2(ρi) is a sublattice of P0Pi

and this sublattice has the same determinant as the one of P0Pi. Therefore, we have that
Zρi + Zσ(ρi) + Zσ2(ρi) = P0Pi.

By using the same argument, we can prove the following lemma.

Lemma 3.19. Let r ≥ 1 and I be a nonempty subset of {1, . . . , r} and let ρI = pI+α+σ(α).
Then PI = ZρI ⊕ Zσ(ρI) ⊕ Zσ2(ρI). In particular, P0P1 · · ·Pr = Zρ ⊕ Zσ(ρ) ⊕ Zσ2(ρ)
where ρ = m

9
+ α + σ(α).

The following proposition shows the necessary and sufficient conditions for the ideal
P0P

2
I of a given subset I of {1, 2, · · · , r} to be a WR lattice.

Proposition 3.20. Let I be a nonempty subset of {1, 2 · · · , r}. The ideal P0PI is WR if
and only if m

36
≤ p2I ≤ 4m

9
. In this case, a minimal basis of P0PI is {ρI , σ(ρI), σ2(ρI)} where

ρI = pI + α + σ(α).

Proof. By Lemma 3.19, PI = ZρI ⊕ Zσ(ρI)⊕ Zσ2(ρI). Let δ = z1ρI + z2σ(ρI) + z3σ
2(ρI).

Lemma 3.12 states that

∥δ∥2 = 3p2I(z1 + z2 + z3)
2 +

m

3

(
(z1 − z2)

2 + (z2 − z3)
2 + (z3 − z1)

2
)
.

Now, we will find the minimum value of ∥δ∥2 when δ ̸= 0. We consider all cases as below.

(i) If z1 + z2 + z3 = 0, then

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 2.

Note that the expression on the left hand side is an even positive integer. If

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ∈ {2, 4},

then two of the three numbers z1, z2, z3 are zero. Without loss of generality, we can
assume z1 = z2. This implies that z3 = −2z1 and thus the expression is a multiple of
9. Hence

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 6.

Therefore, ∥δ∥ ≥ 2m in this case. The equality occurs if and only if

δ ∈ {±(α− σ(α)),±(α− σ2(α)),±(σ(α)− σ2(α))}

(ii) If (z1−z2)2+(z2−z3)2+(z3−z1)2 = 0, then z1 = z2 = z3 = z ∈ Z and thus δ = 3zpI .
Hence ∥δ∥2 ≥ 27p2I . The equality occurs if and only if δ ∈ {±3pI}.
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(iii) If z1+ z2+ z3 ̸= 0 and (z1− z2)
2+(z2− z3)

2+(z3− z1)
2 ̸= 0, then (z1+ z2+ z3)

2 ≥ 1
and

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 ≥ 2.

Thus ∥δ∥2 ≥ 3p2I+
2m
3
. The equality occurs if and only if δ ∈ {±gI ,±σ(gI),±σ2(gI)}.

This implies that minδ ̸=0 ∥g∥2 = min
{
2m, 27p2I , 3p

2
I +

2m
3

}
. Since Tr(ρI) ̸= 0, the ideal

P0PI is WR if and only if minδ ̸=0 ∥δ∥2 = 3p2I + 2m
3
. It is equivalent to the statement

3p2I +
2m
3

≤ 2m and 3p2I ≤ 27p2I . These inequalities occur if and only if m
36

≤ p2I ≤ 4m
9
.

Using Proposition 3.20 for I = {1, · · · , r}, we have the following result.

Corollary 3.21. Let r ≥ 1. Then the ideal P0P1 · · ·Pr is not WR.

Let I, J be two disjoint nonempty subsets of {1, 2, · · · , r}. Now, we show the necessary
and sufficient condition for P0P

2
I PJ to be a WR lattice (Proposition 3.25).

Let ξ3 =
−1−

√
−3

2
be a primitive cube root of 1 andK ′ = Q(ξ3). The minimal polynomial

of ξ3 is x2 + x + 1. For each i ∈ {1, . . . , r}, the polynomial x2 + x + 1 has a root modulo
pi. It means OK′ has an ideal Pi of OK′ of norm pi. For each subset I of {1, . . . , r}, let
PI =

∏
i∈I Pi. Then PI is an ideal ofOK′ norm pI . Moreover, sinceOK′ is a PID, then there

exist integers xI , yI such that PI = ⟨xI+yIξ3⟩ and thus pI = N(xI+yIξ3) = x2I−xIyI+y2I .
In other words, the following result has been deduced.

Lemma 3.22. For each nonempty subset I of {1, . . . , r}, there exist integers xI , yI such
that xI + yI + 1 ≡ 0 (mod 3) and pI = x2I − xIyI + y2I .

Lemma 3.23. Let r ≥ 2 and N = p1 · · · pr where pi is a prime such that pi ≡ 1 (mod 3)
for each i ∈ {1, . . . , r}. Assume that N = A2 − AB + B2 where A,B are integers that
A+B+1 ≡ 0 (mod 3). For each nonempty subset I of {1, . . . , r}, let pI =

∏
i∈I pi. Then

there exist integers xI , yI such that

xI + yI + 1 ≡ 0 (mod 3), pI = x2I − xIyI + y2I
pI | (AxI −ByI − AyI) , pI | (BxI − AyI).

Proof. See Appendix A.

Lemma 3.24. Let N = m
9

= p1 · · · pr = A2 − AB + B2 where A and B as in Lemma
3.16. With the notation in Lemma 3.23, one has p2I | NK/Q(xIα + yIσ(α)). In particular,
xIα + yIσ(α) ∈ P 2

I .

Proof. See Appendix A.

Proposition 3.25. Let r ≥ 2 and I, J be two disjoint nonempty subsets of {1, 2, · · · , r}.
The ideal P0P

2
I PJ is WR if and only if m

36
≤ p2IpJ ≤ 4m

9
. In this case, P0PIP

2
J has a

minimal basis {κIJ , σ(κIJ), σ2(κIJ} where κIJ = pIJ + xI + yI and xI and yI are given in
Lemma 3.23.
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Proof. With xI , yI in Lemma 3.24, one has xIα+yIσ(α) ∈ P 2
I . By Corollary 3.14, we have

xIα + yIσ(α) ∈ PJ . Thus κIJ ∈ P 2
I PJ as I, J are disjoint. Moreover, κIJ ∈ P0 as

κIJ = (pIpJ − 1) + (α− 1)xI + (σ(α)− 1)yI + (xI + yI + 1)

and P0 = ⟨3, α− 1⟩, σ(P0) = P0 and 3 | (xI + yI +1) by Lemma 3.23. Hence κIJ ∈ P0P
2
I PJ

and thus LIJ = ZκIJ ⊕ Zσ(κIJ)⊕ Zσ2(hIJ) is a sublattice of P0P
2
I PJ . It is easy to verify

that det(LIJ) = det(P0P
2
I PJ) and thus LIJ = P0P

2
I PJ by Lemma 2.3.

Let δ = z1κIJ + z2σ(κIJ) + z3σ
2(κIJ) be a nonzero vector of P0P

2
I PJ . We can write

δ = pIpJ (z1 + z2 + z3) + (xIz1 − yIz2 + (yI − xI) z3)α

+ (yIz1 + (xI − yI) z2 − xIz3)σ(α)

and hence by Lemma 3.12

∥δ∥2 = 3p2Ip
2
J (z1 + z2 + z3)

2 +
2m

3

∏
i∈I

pi
(
z21 + z22 + z23 − z1z2 − z2z3 − z1z3

)
.

