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Euclidean lattices: theory and applications

Lenny Fukshansky and Camilla Hollanti

Abstract. In this editorial survey we introduce the special issue of the journal Com-
munications in Mathematics on the topic in the title of the article. Our main goal is
to briefly outline some of the main aspects of this important area at the intersection
of theory and applications, providing the context for the articles showcased in this
special issue.
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1 Introduction

A lattice L in a Euclidean n-dimensional space En is a discrete subgroup of rank 1 ≤
k ≤ n. This is equivalent to saying that there exists a collection of linearly independent
elements a1, . . . ,ak ∈ En (always written as column vectors) such that

L =

{
k∑

i=1

ciai : c1, . . . , ck ∈ Z

}
= AZk,

where a1, . . . ,ak is a basis for L and A = (a1 . . . ak) is the corresponding n × k basis
matrix. If this is the case, then for any U ∈ GLk(Z),

L = AZk = (AU)Zk,

and so AU is again a basis matrix for L. Identifying En with the real space Rn, we can
therefore identify the space of all rank-k lattices in Rn with the space GLk(R)/GLk(Z) of
all orbits of GLk(R) under the action of GLk(Z) by right multiplication.

Theory of Euclidean lattices connects number theory to convex and discrete geometry.
The study of lattices originally emerged as an important subject in connection with classical
discrete optimization problems like sphere packing, covering and kissing number problems,
dating as far back as the celebrated 1611 conjecture of Kepler and even earlier; see the
classical books of Conway & Sloane [8] and of Martinet [21] for a fairly comprehensive
exposition of lattice theory and its many connections, as well as [28] for a popular account
of the fascinating history of Kepler’s conjecture. Lattices have really come into their own in
the context of Minkowski’s geometry of numbers (see [23] for Minkowski’s original treatise,
as well as the standard books [6] by Cassels, [15] by Gruber & Lekkerkerker and [14] by
Gruber for more contemporary accounts).

Theory of lattices has seen some very exciting developments and applications over the
last century, including Minkowski’s proof of the finiteness of class number, major results
in the arithmetic theory of quadratic forms, advances in discrete and convex geometry and
optimization, Diophantine approximations, geometric combinatorics, coding theory, cryp-
tography, and many other areas of mathematics. The recent decades have, in particular,
seen such major breakthroughs as the proof of Kepler’s conjecture by Hales & Ferguson
[16], affirming that the face-centered-cubic lattice provides the densest sphere packing in
dimension 3, as well as the spectacular results by Viazovska et al. [32], [7] on the optimal-
ity of E8 and the Leech lattice for packing density in dimensions 8 and 24, respectively
(Maryna Viazovska received a Fields medal for this work in 2022).

The main goal of our special issue is to collect in one place several of the recent develop-
ments and expository surveys on the various aspects of lattice theory and its applications.
In the following sections, we will briefly introduce a few different facets of this theory and
indicate how different contributions of this special issue fit into the general framework.
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2 Geometry of numbers and Diophantine approximations

The first essential invariant of the lattice L as above is its determinant, which is defined
as

det(L) :=
√
det(A⊤A)

for any choice of a basis matrix A: this is well-defined, since | det(U)| = 1 for any U ∈
GLk(Z). Analytically, this is the volume of a fundamental parallelotope{

Ax : x ∈ [0, 1)k
}
,

which is a full set of coset representatives for the quotient group V/L, where V = spanR L.
In fact, det(L) is the volume of the closure of any such fundamental domain, including the
important Voronoi cell

V(L) = {x ∈ V : ∥x∥ ≤ ∥x− y∥ ∀ y ∈ L} ,

i.e., the set of all points in V that are no further from the origin than from any other point
of the lattice. Our lattice L has full rank in the k-dimensional subspace V of Rn, which can
be identified with the Euclidean space Rk. As such, we will only talk of full-rank lattices
in Rn from now on.

