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Alternating Roots of Polynomials over Cayley-Dickson Al-
gebras

Adam Chapman and Ilan Levin

Abstract. We introduce the notions of alternating roots of polynomials and alter-
nating polynomials over a Cayley-Dickson algebra, and prove a connection between
the alternating roots of a given polynomial and the roots of the corresponding alter-
nating polynomial over the Cayley-Dickson doubling of the algebra. We also include
a detailed Octave code for the computation of alternating roots over Hamilton’s
quaternions.

1 Introduction

The study of roots of polynomials over fields and more general algebraic objects has
been an active area of research for many years. A detailed description of how to find the
roots of a standard polynomial over H appeared in [4], and a generalization for arbitrary
quaternion division algebras appeared in [3]. In [1], a description of the roots of a stan-
dard octonion polynomial was provided, and spherical roots of polynomials over arbitrary
Cayley-Dickson algebras were studied in [2].

It is difficult, in general, to study the roots of standard polynomials over arbitrary
Cayley-Dickson algebras, because the structure of these algebras becomes increasingly more
complicated and all the nice properties, like associativity and then alternativity, get lost. In
this paper, we present a method for finding the roots of a special kind of polynomials over
arbitrary Cayley-Dickson algebras, what we call “alternating polynomials”, and generalize
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the result for arbitrary polynomials. We also show that in the anisotropic real case, if the
degree is odd, then such polynomials always admit roots in the subspace orthogonal to the
doubled subalgebra.

2 Cayley-Dickson Algebras

Given a unital m-dimensional F -algebra A with involution a 7→ a, we can construct
an algebra B called the Cayley-Dickson doubling of A with parameter γ ∈ F×, in the
following way: B = A× A, with multiplication in B given by

(a, b) · (c, d) = (ac+ γdb, da+ bc)

for any a, b, c, d ∈ A. The involution extends to (a, b) = (a,−b). Let us denote the algebra
B, which is the algebra resulting of the Cayley-Dickson doubling of A, by CD(A, γ).
Writing B = A⊕ Av by the identification (a, b) ↔ a+ bv, we have v2 = γ.

The Cayley-Dickson algebras An are defined recursively by starting with a quadratic
separable extension A1 of F with the nontrivial automorphism as the involution, and
doubling any finite number of times with γ2, . . . , γn. When char(F ) ̸= 2,

A1 = F [x : x2 = γ1]

is a Cayley-Dickson doubling of A0 = F with the trivial involution.
For example, taking F = R and γi = −1 for all i, we get the classical Cayley-Dickson

construction: A1 = C, A2 = H, A3 = O, A4 = S, etc. It should be noted that in each step
we lose a nice property of the previous algebra in the case of the classic Cayley-Dickson
construction: C is not ordered, H is furthermore not commutative, O is furthermore not
associative (although alternative), and S is not even alternative (and their norm is not
multiplicative, which causes non-trivial zero divisors to appear). A similar loss of properties
occurs in the general case as well, which makes An extremely hard to work with as n grows
(it becomes very hard to work with from n ≥ 4). Nevertheless, all Cayley-Dickson algebras
are flexible, i.e., satisfy (ab)a = a(ba) for any a and b, and power-associative [6].

Each Cayley-Dickson algebra is equipped with a quadratic norm form Norm : A → F
and a linear trace form Tr : A → F given by Norm(λ) = λλ and Tr(λ) = λ + λ. The
algebra is quadratic in the sense that every λ ∈ A satisfies

λ2 − Tr(λ)λ+Norm(λ) = 0.

See [5, Chapter 33].
The polynomial ring of a Cayley-Dickson algebra of A is defined by A[x] := A⊗F F [x].

See [2, Section 2.3].
To specify the type of roots under discussion here, we recall the definition of a (regular)

root as opposed to an alternating root:

Definition 2.1. Let A be a Cayley-Dickson algebra over F with involution a 7→ a and let
f(x) = anx

n + · · ·+ a1x+ a0 ∈ A[x].
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• λ is called a regular root if an(λ
n) + an−1(λ

n−1) + · · ·+ a1λ+ a0 = 0.