By using a similar argument as the one in the proof of Proposition 3.20, one has

min
δ ̸=0

∥δ∥2 = min

{
27p2Ip

2
J , 2mpI , 3p

2
Ip

2
J +

2m

3
pI

}
,

and the lattice P0P
2
I PJ is WR if and only if minδ ̸=0 ∥δ∥2 = 3p2Ip

2
J + 2m

3
pI . It is equivalent

to the statement

3p2Ip
2
J +

2m

3
pI ≤ 27p2Ip

2
J and 3p2Ip

2
J +

2m

3
pI ≤ 2mpI .

In other words, P0P
2
I PJ is WR if and only if m

36
≤ pIp

2
J ≤ 4m

9
.

4 Well-rounded ideal lattices of cyclic quartic fields

In this section, we denote by F a cyclic quartic field defined by (a, b, c, d) as in Section
2.3. We fix the notation where d = b2 + c2, gcd(a, d) = 1 and a, d are squarefree. Let
d = p1 · · · pr and a = sign(a)q1 · · · qs be the factorizations of d and a where sign(a) = 1
if a > 0 and sign(a) = −1 otherwise. Note that all pi and qj are distinct since a and d
are squarefree and gcd(a, d) = 1. For each subset I of {1, . . . , r}, let pI =

∏
i∈I pi and

PI =
∏

i∈I PI where Pi is the unique prime ideal of OF above pi by Lemma 2.9, i) for all
i ∈ I. In the case I = ∅, we define pI = 1 and PI = OK . If J is a subset of {1, . . . , s}, we
denote qJ =

∏
j∈J qj. Let J be any subset of {1, . . . , s} such that for each j ∈ J , there is

a unique prime ideal Qj above qj. In that case, we denote by QJ =
∏

j∈J Qj.
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4.1 Prime decomposition of pOF and integral bases of ideals of F

In this subsection, we provide a number of results concerning the prime factorization
of the ideal pOF for an arbitrary prime number p. Especially, we aim to classify all odd
primes p based on the decomposition of pOF (see Theorem 4.18). In addition, we construct
integral bases for certain ideals of OF which can be used to prove the well-roundness of
ideals in Section 4.2.

By [3, Theorem 1.3], a prime p ramifies in F if and only if p | ∆F . In this case, by the
Lemmas 2.9 and 2.10, the decomposition of pOF is given as below.

• If p | d, then pOF = P 4 where P is a unique prime ideal of OF above p.

• If p | a and d is a quadratic non-residue modulo p, then pOF = P 2 where P is a
unique prime ideal of OF above p.

• If p | a and d is a quadratic residue modulo p, then pOF = P 2
1P

2
2 where P1, P2 are

two distinct prime ideals of OF above p.

Lemmas 2.9 and 2.10 show the prime decomposition of pOF where p | ac. Furthermore,
if p ∤ abcd, then the composition of pOF is given as in 2.9.(iii). Eventually, to classify all
odd primes p, we consider an odd prime divisor p of b such that p ∤ a. Lemma 4.13 is the
key component that completes the classification of all odd prime numbers p.

By Lemmas 2.9.(i) and 2.10, there is a unique prime ideal Pi above a prime pi for all
pi | d and there exists a unique prime ideal Qi above qi for all qi | a if d is not a quadratic
residue modulo qi. We will identify necessary and sufficient conditions for a prime p such
that OF has a unique prime ideal above p (see Theorem 1.6).

Remark 4.1. Let δ ∈ OF . Since Pi is the unique prime ideal above pi, to show that δ ∈ PI

it is sufficient to show that δ ∈ Pi for all i ∈ I. By Lemma 2.10, Qj is the unique prime
ideal above qj for all j ∈ J . As consequence, to show δ ∈ QJ , it is sufficient to show that
δ ∈ Qj for all j ∈ J . Moreover, to claim δ ∈ PIQJ , it is sufficient to show that δ ∈ Pi and
δ ∈ Qj for all i ∈ I, j ∈ J.

When (p | d or p | a) and d is a quadratic non-residue modulo p, an integral basis of
the unique prime ideal above p is obtained as a consequence of Lemmas 4.2, 4.3, 4.4, 4.5
and 4.6.

Lemma 4.2. Let d ≡ 2 (mod 4). Then PIQJ = ZpIqJ ⊕ ZqJ
√
d⊕ Zβ ⊕ Zσ(β).

Proof. For each i ∈ I and j ∈ J , since Pi is the unique prime ideal above pi and Qj

is the unique prime ideal above qj and by Lemma 2.8, one obtains that β, σ(β) ∈ Pi

and β, σ(β) ∈ Qj. By Remark 4.1, one has β, σ(β) ∈ PIQJ . It is obvious to see that

pIqJ ∈ PIQJ and qJ
√
d ∈ QJ . Since pI | d2 = N(

√
d) and Pi is the unique prime ideal

above pi, we have that
√
d ∈ Pi for all i ∈ I and thus qJ

√
d ∈ PI by Remark 4.1. This

means that qJ
√
d ∈ PIQJ . This implies that LIJ = ZpIqJ ⊕ ZqJ

√
d ⊕ Zβ ⊕ Zσ(β) is a

sublattice of PIQJ . However, two lattices PIQJ and LIJ have the same indices in OF .
Therefore PIQJ = LIJ by Lemma 2.3.
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Lemma 4.3. If d ≡ 1 (mod 4) and b is odd, then PIQJ = ZpIqJ⊕Z qI(pI+
√
d)

2
⊕Zβ⊕Zσ(β).

Proof. By Remark 2.6, 1+
√
d

2
∈ OF and thus we have pI+

√
d

2
= pI−1

2
+ 1+

√
d

2
∈ OF . Since

pi |
(

p2I−d

4

)2
= N

(
pI+

√
d

2

)
and Pi is the unique prime ideal above pi for all i ∈ I, we have

qJ(pI+
√
d)

2
∈ PIQJ . By Lemma 2.8, β, σ(β) ∈ Pi, Qj for all i ∈ I and j ∈ J . By Remark

4.1, we obtain β, σ(β) ∈ PIQJ . One can prove the result using a similar argument as in
the proof of Lemma 4.2.

Lemma 4.4. Let d ≡ 1 (mod 4), b be even and a+ b ≡ 3 (mod 4). Then

PIQJ = ZpIqJ ⊕ Z
qJ

(
pI +

√
d
)

2
⊕ Z

β + σ(β)

2
⊕ Z

−β + σ(β)

2
.

Next, we consider the case d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and
a ≡ −c (mod 4). Let γ′1, γ

′
2, γ

′
3, γ

′
4 be a integral basis of OF as in Remark 2.6.iv. We define

γ1 = γ′1, γ2 = γ′2, γ3 = −γ′4, γ4 = γ′2 − γ′3. (14)

It is obvious to see that {γ1, γ2, γ3, γ4} is a basis of OF by 2.6.iv. One has the following
result.

Lemma 4.5. Let d ≡ 1 (mod 4), b be even, a+ b ≡ 1 (mod 4) and a ≡ −c (mod 4). Then

PIQJ = ZρIJ ⊕ Zσ (ρIJ)⊕ Zσ2 (ρIJ)Zσ3 (ρIJ) ,

where ρIJ = −pIqJ+qJ
√
d−β−σ(β)

4
.

Proof. By Remark 4.1, it is sufficient to prove ρIJ ∈ Pi, QJ for all i ∈ I and j ∈ J . Let
γ1, γ2, γ3, γ4 as in (14). Then

ρIJ =
−pIqJ − qJ + 2

4
γ1 +

qJ − 1

2
γ2 + γ4

and thus ρIJ ∈ OF . Moreover,

N (ρIJ) =
(pIq

2
J + q2Id− 2ad)

2 − 2d (pIq
2
J + |a|c)2

256

and thus ρIJ ∈ Pi, Qj for all i ∈ I and j ∈ J . As a result

ρIJ , σ (ρIJ) , σ (ρIJ) , σ
3 (ρIJ) ∈ PIQJ .