We can now define the sphere packing and the sphere covering associated to L: inscribe
a closed ball B1 in Rn of maximal possible radius into V(L) and circumscribe a ball B2

of minimal possible radius around V(L), then translating V(L) by all the points of L
we obtain a packing of non-overlapping translates of B1 in Rn and a covering of Rn by
translates of B2. Hence the radius of B1 is called the packing radius r(L) of L and the
radius of B2 the covering radius R(L) of L. Now, the packing density δ(L) and the covering
thickness Θ(L) are given by the formulas

δ(L) =
Voln(B1)

Voln(V(L))
=

ωnr(L)
n

det(L)
, Θ(L) =

Voln(B2)

Voln(V(L))
=

ωnR(L)n

det(L)
,

where ωn is the volume of a unit ball Bn in Rn. In fact, these radii are closely related to
another collection of important invariants of the lattice L, called successive minima.

Let K be a closed convex 0-symmetric set of positive volume in Rn. The successive
minima of the lattice L with respect to K,

0 < λ1(L,K) ≤ · · · ≤ λn(L,K),

are defined as
λi(L,K) = min {t ∈ R>0 : dimR spanR L ∩ tK ≥ i} ,

i.e., the smallest real number t so that the homogeneous expansion of K by a factor of t
contains at least i linearly independent points of L. In the special case when K is the unit
ball Bn centered at the origin in Rn, we refer to λi(L,K) simply as λi(L), the successive
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minima of the lattice. It is then not difficult to see that the packing radius is precisely half
the distance from the origin to the shortest nonzero lattice point, i.e.

r(L) =
1

2
λ1(L).

The more delicate inequalities of Jarnik (see, e.g., [15, Section 13.2, Theorem 1 and The-
orem 4]) also assert that the covering radius satisfies

1

2
λn(L) ≤ R(L) ≤ 1

2

n∑
i=1

λi(L).

Successive minima have been studied extensively by Minkowski himself and by many
other mathematicians working in number theory, discrete and convex geometry, and even
analysis. In particular, Minkowski’s inequalities on successive minima state that

2n det(L)

n! Voln(K)
≤

n∏
i=1

λi(L,K) ≤ 2n det(L)

Voln(K)
. (1)

The survey paper [1] by I. Aliev & M. Henk in this special issue gives an overview of the
impact of successive minima on convex and discrete geometry. One significant application
of successive minima inequalities that the authors discuss is Siegel’s lemma, a vital tool in
Diophantine approximations and transcendental number theory, which provides a bound on
the size of a “smallest” nonzero solution (or, more generally, a collection of such solutions)
to a system of linear forms over a given ring or field of arithmetic interest. The fact that
such a solution exists over a given field is guaranteed by the assumption that these linear
forms are linearly dependent over the same field.

On the other hand, assume that we have a system of linear forms that are linearly
independent over Q. Then they will not be simultaneously equal to zero at any nonzero
point of the integer lattice. A natural question in Diophantine approximations is how
small can such a collection of linear forms in n variables simultaneously be on Zn \ {0}?
This question can be made precise by studying the extreme values of certain appropriately
defined exponents of approximation, which is done in the paper [13] by O. German in our
special issue. His main tool is a lemma of Davenport on successive minima. At the end of
this paper, a question about the spectra of these newly introduced Diophantine exponents
is formulated.

3 Special classes of lattices

As we remarked above, the analogues of Kepler’s conjecture on the densest possible
sphere packing in dimension 3 has also been proved in dimensions 8 and 24. In fact, the
optimal sphere packing has been obtained earlier in dimension 2 by L. Fejes Tóth [29], who
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gave the first complete proof of what was previously known as Thue’s theorem. These are
all the dimensions (besides the trivial dimension 1) in which the optimal sphere packings
are known. If, however, we restrict our consideration to lattice packings only, then the
optimal results are known in dimensions 1 ≤ n ≤ 8 and n = 24 (see [8]).

One can then pose a natural question: what properties should a lattice possess to be
a potential candidate for maximizing lattice packing density in its dimension? From our
discussion above, it is evident that the packing density of a full-rank lattice L in Rn is
given by the formula

δ(L) =
ωnλ1(L)

n

2n det(L)
.

