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On biharmonic functions on vector bundles

Mohamed Tahar Kadaoui Abbassi, Souhail Doua and Ibrahim Lakrini

Abstract. This paper is devoted to the investigation of harmonic and biharmonic
functions on vector bundles equipped with spherically symmetric metrics. We will
study the biharmonicity of vertical lifts of functions as well as r-radial functions on
vector bundle manifolds and, as a consequence, we will construct an infinite two-
parameter family of proper biharmonic functions.

Introduction

The study of harmonic and biharmonic functions constitutes an important problem in
geometric analysis. To be precise, function theory on certain manifolds provides several
insights into their geometries (see [15, 17, 16, 18, 27, 14]). Surprisingly, in spite of their
importance, examples of harmonic and biharmonic functions are scarce, and examples of
proper biharmonic functions are even scarcer. Even for the general theory of harmonic
mappings, few examples of (proper) (bi-)harmonic mappings do exist. Interesting such ex-
amples are given by (proper) (bi-)harmonic vector fields and functions on tangent and unit
tangent sphere bundles endowed with g-natural metrics (see [3, 4, 5, 6, 7] and the refer-
ences therein). In this paper, we are interested in finding examples of (proper) biharmonic
functions.
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In the context of geometry of vector bundles, the first and third authors studied har-
monic function theory for a class of Riemannian metrics known as spherically symmetric
metrics (cf. [11]). They also used this to infer interesting results on the geometry of
these spaces. In particular, they studied the harmonicity of vertical lifts as well as a
class of functions known as r-radial functions [11]. We will investigate, in this paper, the
biharmonicity of these classes and we will explicitly construct an infinite two-parameter
family of examples of proper biharmonic functions on vector bundle manifolds endowed
with spherically symmetric metrics.

The paper is organized as follows. The first section mainly serves as a background
for the two sections to follow. It contains the necessary preliminaries on harmonic and
biharmonic functions as well as spherically symmetric metrics on vector bundles.

In the second section, we study the biharmonicity of functions vertically lifted to vector
bundles when equipped with spherically symmetric metrics. We compute the bilaplacian of
the vertical lift of a smooth function (Proposition 2.2) and we derive a characterization of
spherically symmetric metrics, with respect to which vertical lifts of (proper) biharmonic
functions are (proper) biharmonic, allowing us to construct explicit examples (Proposition
2.5).

In the third section, we investigate r−radial functions: we compute the bilaplacian
(Proposition 3.3) and we reduce the complexity of the fourth order linear differential equa-
tion we obtain by studying the case of the Sasaki metric (Proposition 3.5 and Corollary
3.6). Consequently, we construct two infinite families of examples (Proposition 3.8) of
biharmonic functions.

All manifolds and geometric objects are assumed to be smooth and smooth will always
mean differentiability of class C∞. Unless otherwise stated, all manifolds are assumed to
be connected and without boundary.

1 Preliminaries

1.1 Harmonic and biharmonic functions

Let (M, g) and (N, h) be two Riemannian manifolds. Denote by ∇g and ∇h their Levi-
Civita connections, and m and n their dimensions, respectively. We denote by C∞(M,N)
the set of smooth mappings from M to N .

For a smooth map ϕ : M −→ N , the differential map dϕ : TM −→ TN , of the map
ϕ, is a smooth section of the bundle T ∗M ⊗ ϕ−1TN , where ϕ−1TN is the pullback of the
vector bundle TN by ϕ. The energy density of ϕ is the function defined by e(ϕ) = 1

2
∥dϕ∥2,

where ∥.∥ is the Hilbert-Schmidt norm of ϕ. The energy density is locally expressed as

e(ϕ) =
1

2
trg(ϕ

∗h) =
1

2

m∑
i=1

ϕ∗h(ei, ei),

where {ei : i = 1, . . . ,m} is any local orthonormal frame of M .
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For any compact subset Ω ⊂M , the energy of ϕ on Ω is given by

E(ϕ,Ω) =

∫
Ω

e(ϕ)υg, (1)

where υg is the Riemannian volume element of the Riemannian manifold (M, g).
A smooth variation of ϕ is a family of mappings {ϕt}−ϵ<t<ϵ ⊂ C∞(M,N) which depends

smoothly on t such that the mapping F : (−ϵ, ϵ) ×M −→ N defined by F (t, x) = ϕt(x),
for −ϵ < t < ϵ and x ∈M , satisfies

i) F is smooth,

ii) F (0, x) = ϕ(x), for all x ∈M .