Hence LIJ = ZρIJ ⊕ Zσ (ρIJ) ⊕ Zσ2 (ρIJ)Zσ3 (ρIJ) is a sublattice of PIQJ . Two lattices
PIQJ and LIJ have the same indices pIq

2
J in OF . Therefore PIQJ = LIJ .
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In the remaining case where d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and
a ≡ c (mod 4), using a similar technique to the one in the proof of Lemma 4.5, one obtains
the result as below.

Lemma 4.6. Let d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4).
Then

PIQJ = ZρIJ ⊕ Zσ (ρIJ)⊕ Zσ2 (ρIJ)Zσ3 (ρIJ) ,

where ρIJ =
pIqJ − qJ

√
d− β + σ(β)

4
.

Next, we will describe a prime ideal above qi where qi | a and d is a quadratic residue
modulo qi. By Lemma 2.10, there exist exactly two prime ideals above qi. Let z1, z2 be
two positive integers such that z2i ≡ d (mod qj). By the result on the decomposition of

primes [2, Theorem 4.8.13], one has qjOK = q1jq2j, where K = [
√
d].

Before proceeding, we will outline a strategy to prove that a certain lattice is an ideal
in Lemmas 4.8 to 4.16. The proofs can be seen in the Appendix B.

Remark 4.7. Let OF = Zγ′1 ⊕Zγ′2 ⊕Zγ′3 ⊕Zγ′4, where the γ′i are as in Remark 2.6 and let
L = Zδ1⊕Zδ2⊕Zδ3⊕Zδ4 where each δi ∈ OF . To prove L is an ideal of OF , we will show
that δiγ

′
j ∈ L for all i, j. In other words, we perform the following steps for all 1 ≤ i, j ≤ 4.

(1) Compute δiγ
′
j.

(2) Express δiγ
′
j = z1δ

′
1 + z2δ

′
2 + z3δ

′
3 + z4δ

′
4.

(3) Prove that all numbers z1, z2, z3, z4 are integers.

When d is even, dfK(x) = x2 − d is a defining polynomial of K = Q(
√
d). Then

dfK(x) ≡ (x− zi) (x− z2) (mod pj). (15)

By using the result on the decomposition of primes in [2, Theorem 4.8.13], one has

qkj = Zqj ⊕ Z
(
zi +

√
d
)
. With z1, z2 as in (15), one has the result as follows.

Lemma 4.8. If d is even and qi | a such that d is a quadratic residue modulo qj, then there
exist exactly two prime ideals Q1j, Q2j above qj where

Qkj = Zqj ⊕ Z
(
zk +

√
d
)
⊕ Zβ ⊕ Zσ(β).

When d is odd, dfK(x) = x2 − x+ 1−d
4

is a defining polynomial of K. One has

4dfK(x) ≡ (2x− 1)2 − d ≡ (2x− 1− z1) (2x− 1− z2) (mod qj).

As q ≡ 1 (mod 4), there exist integers t1, t2 such that zk = 4tk − 1 (mod qj) for k = 1, 2,
and thus dfK(x) ≡ (x− t1) (x− t2) (mod qj).
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Lemma 4.9. If d ≡ 1 (mod 4), b ≡ 1 (mod 2) and qi | a such that d is a quadratic residue
modulo qj, then there exist exactly two prime ideals Q1i, Q2i above qi where k = 1, 2 and

Qkj = Zqj ⊕ Z

(
4tk − 1 +

√
d

2

)
⊕ Zβ ⊕ Zσ(β).

Lemma 4.10. If d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 3 (mod 4) and qi | a such that
d is a quadratic residue modulo qj, then there exist exactly two prime ideals Q1i, Q2i above
qi where k = 1, 2 and

Qkj = Zqj ⊕ Z

(
4tk − 1 +

√
d

2

)

⊕ Z
β + σ(β)

2
⊕ Z

β − σ(β)

2
.

Lemma 4.11. If d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4) and a ≡ −c (mod 4)
and pj | a such that d is a quadratic residue modulo qj, then there are exactly two prime
ideals Q1j, Q2j above qj such that

Qkj = Zqj ⊕ Z
4tk − 1 +

√
d

2
⊕ Z

4tk − 1 +
√
d− β − σ(β)

4

⊕ Z
2qj + 4tk − 1 +

√
d+ β − σ(β)

4
.

Lemma 4.12. If d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4)
and pj | a such that d is a quadratic residue modulo qj, then there exist integers t1, t2 and
exactly two prime ideals Q1j, Q2j above qj such that qj ∤ t1 − t2, d ≡ (4ti − 1)2 (mod qj)
and

Qij = Zqj ⊕ Z
4ti − 1 +

√
d

2
⊕ Z

4ti − 1 + 2qj +
√
d− β − σ(β)

4

⊕ Z
4ti − 1 +

√
d+ β − σ(β)

4
.

Now, consider a prime p such that p | b and p ∤ a, Lemma 2.11 does not provide us the
exact prime decomposition of pOF . To see this decomposition, it is sufficient to show that
OF has either a prime ideal of norm p2 or a prime ideal of norm p.

Lemma 4.13. Let p | b and p ∤ a. One has the following.

i) Assume 2 | d. If a is a quadratic non-residue modulo p, then pOF = P1P2 where

P1 = Zp⊕ Z
(
c+

√
d
)
⊕ Zpσ(β)⊕ Z (β + σ(β)) , and

P2 = Zp⊕ Z
(
−c+

√
d
)
⊕ Zpσ(β)⊕ Z (β − σ(β))
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are all prime ideals of OF above p.

If a is a quadratic residue modulo p and we write a ≡ l2 (mod p), then we have
pOF = P1P2P3P4 where

P1 = Zp⊕ Z
(
c+

√
d
)
⊕ Z (lc− σ(β))⊕ Z (lc+ β) ,

P2 = Zp⊕ Z
(
c+

√
d
)
⊕ Z (lc+ σ(β))⊕ Z (−lc+ β) ,

P3 = Zp⊕ Z
(
−c+

√
d
)
⊕ Z (lc− σ(β))⊕ Z (lc− β) , and

P4 = Zp⊕ Z
(
−c+

√
d
)
⊕ Z (lc+ σ(β))⊕ Z (lc+ β)

are all prime ideals of OF above p.

ii) Assume d ≡ 1 (mod 4) and b ≡ 1 (mod 2). If a is a quadratic non-residue modulo p,
then pOF = P1P2 where

P1 = Zp⊕ Z
p+ c+

√
d

2
⊕ Zpσ (β)⊕ Z (β + σ(β)) , and

P2 = Zp⊕ Z
p− c+

√
d

2
⊕ Zpσ (β)⊕ Z (β − σ(β))

are all prime ideals of OF above p.

If a is a quadratic residue modulo p and we write a ≡ l2 (mod p), then we have
pOF = P1P2P3P4 where

P1 = Zp⊕ Z
p− c+

√
d

2
⊕ Z (lc− σ(β))⊕ Z (lc+ β) ,

P2 = Zp⊕ Z
p− c+

√
d

2
⊕ Z (lc+ σ(β))⊕ Z (−lc+ β) ,

P3 = Zp⊕ Z
p+ c+

√
d

2
⊕ Z (lc− σ(β))⊕ Z (lc− β) , and

P4 = Zp⊕ Z
p+ c+

√
d

2
⊕ Z (lc+ σ(β))⊕ Z (lc+ β)

are all prime ideals of OF above p.

iii) Assume d ≡ 1 (mod 4), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4). If a is a quadratic
non-residue modulo p, then pOF = P1P2 where

P1 = Zp⊕ Z
−c+

√
d

2
⊕ Z

σ(β)− β

2
⊕ Zp

β + σ(β)

2
, and

P2 = Zp⊕ Z
c+

√
d

2
⊕ Zp

σ(β)− β

2
⊕ Z

β + σ(β)

2



Well-Rounded ideal lattices of cyclic cubic and quartic fields 235

are all prime ideals above p.