Let us define an equivalence relation of similarity on lattices in Rn as follows: two lattices
L1 and L2 are called similar if there exists a positive real constant α and an n × n real
orthogonal matrix U so that L2 = αUL1. In this case, it is easy to see that δ(L1) = δ(L2),
and so the packing density is constant on a given similarity class. Hence, restricting to
unimodular lattices (determinant = 1) we can write

δ(L) =
ωn

2n
λ1(L)

n,

meaning that maximizing packing density is equivalent to maximizing the first successive
minimum λ1(L). By Minkowski’s inequalities (1), the product of all successive minima in
this case is bounded by dimensional constants:

2n

n! ωn

≤
n∏

i=1

λi(L) ≤
2n

ωn

,

where 0 < λ1(L) ≤ · · · ≤ λn(L). Thus the first step in the direction of maximizing
λ1(L) is to take a lattice L with all successive minima equal: lattices like this are called
well-rounded (WR). This property is preserved under similarity, so we can talk of WR
similarity classes, of which there are infinitely many in any dimension n ≥ 2. There has
been quite a bit of work in recent years on various explicit algebraic constructions of WR
lattices. Some most notable such constructions come from ideals in algebraic number fields
via Minkowski embedding into Euclidean space, the so-called ideal lattices. As such, an
interesting question remains: under which conditions does an ideal in a number field give
rise to WR ideal lattices? A detailed study of WR ideal lattices has been initiated in [12].
While this question has been answered for quadratic number fields and for some special
families of number fields of higher degree, in general, it is wide open. In article [30] in our
special issue, D.T. Tran, N. H. Le, and H. T. N. Tran conduct a thorough investigation
and establish conditions for the existence of WR ideal lattices coming from cyclic number
fields of degree 3 and 4. Their paper starts out with a brief overview of the previous results
in this area and also contains a fairly extensive bibliography.

The packing density function is continuous on GLn(R)/GLn(Z), the space of full-rank
lattices in Rn, and hence we can talk about its local extrema on this space. While the WR
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condition is necessary for a local maximum to be achieved, this condition is not sufficient.
Define the set of minimal vectors of a lattice L as

S(L) = {x ∈ L : ∥x∥ = λ1(L)} ,

and let m be the cardinality of S(L). Notice that m is necessarily even since minimal
vectors come in ± pairs (more generally, m is divisible by the order of the group of linear
automorphisms of L since it acts on S(L) by left multiplication). Further, if L is WR then
m ≥ 2n. Lattice L is called eutactic if there exist positive real coefficients c1, . . . , cm such
that for any vector v ∈ Rn,

∥v∥ =
m∑
i=1

ci
(
v⊤xi

)2
,

where S(L) = {x1, . . . ,xm}. On the other hand, a lattice L is called perfect if the space
of n × n real symmetric matrices Symn(R) can be spanned (as a real vector space) by
symmetric matrices coming from the minimal vectors of L, i.e.

Symn(R) = spanR
{
xx⊤ : x ∈ S(L)

}
.

Since dimR Symn(R) = n(n+1)
2

and for any vector x ∈ S(L), xx⊤ = (−x)(−x)⊤, this
perfection condition implies that the cardinality m of S(L) is at least n(n + 1). The
eutaxy and perfection conditions on lattices are independent (i.e., there are eutactic non-
perfect lattices and there are perfect non-eutactic lattices) and they are both preserved
under similarity. Furthermore, there are only finitely many eutactic and finitely many
perfect similarity classes in any given dimension, although their number grows very fast
with the dimension (for instance, for sufficiently large n the number of perfect similarity
classes in Rn is > en

1−ε
for any ε > 0; see [2]). Both, perfect and eutactic lattices are

necessarily WR and a famous theorem of Voronoi (1908) asserts that a lattice corresponds
to a local maximum of the packing density function in its dimension (called extreme lattice)
if and only if it is perfect and eutactic (see, e.g., [21]). This observation drives an interest
in the classification of perfect lattices, a subject of active research often pursued in the
language of quadratic forms.