Any smooth variation {ϕt}−ϵ<t<ϵ of ϕ determines a smooth vector field along ϕ, that is, a
section of the vector bundle ϕ−1TN , defined by

V (x) =
d

dt


t=0
ϕt(x), (2)

for all x ∈M . The vector field V is called the variational vector field of the variation {ϕt}.
A smooth map ϕ : (M, g) −→ (N, h) is said to be a harmonic map if, for every compact

subset Ω of M , ϕ is a critical point of the energy functional E(.,Ω), i.e., for every compact
subset Ω of M and every variation {ϕt}−ϵ<t<ϵ of ϕ, such that ϕ = ϕ0 and ϕ(x) = ϕt(x) for
all x ∈M \ Ω and all t, we have

d

dt


t=0
E(ϕt,Ω) = 0.

If M is a compact manifold and ϕ : M −→ N is a map, then we denote the energy
E(ϕ,M) of ϕ on M by E(ϕ) and, for every smooth variation {ϕt}−ϵ<t<ϵ of ϕ, we have

d

dt


t=0
E(ϕt) = −

∫
M

h(V, τ(ϕ))υg,

where V is the variational vector field associated with the variation {ϕt} and τ(ϕ) is a
vector filed along ϕ, called the tension field of ϕ, and given by

τ(ϕ) =
m∑
i=1

(
ϕ∗∇h

ei
dϕ(ei)− dϕ(∇g

ei
ei)

)
,

where {ei} is a linear orthonormal frame of M .
Hence, harmonic maps on compact manifolds are characterized as smooth maps with

vanishing tension field. Since the equation τ(ϕ) = 0 is tensorial, it can be generalized to
non-compact manifolds. Indeed, a map ϕ : (M, g) −→ (N, h) is said to be harmonic if
τ(ϕ) = 0. For further details about harmonic maps, we refer to [20].
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Further, if N = R, then for a function ϕ : M −→ R, the Euler-Lagrange equation
τ(ϕ) = 0 is nothing but the Laplace equation ∆gf = 0, where ∆g is the Laplace-Beltrami
operator of the Riemannian manifold (M, g). In this case, harmonic maps are just harmonic
functions.

In [21], J. Eells and L. Lemaire extended the notion of harmonic maps to biharmonic
maps on compact manifolds which are, by definition, critical points of the bienergy func-
tional :

E2(ϕ) =
1

2

∫
M

||τ(ϕ)||2υg.

G. Jiang ([22]) derived the associated Euler-Lagrange equation of E2,

∆̂τ(ϕ)−
m∑
i=1

RN
(
τ(ϕ), ϕ∗ei

)
ϕ∗ei = 0, (3)

where RN is the Riemannian curvature tensor of (N, h) and ∆̂ is the rough Laplacian

defined by: ∆̂ = −
m∑
i=1

(
ϕ∗∇eiϕ

∗∇ei − ϕ∗∇∇eiei

)
, and ϕ∗∇ is the induced connection on

ϕ−1TN .
The quantity

τ2(ϕ) := ∆̂τ(ϕ)−
m∑
i=1

RN
(
τ(ϕ), ϕ∗ei

)
ϕ∗ei

is called the bitension field of ϕ. As for the case of harmonic maps, when (M, g) is a general
Riemannian manifold (including the non-compact case), a map ϕ : (M, g) → (N, h) is said
to be biharmonic if τ2(ϕ) = 0.

Furthermore, when N = R and f :M −→ R is a smooth function, then τ2(f) = ∆2
g(f),

where ∆2
g is the bilaplacian operator of (M, g). The function f is said to be a biharmonic

function if ∆2
gf = 0.

1.2 Vector bundles and spherically symmetric metrics

Let (E, π,M) be a vector bundle of rank k ≥ 1 with Riemannian base (M, g). We
assume that E is endowed with a fiber metric h and a compatible connection D (i.e.,
Dh = 0). Let K denote the connection map associated with D. Denote by V the vertical
subbundle, that is, the subbundle given by

V =
⋃
e∈E

VeE,

where, for all e ∈ E, VeE = ker(deπ) is the vertical subspace of TeE. The elements of V
are called vertical vectors and a vector field on E is said to be a vertical vector field if it
lies completely in V .

Moreover, if x ∈ M and e, u ∈ π−1(x), set γe,u(t) = e + tu with t ∈ (−ϵ, ϵ), then
γe,u(t) ∈ π−1(x), for all |t| < ϵ, then the vertical lift of u at e is defined to be the vertical
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vector given by uve =
d
dt

∣∣
t=0
γe,u(t). Using vertical lifts of elements of E to vertical vectors,

we can lift sections of E. Indeed, if σ is a section of E, its vertical lift is the vertical vector
field σv defined by

σv(e) = σ(π(e))ve ,

where σ(π(e))ve is the vertical lift of σ(π(e)) at e. The vertical subbundle V is naturally
isomorphic to the pullback of E