If a is a quadratic residue modulo p and we write a ≡ l2 (mod p), then we have
pOF = P1P2P3P4 where

P1 = Zp⊕ Z
−c+

√
d

2
⊕ Z

σ(β)− β

2
⊕ Z

(
lc− β + σ(β)

2

)
,

P2 = Zp⊕ Z
−c+

√
d

2
⊕ Z

σ(β)− β

2
⊕ Z

(
lc+

β + σ(β)

2

)
,

P3 = Zp⊕ Z
c+

√
d

2
⊕ Z

(
lc+

σ(β)− β

2

)
⊕ Z

β + σ(β)

2
, and

P4 = Zp⊕ Z
c+

√
d

2
⊕ Z

(
lc− σ(β)− β

2

)
⊕ Z

β + σ(β)

2

are all primes ideals of OF above p.

iv) Assume d ≡ 1 (mod 4), b ≡ 2 (mod 4), a+ b ≡ 1 (mod 4) and a ≡ −c (mod 4). If a
is a quadratic non-residue modulo p, then pOF = P1P2 where

P1 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

−p+ p
√
d+ pβ + pσ(β)

4
, and

P2 = Zp⊕ Z
c+

√
d

2
⊕ Z

p+ p
√
d− pβ + pσ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4

are all prime ideals of OF above p.

If a is a quadratic residue modulo p and we write a ≡ l2 (mod p), then we have
pOF = P1P2P3P4 where

P1 = Zp⊕ Z
c+

√
d

2
⊕ Z

(−2l + 1) c+
√
d− β + σ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4
,

P2 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

(2l + 1) c−
√
d− β − σ(β)

4
,

P3 = Zp⊕ Z
c+

√
d

2
⊕ Z

(2l + 1) c+
√
d− β + σ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4
, and

P4 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

(−2l + 1) c−
√
d− β − σ(β)

4

are all prime ideals of OF above p.

v) Assume d ≡ 1 (mod 4), b ≡ 2 (mod 4), a+ b ≡ 1 (mod 4) and a ≡ c (mod 4). If a is
a quadratic non-residue modulo p, then pOF = P1P2 where

P1 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

p+ p
√
d+ pβ + pσ(β)

4
, and

P2 = Zp⊕ Z
c+

√
d

2
⊕ Z

−p+ p
√
d− pβ + pσ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4
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are all prime ideals of OF above p. If a is a quadratic residue modulo p and we write
a = l2 (mod p), then pOF = P1P2P3P4 where

P1 = Zp⊕ Z
c+

√
d

2
⊕ Z

(2l + 1) c+
√
d− β + σ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4
,

P2 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

(2l + 1) c−
√
d− β − σ(β)

4
,

P3 = Zp⊕ Z
c+

√
d

2
⊕ Z

(−2l + 1) c+
√
d− β + σ(β)

4
⊕ Z

b− c−
√
d− β − σ(β)

4
, and

P4 = Zp⊕ Z
−c+

√
d

2
⊕ Z

b− c+
√
d− β + σ(β)

4
⊕ Z

(−2l + 1) c−
√
d− β − σ(β)

4

are all prime ideals of OF above p.

Proof. The given lattices are completely distinct, and we can prove that they are ideals
by following the steps in Remark 4.7.

Finally, we consider prime ideals above 2 when ∆F is even. The following result is
obtained from Lemma 2.9.(i).

Lemma 4.14. Let d be even. Then there exists a unique prime ideal P0 above p0 = 2.
Moreover, P0 = ⟨2, β⟩ and N (P0) = 2.

Lemma 4.15. Let d ≡ 1 (mod 4) and b be odd.

(i) If d ≡ 5 (mod 8), then there is a unique prime ideal P0 above p0 = 2, where N(P0) = 4
and

P0 = Z2⊕ Z(1 +
√
d)⊕ Zβ ⊕ Zσ(β).

(ii) If d ≡ 1 (mod 8), then there are exactly two distinct prime ideals P01, P02 above
p0 = 2, where N(P01) = N (P02) = 2 and

P01 = Z2⊕ Z

(
−1 +

√
d

2

)
⊕ Zβ ⊕ Zσ(β), and

P02 = Z2⊕ Z

(
1 +

√
d

2

)
⊕ Zβ ⊕ Zσ(β).

Lemma 4.16. Let d ≡ 1 (mod 4) and b ≡ 0 (mod 2) and a+ b ≡ 3 (mod 4).

(i) If d ≡ 5 (mod 8), then there is a unique prime ideal P0 above p0 = 2, where N(P0) = 4
and

P0 = Z2⊕ Z(1 +
√
d)⊕ Z

−1 +
√
d− β − σ(β)

2
⊕ Z

1 +
√
d+ β − σ(β)

2
.
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(ii) If d ≡ 1 (mod 8), then there are exactly two prime ideals P01, P02 above p0 = 2, where
N(P01) = N (P02) = 2 and

P01 = Z2⊕ Z

(
−1 +

√
d

2

)
⊕ Z

2− β − σ(β)

2
⊕ Z

β − σ(β)

2
, and

P02 = Z2⊕ Z

(
1 +

√
d

2

)
⊕ Z

β + σ(β)

2
⊕ Z

2 + β − σ(β)

2
.

For the case of p = 2 and ∆F odd, we have the following result.

Lemma 4.17. Assume that d ≡ 1 (mod 4) and a+ b ≡ 1 (mod 4).

i) If d ≡ 1 (mod 8), then 2OF can be factored as one of the forms P1P2, and P1P2P3P4

where P1, P2, P3, P4 are prime ideals of OF above 2.

ii) If d ≡ 5 (mod 8), then 2OF is prime.

Proof. i) This is deduced directly from the fact that pOK splits totally in OK where OK

as in (6).

ii) See Appendix B.

The below theorem follows directly from the combination of Lemmas 2.9, 2.10,2.11 and
4.13.

Theorem 4.18. Let F be a cyclic quartic field defined by a, b, c, d as in (2) and p be an
odd prime. One has the following statements.

i) The prime p is totally ramified if and only if p | d.

ii) The ideal pOF is of the forms pOF = P 2 for P a unique prime ideal of OF above p if
and only if p | a and d is a quadratic non-residue modulo p.

iii) The ideal pOF is of the form pOF = P 2
1P

2
2 where P1, P2 are exactly two prime ideals

of OF above p if and only if p | a and d is a quadratic residue modulo p.

iv) The prime p is inert if and only if p ∤ abcd and d is a quadratic non-residue modulo p.

v) The prime p totally splits if and only if p satisfies one of the conditions listed below.

• The prime p | b and a is a quadratic residue modulo p.

• The prime p | c and 2a is a quadratic residue modulo p.

• The prime p ∤ abcd, d is a quadratic residue modulo p, and if d ≡ z2 (mod p)
then ad+ abz and ad− abz are also quadratic residues modulo p.
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vi) The ideal pOF is the product of two distinct prime ideals in all the remaining cases.

From Theorem 4.18 and Lemmas 4.14, 4.15, and 4.16, we obtain the necessary and
sufficient conditions for a prime p for which OF has a unique prime ideal P over p. In the
next subsection, we will investigate the conditions for the unique prime ideals P mentioned
above to be WR.