For L = AZn, the Euclidean norm of any vector x = Ay ∈ L can be computed as

∥x∥2 = QA(y) := y⊤ (
A⊤A

)
y,

where QA(y) is a positive definite quadratic form with a symmetric coefficient matrix
A⊤A. Quadratic forms corresponding to different bases of the same lattice are called
arithmetically equivalent: they have the same spectrum of values on Zn. There is a bijective
correspondence between positive definite arithmetic equivalence classes of quadratic forms
in n variables and lattices in Rn. The symmetric coefficient matrix of a positive definite
quadratic form is then called perfect if the corresponding lattice is perfect. The paper by
V. Dannenberg and A. Schürmann [10] in our special issue builds on the classical theory of
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such perfect matrices to introduce and initiate a study of their generalization, the so-called
perfect copositive matrices: a matrix B ∈ Symn(R) is called copositive if

y⊤By ≥ 0

for all y in the positive orthant Rn
≥0 (in contrast to the usual positive definite matrices

satisfying y⊤By ≥ 0 for all nonzero y ∈ Rn). The authors look at the cone of copositive
matrices and study the distribution of perfect matrices in this cone.

4 Arithmetic of quadratic forms

As indicated above, the study of lattices is intrinsically connected to the arithmetic
theory of quadratic forms. A key question in that theory is that of representation. A
quadratic form Q(y) in n variables can always be written in the form

Q(y) = y⊤By,

where B is a real symmetric coefficient matrix. This form Q is called integral if Q(y) ∈ Z
for every y ∈ Zn and it is called classically integral if B is an integer matrix; notice that
this second property is stronger than the first. An integral form Q is said to represent
an integer m if there exists y ∈ Zn such that Q(y) = m, and Q is said to be universal
if it represents every positive integer m. This is equivalent to the corresponding lattice
containing vectors of every possible (squared) integer Euclidean norm.

Perhaps the starting point of the theory of universal quadratic forms is the famous
classical theorem of Lagrange (1770) stating that the positive definite integral quadratic
form given by the sum of four squares is universal (see, for instance, [33] for details).
On the other hand, no positive definite integral form in fewer than four variables can be
universal. The major results on universal forms from the past thirty years include the
impressive necessary and sufficient universality criteria for integral and classically integral
quadratic forms in any number of variables, known as theorems 290 and 15, respectively.

The survey article by V. Kala [17] (based on the author’s lectures on this subject) in
this special issue gives an overview of the theory of universal quadratic forms, including
these celebrated theorems, but placing the main focus on the recent developments for
quadratic lattices over the ring of integers OK in a totally real number field K. The key
tool emphasized by the author is the notion of an indecomposable element in OK : a totally
positive element in OK is called indecomposable if it cannot be written as a sum of two
other totally positive elements in the same ring. The significance of indecomposables in
the context of quadratic forms is that they essentially appear as coefficients of diagonal
universal forms over OK and hence the number of their square classes gives a lower bound
on the number of variables in which such forms can exist. The author carefully develops
the theory of indecomposables in this context, showing also some interesting connections,
including one to continued fractions.
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5 Geometric combinatorics and integer geometry

Another important facet of the theory has to do with counting lattice points in compact
domains in Rn. More specifically, let us start with a full-rank lattice L and a compact
measurable set K ⊂ Rn of positive volume. Let r ∈ R>0 and define the counting function

fL,K(r) = |L ∩ rK| .

One can ask how does fL,K(r) grow as r → ∞? The first observation is that each point
x ∈ L is contained in its unique translate of the Voronoi cell x + V(L), hence counting
lattice points can be replaced by counting translates of the Voronoi cell. As r becomes
large, the number of such translates that are fully contained in rK gives the main term
of the asymptotic formula for fL,K(r), whereas the error term comes from the number of
such translates intersecting tie boundary of rK whose corresponding lattice points are in
rK. Hence the main term can be approximated simply by the quotient of the volume of
rK by the volume of the Voronoi cell, det(L). Under appropriate smooth conditions on
the boundary of K, such as Lipschitz parametrizability, the error term can be controlled,
and the following asymptotic holds (see, e.g., [19], Chapter VI, §2, Theorem 2):

fL,K(r) =
Voln(K)

det(L)
rn +O(rn−1).

A considerably more delicate problem is to give tight (and as explicit as possible) estimates
on the error term ∣∣∣∣fL,K(r)− Voln(K)

det(L)
rn
∣∣∣∣ .