• λ is called an alternating root if an . . . λλλλ+ · · ·+ a2λλ+ a1λ+ a0 = 0

3 Finding alternating roots

This section is dedicated to the method of finding alternating roots of a given poly-
nomial, in the case that A is a division Cayley-Dickson algebra over any field, which
guarantees that A has a multiplicative anisotropic norm, which in turn means that A is of
dimension at most 8 over its center.

Let f(x) = anx
n + · · · + a1x + a0. To avoid splitting into cases, suppose n = 2k + 1,

but a2k+1 might be 0. In that case, a2k ̸= 0.
Suppose λ is an alternating root of f . Let us rewrite the equation f(x) = 0 as follows:

a2k+1x
2k+1 + a2k−1x

2k−1 + · · ·+ a1x = −(a2kx
2k + · · ·+ a2x

2 + a0)

Now, plugging in λ as an alternating root yields:

(a2k+1(λλ)
k + a2k−1(λλ)

k−1 + · · ·+ a1)λ = −(a2k(λλ)
k + · · ·+ a2(λλ) + a0)

But notice that Norm(λ) = λλ, that is, the norm of λ, which is in the base field F of the
Cayley-Dicskon algebra. So, set N = Norm(λ) and we get:

(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)λ = −(a2kN
k + · · ·+ a2N + a0)

Now, let us take the norm of both sides. We get:

LHS = λ(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)λ

Claim 3.1. All the coefficients of

(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)

as a polynomial in the variable N are central, i.e., in Z(A).

Proof. They are all sums of norms Norm(ar) = arar and traces Tr(aras) = aras+asar like
in [4].

So, overall, we get that:

LHS = N(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)

which is central.
And, for the right hand side:

RHS = (a2kN
k + · · ·+ a2N + a0)(a2kN

k + · · ·+ a2N + a0).
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Claim 3.2. All the coefficients of

−(a2kN
k + · · ·+ a2N + a0)(a2kN

k + · · ·+ a2N + a0)

as a polynomial in the variable N are central in A.

Proof. Similar to the proof of claim 3.1.

So, overall, we get that p(N) = RHS − LHS is a polynomial in N with central
coefficients.

Proposition 3.3. The intersection between the set of central roots of p(N) and the image
of the norm form Norm : A → F is the set of norms of alternating roots of f(x). For each
such norm N0 in this intersection, either all the elements in A of this norm are alternating
roots of f(x), which happens when LHS|N=N0 = 0, or the unique λ satisfying

(a2k+1N
k
0 + a2k−1N

k−1
0 + · · ·+ a1)λ = −(a2kN

k
0 + · · ·+ a2N0 + a0)

is the one and only alternating root of f(x) of norm N0.

Proof. Most of the argument follows immediately from the discussion above. It is left
to explain the case of LHS|N=N0 = 0. In this case, also RHS|N=N0 = 0, because N0

is a root of p(N) = RHS − LHS. In this case, for each λ with norm N0, the norm of
a2k(λλ)

k + · · ·+ a2(λλ) + a0 is zero, which implies that

a2k(λλ)
k + · · ·+ a2(λλ) + a0 = 0

because the norm form is anisotropic, and similarly

(a2k+1N
k + a2k−1N

k−1 + · · ·+ a1)λ = 0

for the same reason, and thus the necessary and sufficient condition for being an alternating
root is satisfied automatically for any λ of norm N0.

Example 3.4. Consider f(x) = x2+ ix−1− ij ∈ H[x]. In this case, RHS = N2−2N +2
and LHS = N , and thus

p(N) = N2 − 3N + 2 = (N − 2)(N − 1).