4.2 Well-rounded ideals of cyclic quartic fields

According to the first part of Theorem 1.6, there are three cases in which OF has a
unique prime ideal P over a prime number p. However, in the last case of the theorem,
P = pOF and it is not primitive. Therefore, we only investigate prime ideals P belonging
to the first two cases of the theorem. In general, we will prove necessary and sufficient
conditions for an ideal of the form PIQJ to be WR, where I is a subset of {1, . . . , r} and
J is a subset of {1, . . . , s} such that d is a non-quadratic residue modulo qj for all j ∈ J .

Proposition 4.19. Let d ≡ 2 (mod 4). Then PIQJ is not WR.

Proof. Let δ ∈ PIQJ be a nonzero vector of PIQJ . By Lemma 4.2, there exist integers
x1, x2, x3, x4 such that δ = x1pIqJ + x2qJ

√
d+ x3β + x4σ(β) and by (8), one obtains

∥δ∥2 = 4
(
x21p

2
Iq

2
J + x22q

2
Jd+ |a|d

(
x23 + x24

))
.

It is easy to verify that minδ ̸=0 ∥δ∥2 ∈ minS, where S = {4p2Iq2J , 4q2Jd, 4|a|d} . Each value
in S corresponds to the squared length of at most two independent vectors. Thus, PIQJ

is not WR.

Proposition 4.20. Let d ≡ 1 (mod 4) and b be odd. Then PIQJ is not WR.

Proof. Let δ ∈ PIQJ be a nonzero vector of PIQJ . By Lemma 4.2, there exist integers

x1, x2, x3, x4 such that δ = x1pIqJ + x2qJ
pI+

√
d

2
+ x3β + x4σ(β) and by (8), one obtains

∥δ∥2 = (2x1 + x2)
2 p2Iq

2
J + x22q

2
Jd+ 4|a|d

(
x23 + x24

)
.

Since 2x1 + x2 and x2 have the same parity, it is easy to verify that minδ ̸=0 ∥δ∥2 ∈ minS,
where S = {p2Iq2J + q2Jd, 4|a|d} . Each value in S corresponds to the squared length of at
most two independent vectors. Thus PIQJ is not WR.

Proposition 4.21. Let d ≡ 1 (mod 4), b be even and a + b ≡ 3 (mod 4). Then PIQJ is
not WR.

Proof. Let δ ∈ PIQJ be a nonzero vector of PIQJ . By Lemma 4.2, there exist integers

x1, x2, x3, x4 such that δ = x1pIqJ + x2qJ
pI+

√
d

2
+ x3

β+σ(β)
2

+ x4
−β+σ(β)

2
and by (8), one

obtains

∥δ∥2 = (2x1 + x2)
2 p2Iq

2
J + x22q

2
Jd+ 2|a|d

(
x23 + x24

)
.

The result is then obtained using the same argument as in the proof of Proposition 4.20.
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Proposition 4.22. Suppose that d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and
a ≡ −c (mod 4). Then PIQJ is WR if and only if p2Iq

2
J + q2Jd+ 2|a|d ≤ minM, where

M =
{
16q2Jd, 8|a|d, 4q2Id+ 4|a|d, 16p2Iq2J , 4p2Iq2J + 4|a|d, 4p2Iq2J + 4q2Jd

}
.

Proof. Let ρIJ be in Lemma 4.5 and δ be a nonzero vector of PIQJ . By Lemma 4.5, there
exist integers x1, x2, x3, x4 such that 4δ = S1pIqJ + S2qJ

√
d+ S3β + S4σ(β) where

S1 = −x1 − x2 − x3 − x4, S2 = x1 − x2 + x3 − x4,

S3 = −x1 + x2 + x3 − x4, S4 = −x1 − x2 + x3 + x4.

By (8), one has

4∥δ∥2 = S2
1p

2
Iq

2
J + S2

2q
2
Jd+ |a|d

(
S2
3 + S2

4

)
.

It is easy to prove that minδ ̸=0 ∥4δ∥2 = minS where

S =
{
p2Iq

2
J + q2Id+ 2|a|d, 16q2Jd, 8|a|d, 4q2Id+ 4|a|d, 16p2Iq2J , 4p2Iq2J + 4|a|d, 4p2Iq2J + 4q2Id

}
.

Among seven numbers in S, the only one that is correspondent to the squared length of
four linearly independent vectors in PI is p2Iq

2
J + q2Jd + 2|a|d. Therefore, the lattice PIQJ

is WR if and only if minδ ̸=0 4∥δ∥2 = p2Iq
2
J + q2Jd+ 2|a|d.

Proposition 4.23. Suppose that d ≡ 1 (mod 4), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and
a ≡ c (mod 4). Then PIQJ is WR if and only if p2Iq

2
J + q2Jd+ 2|a|d ≤ minM where

M =
{
16q2Jd, 8|a|d, 4q2Jd+ 4|a|d, 16p2Iq2J , 4p2Iq2J + 4|a|d, 4p2Iq2J + 4q2Jd

}
.

Proof. Let ρIJ be in Lemma 4.6 and δ be a nonzero vector of PIQJ . By Lemma 4.6,
there exist integers x1, x2, x3, x4 such that 4δ = S1pIqJ + S2qJ

√
d + S3β + S4σ(β) where

S1 = x1+x2+x3+x4, S2 = −x1+x2−x3+x4, S3 = −x1−x2+x3+x4, S4 = x1−x2−x3+x4.
By (8), one has

4∥δ∥2 = S2
1p

2
Iq

2
J + S2

2q
2
Jd+ |a|d

(
S2
3 + S2

4

)
.

It is not hard to verify that minδ ̸=0 ∥4δ∥2 = minS where

S =
{
p2Iq

2
J + q2Id+ 2|a|d, 16q2Jd, 8|a|d, 4q2Id+ 4|a|d, 16p2Iq2J , 4p2Iq2J + 4|a|d, 4p2Iq2J + 4q2Id

}
.

Among seven numbers in S, the only one that corresponds to the squared length of four
linearly independent vectors in PI is p

2
Iq

2
J + q

2
Jd+2|a|d. Therefore, the lattice PIQJ is WR

if and only if minδ ̸=0 4∥δ∥2 = p2Iq
2
J + q2Jd+ 2|a|d.

We now prove Theorem 1.5.
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Proof of Theorem 1.5. i) By Propositions 4.19, 4.20, 4.21, 4.22 and 4.23, the ideal
PI is WR if and only if d ≡ 1 (mod 4), p ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and
p2I + (2|a|+ 1) d ≤ minS, where

S =
{
16d, 8|a|d, 4d+ 4|a|d, 16p2I , 4p2I + 4|a|d, 4p2I + 4d

}
.

The last inequality is equivalent to the statement

p2I + (2|a|+ 1) d ≤ 16d,

p2I + (2|a|+ 1) d ≤ 4d+ 4|a|d,
p2I + (2|a|+ 1) d ≤ 16p2I ,

p2I + (2|a|+ 1) d ≤ 4p2I + 4d.

This means

max

{
(2|a| − 3)d

3
,
(2|a|+ 1)d

15

}
≤ p2I ≤ min {(15− 2|a|) d, (2|a|+ 3) d} . (16)

The inequalities in (16) occur only if 2|a| ≤ 15 and thus |a| ∈ {1, 3, 5, 7}.

• If |a| = 1, the inequalities in (16) become d
5
≤ p2I ≤ 5d.

• If |a| = 3, the inequalities in (16) become d ≤ p2I ≤ 9d.

• If |a| = 5, the inequalities in (16) become 7d
3
≤ p2I ≤ 5d.