There is a vast amount of literature on different versions of this counting problem. In fact,
this problem is not fully resolved even in a seemingly simple case of L = Z2 and K being
the unit circle S1 – this is the famous Gauss circle problem, where the standing conjecture
is that ∣∣fZ2,S1(r)− πr2

∣∣ = O(r1/2+ε)

for any ε > 0.
A variation of this counting problem is treated in a paper of J. D. Vaaler [31] in this

special issue: given an n×m real matrix A, m ≤ n, obtain an estimate on the error term∣∣fAZm,rB(x) − Volm(B(x)) rm
∣∣

for the number of points of the lattice AZm in the ball rB(x) of radius r centered at an
arbitrary point x in the subspace ARm ⊆ Rn spanned by this lattice, as r → ∞. While a
number of estimates on such quantities have been previously obtained (see [31] for some
bibliography), the author’s estimate is explicit and uniform over all matrices A with norm
bounded by an explicit constant. Further, his inequality takes a particularly simple form
for dimension m = 3. The author’s method uses careful analysis of extremal functions; as
such, Bessel functions naturally occur in the estimates.
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The situation with counting integer lattice points becomes more manageable when the
compact set K is a convex lattice polytope. Indeed, assume K is a convex polytope in
Rn with positive volume and vertices at points of the integer lattice Zn. Consider the
counting function fZn,K(r) for integer values of the homogeneous expansion parameter r.
A classical theorem of Ehrhart (1962) states that fZn,K(r) is a polynomial in r of degree n
with integer coefficients, where the leading coefficient is Voln(K) (see [3] as well as Chapter
12 of [22] for a nice introduction to Ehrhart theory). This polynomial is called Ehrhart
polynomial of the polytope K. More generally, let us define the integer point transform of
the polytope rK by

σrK(ξ) =
∑

v∈Zn∩rK

e2πi(v
⊤ξ),

for all ξ ∈ Rn. In particular, notice that

σrK(0) =
∑

v∈Zn∩rK

1 = fZn,K(r),

and hence the integer point transform of a polytope is a certain generalization of Ehrhart
polynomial. In his paper [26] in this special issue, S. Robins proves that the integer
point transform is a complete invariant of the polytope in the following sense: two lattice
polytopes K1 and K2 are equal to each other if and only if σK1(ξ

∗) = σK2(ξ
∗) for

ξ∗ =
1

π
(
√
p1, . . . ,

√
pn)

⊤,

where p1, . . . , pn are the first n primes. In fact, the author first uses the classical Lin-
demann–Weierstrass theorem from transcendental number theory to prove the analogous
property for equality of arbitrary finite sets of integer lattice points instead of sets con-
tained in polytopes and then passes to polytopes. Further, he proves the complete invariant
property also for Fourier transforms of general rational polyhedra. Additionally, he dis-
cusses lattice-spanning properties of polytopes and the integer point transform of finite
abelian groups.

Ehrhart’s theorem is often seen as a higher-dimensional generalization of the famous
Pick’s theorem (1899; see, e.g., [3] and Chapter 2 of [18]): if S is the area of an integer
polygon in the plane, I is the number of integer lattice points in its interior and E is the
number of integer lattice points on its boundary, then

S = I +
E

2
− 1.

The essential feature of this theorem is that it connects a combinatorial notion (the number
of integer lattice points in a polygon) with an analytic notion (the area of this polygon).
This is the main idea of integer geometry: introducing “discrete” ways of measuring some
traditionally “continuous” objects, as alluded to in the title of Beck & Robins’s book
[3]. A good introduction to integer geometry and its connections to continued fractions is
given in Karpenkov’s book [18]. In their paper [4] in this special issue, J. Blackman, J.



260 Lenny Fukshansky and Camilla Hollanti

Dolan and O. Karpenkov take this exploration a step further and introduce the theory of
multidimensional integer trigonometry. The integer length and integer area are defined in
terms of indices of sublattices in the integer lattice generated by lattice points on a given
line segment or in a given triangle (which then generalizes to arbitrary polygons via sums
over triangulations). Integer area can then be used to define integer trigonometric functions
in the plane, which are also closely connected to continued fractions. After giving a careful
exposition of planar integer trigonometry, the authors of [4] present a generalization of
this theory to higher dimensions via integer volume of appropriate simplices. They prove a
variety of different properties of integer trigonometric functions in arbitrary dimensions and
discuss an algorithmic approach to constructions of rational polyhedra via given collections
of rational cones. They also discuss approximations of simplicial cones, which generalize
classical approximation by continued fractions.