π−→M by π which we denote by π⋆E −→ E (see [19, 25]).
The connection D gives rise, at each point e ∈ E, to the horizontal subspace given by

HeE = ker (Ke), which is complementary to the vertical subspace, i.e., TeE = VeE⊕HeE,
which gives the horizontal subbundle

H =
⋃
e∈E

HeE,

such that
TE = H⊕ V . (4)

Elements of H are called horizontal vectors, and a vector field is said to be a horizontal
vector field if it lies completely in H. If x ∈ M and X ∈ TxM , the horizontal lift of X
at e is the horizontal vector Xh

e satisfying deπ(X
h
e ) = X. Further, if X ∈ X(M), then

the horizontal vector lift of X is the horizontal vector field Xh ∈ X(E) such that (Xh)e is
the horizontal lift of Xπ(x) at e. The horizontal sub-bundle is naturally isomorphic to the
pullback vector bundle π∗TM −→ E, thus

H⊕ V = TE ≃ π∗TM ⊕ π⋆E

The later splitting gives rise to a splitting of vector fields of E. Indeed, for all Z ∈ X(E),
we have Z = ZH + ZV , where ZH is the horizontal component and ZV is the vertical
component.

In the context of Riemannian geometry of the tangent bundle of a Riemannian manifold,
S. Sasaki introduced, in [26], a Riemannian metric induced from the Riemannian metric
on the base manifold known as the Sasaki metric, we refer the reader to [1, 2] for details on
the Riemannian geometry of tangent bundles. It had been shown that the Sasaki metric
presents a strong rigidity in the sense of [23, 24]. In order to overcome such a rigidity,
many classes of metrics were introduced (e.g., [13, 24]).

In the case of tangent bundles, the Sasaki metric can be easily expressed as follows.
If (M, g) is an n-dimensional Riemannian manifold, the Sasaki metric Gs on the tangent
bundle TM of M is given by:

• Gs(Xh, Y h) = g(X, Y )

• Gs(Xh, Y v) = 0

• Gs(Xv, Y v) = g(X, Y )
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for all vector fields X, Y on M .
A more general class of Riemannian metrics on the total spaces of vector bundles, the

so-called spherically symmetric metrics, was introduced in [12]. Those metrics are defined
as follows.

Ge(X, Y ) = e2φ1g(dπ(X), dπ(Y )) + e2φ2h(Ke(X), Ke(Y )), (5)

where φ1 and φ2 are scalar functions on E depending only on the squared norm of e, that
is, r = ∥e∥2 = h(e, e). We require the φ1 an φ2, as well as all their successive derivatives,
to be smooth on (0,+∞) and at r = 0 on the right. Spherically symmetric metrics may
be expressed using pullbacks as follows.

G = e2φ1π∗g ⊕ e2φ2π⋆h, (6)

In the case, φ1 = φ2 = 0, we obtain the generalization of the Sasaki metric to vector
bundle manifolds. Further, if E = TM , we obtain the Sasaki metric itself.

Spherically symmetric metrics have been extensively studied in [12, 9, 8, 10, 11]. We
shall recall some necessary technical tools we will be using in the forthcoming calculations.

In what follows, we will make use of the following notations:

(i) ⟨., .⟩M = π∗g,

(ii) ⟨., .⟩E = π⋆h,

(iii) ⟨., .⟩ = π∗g ⊕ π⋆h.

The Levi-Civita connection of the metric given in (5) is computed in [12] and given as
follows:

Proposition 1.1. Let X and Y be two vector fields on E, then

∇̃XY = D̃XY + CXY + AXY − 1

2
Rξ(X, Y ),

where

i) D̃ = π∗∇⊕ π⋆D, where ∇ is the Levi-Civita connection of (M, g);

ii) C(., .) is the vector valued form given by

CXY = a
(
ξ♭(X)Y H + ξ♭(Y )XH

)
+ c1⟨XH , Y H⟩ξ + c2⟨XV , Y V ⟩ξ

+ b
(
ξ♭(X)Y V + ξ♭(Y )XV

)
,

with {
a = 2φ′

1, c1 = −2φ′
1e

2(φ1−φ2),
b = 2φ′

2, c2 = −2φ′
2,

for all X, Y ∈ X(E), ξ being the tautological section of the vertical sub-bundle defined
by ξe = eve ∈ π⋆E and where ‘ ♭’ is taken with respect to h;
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iii) Rξ(X, Y ) = π⋆RE(X, Y )ξ, for all X, Y ∈ X(E) where RE is the curvature of D;

iv) A(., .) is the π∗TM-valued form defined by

e2φ1⟨A(X, Y ), Z⟩M =
e2φ2

2

(
⟨Rξ(X,Z), Y ⟩E + ⟨Rξ(Y, Z), X⟩E

)
,

for all X, Y and Z ∈ X(E).