• If |a| = 7, the inequalities in (16) lead to 11d
3

≤ p2I ≤ d, which is impossible.

ii) By Propositions 4.19, 4.20, 4.21, 4.22 and 4.23, one can show that QJ is WR if and
only if d ≡ 1 (mod 4), p ≡ 0 (mod 2), a+b ≡ 1 (mod 4) and q2J(d+1)+2|a|d ≤ minS,
where

S =
{
16q2Jd, 8|a|d, 4q2Jd+ 4|a|d, 16q2J , 4q2J + 4|a|d, 4q2J + 4q2Jd

}
.

The last inequality is equivalent to

q2J(d+ 1) + 2|a|d ≤ 16q2J ,

q2J(d+ 1) + 2|a|d ≤ 8|a|d,
q2J(d+ 1) + 2|a|d ≤ 16q2J ,

q2J(d+ 1) + 2|a|d ≤ 4q2J + 4d.

This means d < 15 and

max

{
2|a|d
15− d

,
2|a|d

3 (d+ 1)

}
≤ q2J ≤ min

{
6|a|d
d+ 1

,
2|a|d
d− 3

}
. (17)

Since d is odd and squarefree, and d < 15, one must have d ∈ {5, 13}. If d = 13

then (17) becomes 13|a| ≤ q2J ≤ 13|a|
5

, which is impossible. Thus d must be 5 and the
inequalities in (17) become |a| ≤ q2J ≤ 5|a|.



Well-Rounded ideal lattices of cyclic cubic and quartic fields 241

Now we consider prime ideals above 2.

Lemma 4.24. No prime ideal above 2 is WR if d is even or if d is odd and b ≡ 1 (mod 2).

Proof. When d is even, the result is directly implied from Proposition 4.19. The result in
the remaining case can be obtained by using a similar argument to the proofs of Proposi-
tions 4.19 and 4.20.

By employing the same methodology used to prove Propositions 4.19 and 4.20, we can
establish the result of Lemma 4.25.

Lemma 4.25. Let d ≡ 1 (mod 8), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4). Then all prime
ideals above 2 are not WR.

Lemma 4.26. Let d ≡ 5 (mod 8), b ≡ 0 (mod 2) and a+ b ≡ 3 (mod 4). Then OF has a
unique prime ideal P0 above 2. Moreover, P0 is WR if and only if a = 1, b = 2, c = 1, d = 5.

Proof. By Lemma 4.16, there is a unique prime ideal P0 above 2 and an integral basis of
P0 is given as in this lemma. Let 0 ̸= δ ∈ P0, there are integers z1, z2, z3, z4 such that

δ = 2z1 + z2

(
1 +

√
d
)
+ z3

−1 +
√
d− β − σ(β)

2
+ z4

1 +
√
d+ β − σ(β)

2

and by (8), one obtains ∥δ∥2 = S2
1 + S2

2d+ |a|d (S2
3 + S2

4) , where

S1 = 4x1 + 2z2 − z3 + z4,

S2 = 2z2 + z3 + z4,

S3 = −z3 + z4,

S4 = −z3 − z4.

It is easy to prove that minδ ̸=0 ∥δ∥2 = min {16, 1 + d (2|a|+ 1)} and P0 is WR if and only
if 16 ≥ 1 + (2|a|+ 1). It occurs only if a = 1, b = 2, c = 1.

Remark 4.27. If P is a ideal above 2, then 2 ∈ P . Thus, if P is WR, then there exists
δ ∈ P \Q(

√
d) such that ∥δ∥2 ≤ 16.

Lemma 4.28. Let d ≡ 1 (mod 4), b ≡ 0 (mod 2) and a + b ≡ 1 (mod 4). Then all prime
ideals above 2 are not WR.

Proof. If d ≡ 5 (mod 8), then 2OF is prime (see Lemma 4.17) and not primitive. We
now consider the case d ≡ 1 (mod 8) here. Note that d ≥ 17 as d ≡ 1 (mod 4) and d is
squarefree. We divide into two sub-cases: a ≡ −c (mod 4) and a ≡ c (mod 4). Since the
techniques used in the proofs of the two cases are similar, we only consider the first. In
this case, suppose that there exists a prime ideal P above 2 such that P is WR. Hence, by
Remark 4.27, there exists δ ∈ P \ Q(

√
d) such that ∥δ∥2 ≤ 16. Let γ′1, γ

′
2, γ

′
3, γ

′
4 be as in
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Remark 2.6. There exist integers z1, z2, z3, z4 such that δ = z1γ
′
1 + z2γ

′
2 + z3γ

′
3 + z4γ

′
4 and

thus

∥δ∥2 = 1

4

(
(4z1 + 2z2 + z3 + z4)

2 + d (2z2 + z3 − z4) + 2|a|d
(
z23 + z24

))
.

Since δ /∈ Q(
√
d), one has z23 + z24 ≥ 1. Hence, |a|d ≤ ∥δ∥2 ≤ 32 which occurs only

if |a| = 1 and d ≤ 32. This means (a, d) ∈ {(1, 17), (−1, 17)} as d ≡ 1 (mod 8) and d is
squarefree. In both cases of (a, d), there are two prime ideals above 2 and we can verify
that these prime ideals are not WR by using Pari/GP. Hence, all prime ideals above 2 are
not WR when d ≡ 1 (mod 4), b ≡ 0 (mod 2) and a+ b ≡ 1 (mod 4).

Combining Lemmas 4.24, 4.25, 4.26 and 4.28, we imply Proposition 4.29.

Proposition 4.29. Let F, a, b, c, d be as in Section 2.3. Then a prime ideal above 2 of OF

is WR if and only if a = 1, b = 2, c = 1, d = 5. In this case, OF has a unique prime ideal
above 2.

5 Conclusion and future research

This paper investigates WR ideals of cyclic and quartic fields. We show that all cyclic
cubic fields have WR ideals. Moreover, we present families of cyclic cubic and quartic
fields of which WR ideal lattices exist and also construct explicit minimal bases of these
WR ideals.

We observe that all WR ideals obtained from our experiment have norms dividing
the discriminant of the field if the discriminant is odd. Therefore, we form the following
conjecture.

Conjecture: Let F be a cyclic cubic or cyclic quartic field with an odd discriminant.
If a primitive integral ideal I of F is WR, then N(I) divides the discriminant of F .

If this conjecture holds then there are only finitely many WR ideals from each of these
fields.

Note that this conjecture agrees with the observation in [11] for real quadratic fields,
and it was later proved for these fields [27]. In addition, for a cyclic quartic field F of odd
discriminant, the conjecture holds for the case when the ideal I of F is the unique prime
ideal above a prime number as a result of Theorem 1.6.

We also remark that the conjecture does not hold for cyclic quartic fields of even
discriminant. That is, there exist cyclic quartic fields with even discriminant which have
WR ideals of norms that do not divide the field discriminant. For example, the cyclic
quartic field F defined by (a, b, c, d) = (1, 2, 1, 5) has WR ideals with norms 484, 2420,
3364, and 3844 which do not divide ∆F = 2000. Another remark is that this is the only
case in which a prime ideal above 2 is WR by Proposition 4.29.

Our future research will investigate the above conjecture andWR ideals of other number
fields.
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A Some results related to cyclic cubic fields

Proof of Lemma 3.12. Recall that Tr(α) = α + σ(α) + σ2(α) = 0. We have

σ2(δ) = m1 −m3σ(α) + (m2 −m3)(−α− σ(α))

= m1 + (m3 −m2)α−m2σ(α).

Thus

∥δ∥2 = δ2 + σ(δ)2 + (σ2(δ))2

= 3m2
1 + 2(m2

2 +m2
3 −m2m3)(α

2 + σ(α)2 + ασ(α))

= 3m2
1 +

2m

3
(m2

2 +m2
3 −m2m3).