6 Applications to coding theory and cryptography

Arithmetic lattices have also made their way into many applications, perhaps most
notably within coding theory and cryptography.

6.1 Lattices from error-correcting codes

The association of lattices with error-correcting codes is natural and, in order to reduce
the decoding complexity, a possible direction is the construction of multilevel lattices from
a family of nested codes, allowing for multistage decoding. Several different constructions
have been used to derive lattices from codes [8]. To provide one explicit example, let
ρ : Zq → Z be the standard inclusion map, which can be naturally extended to vectors and
matrices. Then, the q-ary Construction A lattice associated to the linear code C ⊆ Zn

q can
be defined as

LA(C) = ρ(C) + qZn.

In the article [11] in this special issue, F. do Carmo Silva, A. P. de Souza, E. Strey,
and S. I. R. Costa consider Constructions D, D′, and A from nested q-ary linear codes over
Zq. They study the volume, LP -minimum distance (1 ≤ P ≤ ∞), and lower bounds for
the coding gain of these constructions. Further, the aforementioned multistage decoding
method is extended with re-encoding to Construction D′ from q-ary linear codes under
specific conditions. The definitions of Constructions D and D′ are somewhat more involved,
and we refer the reader to the article for more details.

6.2 Lattice-based cryptography

One of the most promising paradigms for post-quantum security is lattice-based cryp-
tography, often based on different variants of the so-called learning with errors (LWE)
problem [25]. The hardness of such cryptosystems can be proved by providing a reduction
from a known hard lattice problem, e.g., the approximate shortest vector problem.
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To give an example, let us consider the ring Rq = Fq[x]/(f(x)), where q is prime and
f(x) ∈ Z[x] is monic and irreducible. The polynomial learning with errors (PLWE) [27]
decision problem asks to distinguish, with a non-negligible advantage, a sample (a, b =
as+ e) ∈ R2

q , where s and e are drawn from an appropriate discrete Gaussian distribution,
from a uniformly random sample (a, b) ∈ R2

q . In article [5] in our special issue, I. Blanco-
Chacón, R. Durán-Diáz, R. Njah Nchiwo, and B. Barbero-Lucas study a decisional attack
against a version of the PLWE problem in which the samples are taken from a certain
proper subring of large dimension of the cyclotomic ring Fq[x]/(Φpk(x)) for k > 1, Φ not
totally split, and q ≡ 1 (mod p). The attack exploits the fact that the roots of Φ have
zero traces over suitable sub-extensions. This allows for a good attack success probability
as a function of input samples. The paper points out a nice open question regarding the
existence of rings with the related distribution-respecting reduction map. We refer to
the article for more details as well as for an exposition on the ring and polynomial LWE
problems.

6.3 Lattice codes for secure wireless communications

Yet another interesting application of arithmetic lattices appears in the context of
physical layer security. Namely, lattice coset codes can be utilized for communication over
the wireless medium, where eavesdroppers may receive the transmitted signals in addition
to the legitimate receiver [24]. The security of such physical layer communications can be
measured in many different ways, including the eavesdropper’s correct decision probability
or the information leakage. It has been shown that both of these quantities are bounded
from above by the so-called flatness factor [20], yielding a natural criterion for the flatness
factor of the lattice to be minimized. Essentially, the flatness factor ϵL(σ) measures the
deviation of the lattice Gaussian distribution from the uniform distribution on a Voronoi
cell, and it is closely related to the lattice theta series ΘL(q) =

∑
x∈L q

||x||2 as follows:

ϵL(σ) =
Vol(L)

(
√
2πσ)n

ΘL(e
− 1

2σ2 )− 1 = ΘL∗(e−2πσ2

)− 1,

where L∗ denotes the dual lattice.
For a “flat” lattice, it is harder to distinguish the received message from a uniformly

random sample. In order to minimize the flatness factor, well-rounded lattices have been
proposed as a coding solution [9]. This motivates the search for good well-rounded lattices
in small and moderate dimensions, in addition to the purely theoretical interest. In this
special issue, well-rounded ideal lattices from cyclic cubic and quartic fields are studied in
article [30], as already mentioned in Section 3.
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