Therefore, the norms of alternating roots are either N1 = 1 or N2 = 2. In the case of
N1 = 1, we obtain iλ1 = ij, and thus λ1 = j, and in the case of N2 = 2, we obtain
iλ2 = −1 + ij, and thus λ2 = i+ j.

Remark 3.5. A polynomial may not have any alternating roots, for example, f(x) = x2+1
over Hamilton’s quaternions H. If it had an alternating root λ, then λλ + 1 = 0, which
means Norm(λ) + 1 = 0, but the norm is always non-negative.
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Remark 3.6. If A = An is the Cayley-Dickson algebra constructed over the real numbers
A0 = R by repeatedly choosing γ = −1 and

f(x) = a2k+1x
2k+1 + · · ·+ a1x+ a0 ∈ A[x]

is a polynomial of odd degree over A with a2k+1 ̸= 0, then f(x) has an alternating root in
A.

Proof. If a0 = 0, then 0 is an alternating root, so assume a0 ̸= 0. Notice that the final
polynomial p(N), in the case n = 2k + 1, is of degree 2k + 1, the coefficient of N2k+1 is
a2k+1a2k+1, which is positive, and the coefficient of 1 is −a0a0, which is negative. Now,
notice that p(0) = −a0a0 < 0, and limN→∞ p(N) = ∞, so by the Intermediate Value
Theorem, there is N0 ∈ R≥0 such that p(N0) = 0. Hence, there is an alternating root.

3.1 Octave Code

We include here an octave code for computing the alternating roots of quaternion
polynomials over H. In writing the original code, we were assisted by Ido Simon, the first
author’s research assistant. The final version follows the one suggested by the referee.

function [A, b] = AltRoots(pol)

% The function receives the coefficients of a~quaternion polynomial

% ordered from degree zero to the highest degree

% and returns the vector A of alternating roots

% together with a~vector b stressing whether the solution is isolated

% when b = 0 or spherical when b = 1.

L = length(pol.w);

if mod(length(pol), 2)

pol = [pol, 0];

L = L + 1;

endif

eq_even = pol(1:2:L-1);

eq_odd = pol(2:2:L);

N_even = Norm(eq_even);

N_odd = Norm(eq_odd);

eq = [0, N_odd] - [N_even, 0];

R = roots(flip(eq));

A = [];

b = [];

for i = 1:length(R)

if isreal(R(i)) && (R(i) >= 0)

r1 = -quPolyval(eq_odd, R(i));

r0 = quPolyval(eq_even, R(i));

if (isreal(r1)) && (r1.w == 0)

A = [A, quaternion(sqrt(R(i)),0,0,0)];

b = [b, 1];

else
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A = [A, inv(r1) * r0];

b = [b, 0];

endif

endif

endfor

endfunction

function Pol = Norm(pol)

L = length(pol.w);

Pol = zeros(1, 2 * L - 1);

for i = 1:L

for j = 1:L

Pol(i + j - 1) += (pol(i) * conj(pol(j))).w;

endfor

endfor

endfunction

function val = quPolyval(pol, q)

L = length(pol);

val = 0;

power = 1;

for i = 1:L

val += pol(i) * power;

power *= q;

endfor

endfunction

Example 3.7. Running

pkg load quaternion

pol=[quaternion(-1,0,0,-1),quaternion(0,1,0,0),quaternion(1,0,0,0)];

[A, b]=AltRoots(pol)

returns the two isolated roots described in Example 3.4.

4 Correspondence theorem

Throughout this section, let A be an arbitrary Cayley-Dickson F -algebra, B its Cayley-
Dickson doubling, i.e., B = CD(A, γ), for a fixed γ ∈ F×. Moreover, let falt(λ) denote the
result of plugging in λ alternatively in f(x).

Definition 4.1. Let f(x) = anx
n + · · · + a1x + a0 ∈ A[x]. We define f̃(x) ∈ B[x], called

the alternating friend of f(x), to be the following polynomial:

f̃(x) = bnx
n · · ·+ b2x

2 + b1x+ b0
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where b2i =
1
γia2i and b2i+1 =

1
γi+1a2i+1v, when 0 ≤ 2i, 2i+ 1 ≤ n.