The last equality occurs because of the fact that

α2 + σ(α)2 + ασ(α) = −ασ(α) + (α + σ(α))2

= −ασ(α)− (α + σ(α))σ2(α)

=
m

3
.

Proof of Lemma 3.22. Let P = P1 · · ·Pr. From Corollary 3.14 and from α2 ∈ P 2, there
exists integers k,A,B such that α2 = km

9
+ Aα + Bσ(α). The value of k is 2 since

Tr(α) = Tr(σ(α)) = 0 and Tr(α2) = 2m
3
. By using Lemma 3.12, one deduces that

∥α2∥2 = 4m2

29
+

2m

3
(A2 − AB +B2).

It is easy to show that ∥α∥2 = 2m2

9
. Therefore A2 − AB +B2 = m

9
.

Proof of Lemma 3.3. By using the coefficients of the defining polynomial of F in (2), one
has

Tr(α) = Tr(σ(α)) = 1,Tr(α2) =
2m+ 1

3
and Tr(ασ(α)) =

1−m

3
. (18)

Note that the set Mℓ can be defined equivalently as Mℓ = {δ ∈ OF : Tr(δ) ≡ 0 (mod ℓ)}.
Let δ = a1α + a2σ(α) + a3σ

2(α) ∈ Mℓ. Then a1 + a2 + a3 ≡ 0 (mod ℓ). By computation,
we obtain

Tr(δα) =
1−m

3
(a1 + a2 + a3) + a1m

Tr(δσ(α)) =
1−m

3
(a1 + a2 + a3) + a2m

Tr(δσ2(α)) =
1−m

3
(a1 + a2 + a3) + a3m.



246 Dat Tan Tran, Nam Hoai Le, Ha Thanh Nguyen Tran

If ℓ | m, then Tr(δα) = Tr(δσ(α)) = Tr(δσ2(α)) ≡ 0 (mod ℓ). Thus, all of δα, δσ(α) and
δσ2(α) are in I. Since {α, σ(α), σ2(α)} is a basis of OF (Lemma 3.1), one has that Mℓ is
an ideal.

Conversely, assume that Mℓ is ideal. Then the element α− σ(α) has trace 0 and hence
is in Mℓ. Thus α(α − σ(α)) ∈ Mℓ since α ∈ OF and Mℓ is an ideal. Therefore, by (18),
Tr(α(α− σ(α))) = Tr(α2)− Tr(ασ(α)) = m ≡ 0 (mod ℓ). In other words, ℓ|m.

Proof of Lemma 3.4. By using the fact that pi|m and ni = −3−1 (mod pi), one can factor
df(x) as df(x) ≡ (α+ni)

3 (mod pi). On the other hand, Lemma 2.4 says that pi does not
divide the index [OF : Z[α]]. Therefore, one has Pi = ⟨pi, α + ni⟩ by using the result on
the decomposition of primes [2, Theorem 4.8.13].

First, −α+σ(α) = −(α+n)+(σ(α)+n) ∈ Pi since we have proved that Pi = ⟨pi, α+ni⟩
and by the fact that σ(Pi) = Pi. The length of this element is easily computed by applying
Lemma 3.2.

Next, we compute the length of α + ni. By writing

α + ni = α + ni(α + σ(α) + σ2(α)) = (ni + 1)α + niσ(α) + niσ
2(α)

and applying Lemma 3.2, the result is obtained.

Proof of Lemma 3.23. Let F = Q(ξ3) and θ = A+ Bξ3. Then N(θ) = N and there exists
an ideal P1, · · · Pi such that N(Pi) = pi and

θOK = P1 · · · Pr =
∏
i∈I

Pi

∏
j /∈I

Pj.

Since O is a PID, then there exist elements xj + yjξ3 ∈ OK and xI + yIξ3 ∈ OK such that
xj + yj ≡ 1 (mod 3) for all j /∈ I, xI + yI ≡ 1 (mod 3) and Pi = ⟨δi⟩,PI = ⟨δI⟩ whereas
δi = xi + yiξ3 and δI = xI + yIξ3. It leads to the equality θOK =

(
δI
∏

j /∈I δj

)
OK and

thus there exists ε ∈ O∗
K such that θε = δI

∏
j /∈I δj. Let σF (δI) be the conjugate of δI over

F . One has δIσF (δI) = pI and thus

θεσF (δI) =

∏
j /∈I

δj

 (δIσF (δI)) = pI

(∏
j ̸=i

δj

)
.

It means θσF (δI) ∈ pIOK . Moreover,

θσF (δI) = AxI +ByI − AyI + (BxI − AyI)ξ3

and thus BxI − AyI , AxI +ByI − AyI are multiples of pI .

Proof of Lemma 3.24. Let γ = xIα + yIσ(α). Remark that m
9

= A2 − AB + B2 and
α2 = 2m

9
+Aα+Bσ(α). Since Tr(ασ(α)) = −n

3
, then we can write ασ(α) = −m

9
+Cα+Dσα
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for some integers C,D. One has α3 = mα
3
+ am

27
and α3 = 2mα

9
+Aα2+Bασα. This implies

that

mα

3
+
am

27
= (AB +BD)σ(α) +

(
2m

9
+ A2 +BC

)
α +

(
2mA

9
− mB

9

)
and thus AB + BD = 0, 2m

9
+ A2 + BC = m

3
, ma

27
= 2mA

9
− mB

9
. Since B must be nonzero,

A = −D and it is easy to prove C = B − A.
One can easily verify that

γα =
m

9
(2xI − yI) + (AxI +ByI − AyI)α + (BxI − AyI)σ(α),

γσ(α) =
m

9
(−xI + 2yI) + (BxI − AyI −ByI)α + (−AxI + AyI −ByI)σα.

Let Mγ =

 0 m
9
(2xI − yI)

m
9
(−xI + 2yI)

xI AxI −ByI − AyI BxI − AyI −ByI
yI BxI − AyI −AxI + AyI −ByI

 .

Since all the entries in the second and third columns are multiples of pI , one has that
det (Mγ) is a multiple of p2I . Hence, p

2
I | NK/Q(γ) as NK/Q(γ) = det(Mγ) by [23].

B Some results related to cyclic quartic fields

Proof of Lemma 4.8. First, we prove that that Q1i, Q2i are ideals. By Remark 2.6.(i), it is
sufficient to show (zk +

√
d)β ∈ Qkj. Indeed, one has

(zk +
√
d)β = zkβ +

√
dβ

= zkβ + cσ(β)− bβ

= (zk − b) β + cσ(β) ∈ Qkj

for k = 1, 2. Hence Q1j, Q2j are ideals of OF . These two ideals have norm qj and thus they

are prime ideals. Moreover, one has Q ≤ K = Q(
√
d) ≤ F and Qkj ∩ OK = qkj. Hence

Q1j, Q2j are distinct. By Lemma 2.10, these ideals are the only prime ideals above qj.

Proof of Lemma 4.9. To prove Q1j, Q2j are ideals, it is sufficient to prove 4tk−1+
√
d

2
β ∈ Qkj

and 4tk−1+
√
d

2
σ(β) ∈ Qkj for k = 1, 2. By using Lemma 2.8, we have

4tk − 1 +
√
d

2
β = (2tk − 1) β +

β + β
√
d

2

= (2tk − 1)β +
β + cσ(β)− bβ

2

=

(
2tk − 1 +

1− b

2

)
β +

c

2
σ(β) ∈ Qkj,

4tk − 1 +
√
d

2
σ(β) = (2tk − 1)σ(β) +

σ(β) + σ(β)
√
d

2

=

(
2tk − 1 +

1 + b

2

)
σ(β) +

c

2
β ∈ Qkj,
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for k = 1, 2. Hence Q1j, Q2j are ideals and thus they are prime as their norms are qj.
Moreover, Qkj ∩ OK = qkj. Hence these ideals are distinct. By Lemma 2.10, Q1j, Q2j are
two only prime ideals of OF above qj.