1.3 Some classes of functions on vector bundles

Total spaces of vector bundles, and particularly tangent bundles, can be endowed with
different classes of functions. We shall focus on lifted functions, that is, functions on total
spaces constructed from functions on the base manifold.

In the general context of vector bundles the first and third authors studied, in [11], the
harmonicity of the following classes of functions:

(C1) Vertical lifts of functions on M , that is, functions of the form f v = f ◦ π where
f ∈ C∞(M).

(C2) Functions of the form F : E −→ R such that F (e) = α(r), where r = h(e, e) and
α : R+ −→ R is a real valued function which is smooth on (0,+∞) and at r = 0 on
the right. We refer to those functions as r-radial functions.

(C3) Functions of the form Fσ : E −→ R such that Fσ(e) = h(σ(π(e)), e), where σ ∈ Γ(E)
is a section.

Henceforward, we shall always endow the total space of a vector bundle with a spheri-
cally symmetric metric G, with weight functions φ1 and φ2, of the form (5) (or equivalently,
of the form (6)).

In what follows, we investigate biharmonic functions on total spaces of vector bundles
endowed with spherically symmetric metrics. So, we assume that (E, π,M) is a vector
bundle for which E is endowed with a spherically symmetric metrics of the form (6). We
shall begin with vertical lifts then we consider r-radial functions.

2 Biharmonicity of vertical lifts of functions to vector bundles

We shall make calculations in a particularly suitable orthonormal frame which we
construct as follows. Let e ∈ E with x = π(e), and let {ei : i = 1, . . . ,m} be a local
linear orthonormal frame of M in a neighbourhood of x. For i = 1, . . . ,m, we denote by
ehi the horizontal lift of ei to E with respect to the connection D. On the other hand, let
{σp : p = 1, . . . , k} be an orthonormal frame of E and let σv

p , for p = 1, . . . , k, be the
vertical lift of σp. Then set

Ei = e−φ1ehi and Em+p = e−φ2σv
p , i = 1, . . . ,m, p = 1, . . . , k; (7)
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therefore {EI : I = 1, . . . ,m+ k} is a local linear orthonormal frame of E in a neighbour-
hood of e. We refer to such frames as the induced local frames on E.

For the sake of completeness, we recall the following lemma (see [12]) which gives
the directional derivatives of functions depending on r in the direction of horizontal and
vertical vectors:

Lemma 2.1. Let α be a smooth real scalar function. Then, for any horizontal (resp.
vertical) vector XH (resp. Y V ) on E, we have

i) XH(α(r)) = 0;

ii) Y V (α(r)) = 2α′(r)ξ♭(Y V ).

We will also be using the following formulas for the directional derivatives of the vertical
lift of a function in the direction of horizontal and vertical vector fields:

• For every f ∈ C∞(M) and every vertical vector field XV , we have XV (f v) = 0.

• For every f ∈ C∞(M) and every vector field X ∈ X(M), we have Xh(f v) = (Xf)v.

Using induced local frames of the form (7) and Lemma 2.1, in [11], the authors proved
the following formulas:

• For every f ∈ C∞(M), we have ∇̃f v = e−2φ1(∇f)h.

• For every f ∈ C∞(M), we have ∆G(f
v) = e−2φ1(∆gf)

v.

• For every r-radial function F (e) = α(r), we have ∇̃F = 2e−2φ2α′ξ, where ξ is the
tautological vector field defined earlier.

• We have that div(ξ) = 2mrφ′
1 + (1 + 2rφ′

2)k.

Using all the previous formulas, we have:

Proposition 2.2. For every smooth function f on M , we have

∆2
G (f v) = e−4φ1

(
∆2

gf
)v − 4e−2(φ1+φ2)

(
2rφ′′

1 − 4rφ′
1 (φ1 + φ2)

′

+ 2mr(φ′
1)

2 + 2krφ′
1φ

′
2 + kφ′

1

)
(∆gf)

v.

Proof. Let f :M −→ R be a smooth function. Then

∆G(∆Gf
v) = ∆G

(
e−2φ1(∆gf)

v
)

= ∆G(e
−2φ1)(∆gf)

v + e−2φ1∆G

(
(∆gf)

v
)
+ 2G

(
∇̃(e−2φ1), ∇̃((∆gf)

v)
)
.