Theorem 4.1. For λ ∈ A, falt(λ) = f̃(λv).

Proof. Let N denote the norm of λ. It suffices to show that b2k+1(λv)
2k+1 = a2k+1Nkλ,

and b2k(λv)
2k = a2kNk (as summing over all of them gives yields the desired result). Let

us note the following three facts: both N and γ are central, (λν)2 = γλλ = γN and
(a2k+1ν)(λν) = γλa2k+1. Then

•
b2k+1(λν)

2k+1 = b2k+1((λν)((λν)
2)k) = b2k+1((λν)(γN)k) =

1

γk+1
γkNk(a2k+1ν)(λν) = Nkλa2k+1 = a2k+1Nkλ;

• b2k(λν)
2k = b2k((λν)

2)k = b2k(γN)k = Nka2k = a2kNk.

Corollary 4.2. An element λ in A is an alternating root of f(x) ∈ A[x] if and only if λv

is a regular root of f(x)’s alternating friend, i.e., f̃(x) ∈ B[x].

Proof. falt(λ) = 0 ⇐⇒ falt(λ) = 0 ⇐⇒ f̃(λv) = 0. The last equality is given by the
theorem.

Corollary 4.3. Let A be a division Cayley-Dickson R-Algebra. For all polynomials of odd
degree f(x) = a2k+1x

2k+1 + · · · + a1x + a0 in A, its alternating friend f̃(x) has a regular
root in Av.

Proof. By Remark 3.6, f has an alternating root λ in A, and by the theorem, λv is a regular
root of f ’s alternating friend, f̃(x).

5 Generalized result

Remark 5.1. Let f(x) ∈ A[x], and let f̃(x) be its alternating friend. Then f̃(Av) ⊆ A,

i.e., the image of Av under f̃ is in A.

Proof. By Theorem 4.1, for any λ ∈ A, f̃(λv) = falt(λ) ∈ A.

Let A be a Cayley-Dickson algebra over F , and B = A ⊕ Av its doubling with v2 =
γ. Let h(x) ∈ B[x] be a polynomial, and write h(x) = f̃(x) + g̃(x)v for appropriate
polynomials f(x), g(x) ∈ A[x]. (Their existence is an easy straight-forward computation.)

Theorem 5.2. For every λ ∈ A, λv is a root of h(x) if and only if λ is an alternating root
of f(x) and λ is an alternating root of g(x).
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Proof. It is enough to prove that plugging in λv in the polynomial G(x) = g̃(x)v gives the

same result as the product of g̃(λv) and v, because h(λv) = f̃(λv) + G(λv), and f̃(λv) is

in A while G(λv) is in Av, and so h(λv) = 0 if and only if both f̃(λv) = 0 and G(λv) = 0.
Write N for the norm of λ. Now, for each term g̃n(x) = bnx

n in g̃(x), the corresponding
term in G(x) is Gn(x) = bnvx

n, and so, when n = 2k, we have bn ∈ A,

Gn(λv) = (bnv)(λv)
2k = Nkγkbnv and g̃n(λv) · v = (bn(λv)

2k)v = Nkγkbnv,

and when n = 2k + 1, we have bn = anv ∈ Av,

Gn(λv) = ((anv)v)(λv)
2k+1 = Nkγk+1(an)(λv) = Nkγk+1(λan)v

and
g̃n(λv) · v = ((anv)(λv)

2k+1) · v = (Nkγk(anv)(λv))v = (Nkγk+1λan)v.

It follows that λv is a root of h(x) if and only if λv is a root of f̃(x) and λv is a root of

g̃(x). In turn, λv is a root of f̃(x) if and only if λ is an alternating root of f(x), and λv is
a root of g̃(x) if and only if λ is an alternating root of g(x).
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