The proof of Lemma 4.10 is similar to Lemma 4.9.

Proof of Lemma 4.11. Let γ1, γ
′
2, γ

′
3, γ4 as in Remark 2.6,iv. Let ρkj =

4tk−1+
√
d−β−σ(β)
4

and

ψkj =
2qj+4tk−1+

√
d+β−σ(β)

4
. First, we prove that Qkj are ideals for all k = 1, 2. To do that,

it is sufficient to prove that qjγ
′
i,

4tk−1+
√
d

2
γ′i, ρkjγ

′
i, ψkjγ

′
i ∈ Qkj for all i = 1, 2, 3, 4 and

k = 1, 2. It is obvious that qjγ
′
i;

4tk−1+
√
d

2
γ′i, ρkj, ψkj ∈ Qkj, for all k = 1, 2 and i = 1, 2.

One has

qjγ
′
3 =

qj + 1− 2tk
2

qj + qj
4tk − 1 +

√
d

2
− qjψkj

qjγ
′
4 = tkqj − qjρkj

4tk − 1 +
√
d

2
γ′3 =

d− (4tk − 1)2 − 2qj (c+ 1− 4tk)

8qj
qj +

b− c− 1 + 8t

4

4tk − 1 +
√
d

2

− b

2
ρkj +

c− 1− 4tk
2

ψkj

4tk − 1 +
√
d

2
γ′4 =

2bqj − d+ (4tk − 1)2

8qj
qj +

b+ c+ 1

4

4tk − 1 +
√
d

2

+
−c+ 1− 4t

2
ρkj −

b

2
ψkj

ρkjγ
′
2 =

d− (4tk − 1)2 + 2bqj
8qj

qj +
−b− c+ 4t− 1

4

4tk − 1 +
√
d

2

+
c+ 1

2
ρkj +

b

2
ψkj

ψkjγ
′
2 =

d− (4tk − 1)2 + 2qj (c+ 1− 4tk)

8qj
qj

+
−b+ c− 1 + 2qj + 4tk

4

4tk − 1 +
√
d

2
+
b

2
ρkj +

1− c

2
ψkj

ρkjγ
′
3 =

d− (4k1 − 1)2 − 2ab+ 8abt− 2q (b+ c+ 1 + 8t)

16qj
qj

+
4t− ab− c− 1

4

4tk + 1 +
√
d

2
+
c− b+ 1

4
ρkj +

b+ c+ 1− 4t

4
ψkj

ρkjγ
′
4 =

(4tk − 1)2 − d− 2a (c+ d− 4ct) + 4bq

16qj
qj +

b+ c− ac

4

4tk + 1−
√
d

2

+
1− c− 2tk

2
ρkj −

b

2
ψkj
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ψkjγ
′
3 =

2a (c− d− 4ctk) + 4q2j + d− (4tk − 1)2

16qj
qj

+
ac+ 2qj + 4tk − 1

4

4tk − 1 +
√
d

2
+

−qj − 2tk + 1

2
ψkj

ψkjγ
′
4 =

(4tk − 1)2 − d− 2ab (1− 4tk) + 2qj (b− c− 1 + 4tk)

16qj
qj

− ab− b

4

4tk − 1 +
√
d

2
− b+ c+ 2qj − 4tk + 1

4
ρkj

+
−b+ c+ 1

4
ψkj.

It is not hard to prove all the coefficients of the above expressions are integers. Thus
Q1j, Q2j are ideals. Moreover, Qkj ∩ OK = qkj and thus Q1j ̸= Q2j and they are all prime
ideals of OF above qj.

To prove Lemma 4.17.(ii), we again consider two cases, namely a ≡ −c (mod 4) and
a ≡ c (mod 4). The proofs of both cases use the same technique, thus we only prove the
first case here. The notations γ′1, γ

′
2, γ

′
3, γ

′
4 are as defined in Remark 2.6. One has

γ′1 · γ′i = γ′i, for i = 1, 2, 3, 4

γ′22 =
d− 1

4
γ′1 + γ′2

γ′2 · γ′3 =
−2b+ d− 1

8
γ′1 +

b+ c+ 1

4
γ′2 +

1− c

2
γ′3 +

b

2
γ′4

γ′2 · γ′4 =
−d− 2c− 1

8
γ′1 +

−b+ c+ 1

4
γ′2 +

b

2
γ′3 +

c+ 1

2
γ′4

γ′23 =
−4b+ 2ac+ 2ad+ d− 1

16
γ′1 +

b+ c− ac

4
γ′2 +

−c+ 1

2
γ′3 +

b

2
γ′4

γ′3 · γ′4 =
−2ab+ 2b− 2c− d− 1

16
γ′1 +

ab− b

4
γ′2 +

b+ c+ 1

4
γ′3 +

−b+ c+ 1

4
γ′4

γ′24 =
−2ac+ 4c+ 2ad+ d− 1

16
γ′1 +

b+ ac− c

4
γ′2 −

b

2
γ′3 +

1− c

2
γ′4.

Let δ = z1γ
′
1 + z2γ2 + z3γ

′
3 + z4γ

′
4 and ψ = t1γ

′
1 + t2γ2 + t3γ

′
3 + t4γ

′
4 be arbitrary elements

of OF . Then

δ · ψ = S1γ
′
1 + S2γ

′
2 + S3γ

′
3 + S4γ

′
3
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where

S1 = z1t1 + z2t2
−2b+ d− 1

4
+ z2t3

−2b+ d− 1

8
+ z2t4

−d− 2c− 1

8
+ z3t2

−b+ d− 1

8

+ z3t3
−4b+ 2ac+ 2ad+ d− 1

16
+ z3t4

−2ab+ 2b− 2c− d− 1

16
+ z4t2

−d− 2c− 1

8

+ z4t3
−2ab+ 2b− 2c− d− 1

16
+ z4t4

−2ac+ 4c+ 2ad+ d− 1

16

S2 = z1t2 + z2t1 + z2t2 + z2t3
b+ c+ 1

4
+ z2t4

−b+ c+ 1

4
+ z3t2

b+ c+ 1

4
+ z3t3

b+ c− ac

4

+ z3t4
ab− b

4
+ z4t2

−b+ c+ 1

4
+ z4t3

ab− b

4
+ z4t4

b+ ac− c

4

S3 = z1t3 + z2t3
1− c

2
+ z2t4

b

2
+ z3t1 + z3t2

1− c

2

+ z3t3
1− c

2
+ z3t4

b+ c+ 1

4
+ z4t2

b

2
+ z4t3

b+ c+ 1

4
+ z4t4

−b
2

S4 = z1t4 + z2t3
b

2
+ z2t4

c+ 1

2
+ z3t2

b

2

+ z3t3
b

2
+ z3t4

−b+ c+ 1

4
+ z4t1 + z4t2

c+ 1

2
+ z4t3

−b+ c+ 1

4
+ z4t4

1− c

2

Proof of Lemma 4.17.(ii). To prove 2OF is prime, we claim that δ · ψ /∈ 2OF wherever
δ /∈ 2OF and ψ /∈ 2OF . It is sufficient to claim that if the two tuples (t1, t2, t3, t4)
and (z1, z2, z3, z4) are not simultaneously equal to (0, 0, 0, 0) modulo 2, then S1, S2, S3

and S4 are also not simultaneously equal to 0 (mod 2). Since the largest denominator
of S1, S2, S3, S4 is 16, one can prove this by considering the integers a, b, c, d modulo 32
and verify whether S1, S2, S3, S4 are all zero modulo 2 or not. It is done by using any
programming language.
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