On the other hand, we have

G
(
∇̃(e−2φ1), ∇̃((∆gf)

v)
)
= G

(
− 4φ

′

1e
−2(φ1+φ2)ξ, e−2φ1(∇∆gf)

h
)
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= −4φ
′

1e
−2(2φ1+φ2)G

(
ξ, (∇∆gf)

h
)
= 0,

∆G

(
(∆gf)

v
)
= e−2φ1(∆2

gf)
v

and

∆G

(
e−2φ1

)
= div(∇̃(e−2φ1))

= −4div(φ
′

1e
−2(φ1+φ2)ξ)

= −4ξ.(φ
′

1e
−2(φ1+φ2))− 4φ

′

1e
−2(φ1+φ2)div(ξ)

= −4ξ.(φ
′

1)e
−2(φ1+φ2) − 4φ

′

1ξ.(e
−2(φ1+φ2))− 4φ

′

1e
−2(φ1+φ2)div(ξ)

= −8rφ
′′

1e
−2(φ1+φ2) + 16rφ

′

1(φ1 + φ2)
′
e−2(φ1+φ2)

− 4φ
′

1

(
2mrφ

′

1 + (1 + 2rφ
′

2)k
)
e−2(φ1+φ2)

= −4e−2(φ1+φ2)
(
2rφ

′′

1 − 4rφ
′

1(φ1 + φ2)
′
+ 2mr(φ

′

1)
2 + 2krφ

′

1φ
′

2 + kφ
′

1

)
.

Finally, we get

∆2
G(f

v) = e−4φ1(∆2
gf)

v − 4e−2(φ1+φ2)
(
2rφ

′′

1 − 4rφ
′

1(φ1 + φ2)
′

+ 2mr(φ
′

1)
2 + 2krφ

′

1φ
′

2 + kφ
′

1

)
(∆gf)

v.

A straightforward result can be formulated as follows: If f : M −→ R is a harmonic
function, then f v is a biharmonic function on (E,G).

In what follows, we shall make certain choices of the functions φ1 and φ2 in order to
construct (proper) biharmonic functions on E from (proper) biharmonic functions on M .

We remark that the vertical lift of a (proper) biharmonic function on M is a (proper)
biharmonic function on E if and only if

(E) 2rφ
′′

1 − 4rφ
′

1(φ1 + φ2)
′
+ 2mr(φ

′

1)
2 + 2rkφ

′

1φ
′

2 + kφ
′

1 = 0.

Hence, we shall focus on finding weight functions φ1 and φ2 that satisfy the previous
equation.

Corollary 2.3. Assume that φ1 is constant and let f : M −→ R be a (proper) biharmonic
function on (M, g), then f v is also a (proper) biharmonic function on (E,G).

Proof. If φ1 is constant, then the equation (E) is trivially verified. Furthermore, if f is a
proper biharmonic function, then in particular f v is biharmonic, and since we have that
∆Gf

v = e−2φ1(∆gf)
v and ∆gf ̸= 0, then ∆Gf

v ̸= 0, which implies that f v is also a proper
biharmonic function.
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Example 2.4. Consider Euclidean space without the originM = Rn\{0} with its Euclidean
metric g0. Let f : Rn → R be the polynomial function defined by

f(x1, . . . , xn) =
(√

x21 + · · ·+ x2n

)−1

A straightforward calculation shows that

∆2
g0
f =

3(n− 5)(n− 3)(√
x21 + · · ·+ x2n

)5

If n = 3 or n = 5, then f is a biharmonic function on (M, g0). Further, we prove that
∆g0f = (3− n)f 3, so if n = 5, the function is in fact proper biharmonic.

Now, let π : E −→M be an arbitrary vector bundle and assume either n = 3 or n = 5.
We endow E with the spherically symmetric metric G = π∗g0 ⊕ e2φ2π⋆g0, where φ2 is an
arbitrary function on [0,+∞) satisfying the regularity requirements of a weight function of
a spherically symmetric metric. Then, the function f v : E −→ R is a biharmonic function
on (E,G). Furthermore, when n = 5, the function f v : E −→ R is a proper biharmonic
function.

Trying to solve equation (E) in various particular cases leads to a differential equation
for which the solutions are singular at zero, which contradicts the regularity requirements
for the weight functions of a spherically symmetric metric.

To make this point clearer, we suggest the following example. Remark that equation
(E) may be rewritten as

(E ′) 2rφ
′′

1 + 2r(m− 2)(φ
′

1)
2 + 2r(k − 2)φ

′

1φ
′

2 + kφ
′

1 = 0.

Proposition 2.5. In the same notation as before, assume that m = 2 and k = 2. If, for
every biharmonic function f on M the vertical lift f v is a biharmonic function on E, then
φ1 is constant.

Proof. Under the conditions m = 2 and k = 2, that is, E is a plane bundle over a
Riemannian surface, equation (E ′) becomes

rφ
′′

1 + φ1 = 0.

Set ψ = φ′
1, the equation becomes a first order differential equation which can be inte-

grated, for r ̸= 0, as follows

ψ(r) = αe−
∫

dr
r ,

which gives

ψ(r) =
α

r
,

for every r ∈]0,+∞[, where α is a real number. Finally we obtain, for every r ∈]0,+∞[,
φ1(r) = α ln(r) + β, with α and β are real numbers.

By the definition of spherically symmetric metrics, φ1 should necessarily be continuous
at 0, in particular, it should have a finite limit at 0, therefore α = 0, otherwise f will have
an infinite limit at zero on the right.
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3 Biharmonicity of r-radial functions

In this section, we accomplish a study of the biharmonicity of r-radial functions. For
the rest of this section, let α : R+ −→ R be a real valued function, which is smooth on
(0,+∞) and smooth at r = 0 on the right, and likewise for all its successive derivatives;
so the associated r-radial function F : E −→ R is given by F (e) = α(r) for e ∈ E, with
r = h(e, e).

Along with Lemma 2.1, the following lemma will be used in calculations and can be
found in [12] along with its proof. We recall it for the sake of completeness.

Lemma 3.1. If X ∈ X(E), then π⋆DXξ = XV , where XV is the vertical component of X.

Proposition 3.2. (see [11]) Let α : R+ −→ R be a smooth function on R+, and further let
F : E −→ R be the r-radial function induced from α. Then

∆GF = 4e−2φ2

{
rα′′ +

(
mrφ′

1 + (k − 2)rφ′
2 +

k

2

)
α′
}
.

Using the previous expression of the Laplacian ∆G(F ), we find:

Proposition 3.3. Let α : R+ −→ R be a smooth function on R+, and let F : E −→ R be
the r-radial function induced from α, then

∆2
G(F ) = −16φ

′
2e

−4φ2

(
rα

′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′
)
α

′

+ 4e−2φ2

[
e−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)]

div(ξ)

− 8φ
′
2re

−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)

+ 4re−2φ2

(
α(3) + rα(4) +

(
2mφ

′′
1 +mrφ

(3)
1 + 2(k − 2)φ

′′
2 + r(k − 2)φ

(3)
2

)
α

′

+ 2
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α(3)

)
− 8rφ

′
2e

−6φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)
.
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Proof. We have

∆2
G(F ) = 4∆G

(
e−2φ2

(
rα

′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′))
= 4

[
∆G(e

−2φ2)
(
rα

′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′
)

+ e−2φ2∆G

(
rα

′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′)
+ 2G

(
∇̃(e−2φ2), ∇̃[rα

′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′
]
)]
.

Set

L = rα
′′
+ (mrφ

′
1 + (k − 2)rφ

′
2 +

k

2
)α

′
.

We have:
∇̃(e−2φ2) = −4φ

′
2e

−4φ2ξ, (8)

and

∇̃L = ∇̃r.α
′′
+ r.∇̃α

′′
+
(
m(∇̃r.φ

′
1 + r∇̃φ

′
1) + (k − 2)(∇̃r.φ

′
2 + r∇̃φ

′
2)
)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2

)
∇̃α

′

= 2e−2φ2α
′′
ξ + 2re−2φ2α(3)ξ + 2α

′′
e−2φ2

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2

)
ξ

+
(
m(2e−2φ2φ

′
1ξ + 2rφ

′′
1e

−2φ2ξ)

+ (k − 2)(2φ
′
2e

−2φ2ξ + 2rφ
′′
2e

−2φ2ξ)
)
α

′

= e−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)
ξ,

(9)

by (8) and (9), we obtain

G
(
∇̃(e−2φ2), ∇̃L

)
= −4φ

′
2e

−6φ2G(ξ, ξ)

(
rα(3) +

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

= −4rφ
′
2e

−6φ2

(
rα(3) +

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′
)
.

(10)

On the other hand, we have

∆GL = div

[
e−2φ2

(
rα(3) +

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′
)
ξ

]
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= ξ.

[
e−2φ2

(
rα(3) +

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′
)]

+

[
e−2φ2

(
rα(3) +

(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′
)]

div(ξ).

Set

S = e−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)
,

thus

ξ(S) = ξ.

[
e−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)]

= 2ξ.(e−2φ2)

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)

+ 2e−2φ2

(
ξ.(r)α(3) + rξ.(α(3)) +

(
mξ.(φ

′
1) +mξ.(r)φ

′′
1 +mrξ.(φ

′′
1)

+ (k − 2)ξ.(φ
′
2) + ξ.(r)(k − 2)φ

′′
2 + r(k − 2)ξ(φ

′′
2)
)
α

′

+
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
ξ.(α

′
)

+
(
mξ.(r)φ

′
1 +mrξ.(φ

′
1) + ξ(r)(k − 2)φ

′
2 + r(k − 2)ξ.(φ

′
2)
)
α

′′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
ξ.(α

′′
)

)
= −8φ

′
2re

−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)

+ 2e−2φ2

(
2rα(3) + 2r2α(4) +

(
2mrφ

′′
1 + 2mrφ

′′
1 + 2mr2φ

(3)
1

+ 2r(k − 2)φ
′′
2 + 2r2(k − 2)φ

(3)
2

)
α

′

+ 2r
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′′
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+
(
2mrφ

′
1 + 2mr2φ

′′
1 + 2r(k − 2)φ

′
2 + 2r2(k − 2)φ

′′
2

)
α

′′

+ 2r
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α(3)

)
.

Then

∆GL =

[
e−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)]

div(ξ)

− 8φ
′
2re

−2φ2

(
rα(3) +

(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′

+
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α

′′
)

+ 2e−2φ2

(
2rα(3) + 2r2α(4) +

(
2mrφ

′′
1 + 2mrφ

′′
1 + 2mr2φ

(3)
1

+ 2r(k − 2)φ
′′
2 + 2r2(k − 2)φ

(3)
2

)
α

′

+ 2r
(
mφ

′
1 +mrφ

′′
1 + (k − 2)φ

′
2 + r(k − 2)φ

′′
2

)
α

′′

+
(
2mrφ

′
1 + 2mr2φ

′′
1 + 2r(k − 2)φ

′
2 + 2r2(k − 2)φ

′′
2

)
α

′′

+ 2r
(
mrφ

′
1 + r(k − 2)φ

′
2 +

k

2
+ 1

)
α(3)

)
.

(11)

Finally, by (10) and (11), we obtain the desired equation.

Remark 3.4. It is clear that the expression of the bilaplacian of an r-radial function is a
highly complex fourth order linear differential equation with variable coefficients. Solving
of such a differential equation is a problem which cannot be resolved using the classical
approaches to differential equations. We are forced to make certain simplifications in order
to give examples of biharmonic functions.

Proposition 3.5. Assume that φ1 = φ2 = 0 (i.e., G is the Sasaki metric). Let F : E −→ R
be an r-radial function constructed from a function α : [0,+∞[−→ R, then F is biharmonic
if and only if α satisfies the linear differential equation

2r2α(4) + (3k + 4)rα(3) + k(k + 2)α(2) = 0. (12)

Proof. Using the formula of Proposition 3.3, the r-radial function F is biharmonic if and
only if ∆2

GF = 0, where

∆2
GF = 4

(
rα(3) +

(k
2
+ 1

)
α

′′
)
div(ξ) + 2

(
2rα(3) + 2r2α(4) + 2r

(k
2
+ 1

)
α(3)

)
.
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Using the expression of the divergence of the tautological vector field ξ, we obtain that
div(ξ) = k, hence

∆2
GF = 4r2α(4) + (4kr + 4r + 2r(k + 2))α(3) + 2k(k + 2)α(2),

which can be simplified as

∆2
GF = 4r2α(4) + 2(3k + 4)rα(3) + 2k(k + 2)α(2).

This gives the desired equation.

Corollary 3.6. Assume that φ1 = φ2 = 0. Let F : E −→ R be an r-radial function
constructed from a function α : [0,+∞[−→ R. If α is a polynomial function of degree 1,
then F is biharmonic.

Proof. If α is a polynomial function of degree 1, then α(2) = α(3) = α(4) = 0, hence equation
(12) is trivially verified.

Example 3.7. In the case of the Sasaki metric, thanks to the previous corollary, we obtain a
2-parameter family of biharmonic functions. Furthermore, in virtue of Proposition 3.2, an
r-radial function F constructed from a degree one polynomial function α : [0,+∞[−→ R is
harmonic if and only if α′ = 0. Hence by choosing a function α(r) = ar+b with (a, b) ∈ R2

and a ̸= 0, we obtain a proper biharmonic function. Therefore, we obtain a 2-parameter
family of proper biharmonic functions.

In what follows, we shall try to find other solutions of equation (12). First of all,
we make the following change of variable in equation (12). Set ψ = α(2). The equation
becomes

2r2ψ(2) + (3k + 4)rψ′ + k(k + 2)ψ = 0. (13)

We remark that the order of derivation of ψ and the power of r in the equation are
somehow related (the order of derivation of ψ and the power of r are the same for the
three terms of the equation). This suggests that we can search for solutions of the of form
ψ(r) = βrn, where β ∈ R and n ∈ Z.

A function of the form ψ(r) = βrn, where β ∈ R and n ∈ Z∗, is a solution of equation
(13) if and only if

2βn(n− 1)rn + β(3k + 4)rn + k(k + 2)βrn = 0, (14)

or equivalently
2n(n− 1) + (3k + 4)n+ k(k + 2) = 0, (15)

which can be rewritten as a quadratic equation in n of the form

2n2 + (3k + 2)n+ k(k + 2) = 0. (16)

Hence the problem is reduced to an equation relating the power n and the bundle rank k.
So, by fixing the bundle rank, we will end up solving a quadratic equation in n. This

will give a procedure for constructing examples of biharmonic functions for different vector
bundle ranks. We have the following possibilities for k:
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• In case k = 1 (i.e., line bundles): equation (16) becomes

2n2 + 5n+ 3 = 0.

The discriminant of the equation is ∆ = 1, hence the equation has two solutions,
n1 = −1 and n2 =

−3
2
. Therefore, by choosing the first solution, we have a family of

solutions given as ψ = β
r
. These are solutions on ]0,+∞[ which cannot be extended

by continuity at zero.

• In case k = 2 (i.e., plane bundles): equation (16) becomes

2n2 + 8n+ 8 = 0,

which has a vanishing discriminant, therefore a unique solution n = −2. Hence a
family of solutions, ψ(r) = β

r2
, on ]0,+∞[ with no extension by continuity at zero.

• k ≥ 3: the discriminant of the quadratic equation (16) is given by

∆ = (3k + 2)2 − 8k(k + 2) = 9k2 + 12k + 4− 8k2 − 16k

= k2 − 4k + 4 = (k − 2)2

thus, we obtain two solutions

s1 =
−(3k + 2)− (k − 2)

4
= −k

and

s2 =
−(3k + 2) + (k − 2)

4
=

−k
2

Hence when k is even, we obtain two families of solutions given by βr−k and βr−
k
2 , and

when k is odd, we obtain a single family solutions given by βr−k. In all the previous
cases, we obtain families of solutions on ]0,+∞[ with no extension by continuity to
zero.

Finally, we integrate the solutions ψ that we found:

• For k = 1, we have ψ(r) = β 1
r
, hence α′(r) = β ln(r) + γ, thus α(r) = β(r ln(r) −

r) + γr + δ, where δ, γ, β are real constants with β ̸= 0.

• For k = 2, we have ψ(r) = βr−2, thus we obtain α′(r) = −β
r
+ γ, hence α(r) =

−β ln(r) + γr + δ, where δ, γ, β are real constants with β ̸= 0.

• When k ≥ 3, we separate the even and odd cases:
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– In case k is even, we obtain two families of solutions: ψ1(r) = β1r
−k and

ψ2(r) = β2r
−k
2 . Thus, by integration, we find two families

α′
1(r) =

β1
−k + 1

r1−k + γ1, and α
′
2(r) =

β2

−k
2
+ 1

r1−
k
2 + γ1,

which gives

α1(r) =
β1

(1− k)(2− k)
r2−k + γ1r + δ1, and

α1(r) =
β1

(1− k
2
)(2− k

2
)
r2−

k
2 + γ2r + δ2,

where δ1, γ1, β1, δ2, γ2, β2 are real constants with β ̸= 0 and β ̸= 0.

– In case k is odd: we obtain a family of solutions ψ(r) = βr−k, hence

α′(r) =
β

1− k
r1−k + γ,

which gives

α(r) =
β

(1− k)(2− k)
r2−k + γr + δ,

where δ, γ, β are real constants with β ̸= 0.

We remark that all the previous solutions are defined on R∗
+ with no extension to zero.

Therefore, we obtain biharmonic functions on E∗ = E \O where O is the zero section. To
summarize, by the previous study, we have:

Proposition 3.8. Assume that φ1 = φ2 = 0. Let F : E −→ R be an r-radial function
constructed from a function α : [0,+∞[−→ R.

• If k = 1, then there exists a family of biharmonic functions on E∗ induced by the
functions of the form

α(r) = β(r ln(r)− r) + γr + δ,

where δ, γ, β are real constants with β ̸= 0.

• If k = 2, then there exists a family of biharmonic functions on E∗ induced by the
functions of the form

α(r) = −β ln(r) + γr + δ,

where δ, γ, β are real constants with β ̸= 0.

• If k ≥ 3, then we have two sub-cases:



278 Mohamed Tahar Kadaoui Abbassi, Souhail Doua and Ibrahim Lakrini

– If k is even, there exist two families of biharmonic functions on E∗ induced by
functions of the form

α1(r) =
β1

(1− k)(2− k)
r2−k + γ1r + δ1, and

α1(r) =
β1

(1− k
2
)(2− k

2
)
r2−

k
2 + γ2r + δ2,

where δ1, γ1, β1 and δ2, γ2, β2 are real constants with β ̸= 0 and β ̸= 0.

– If k is odd, there exists a family of biharmonic functions on E∗ induced by
functions of the form

α(r) =
β

(1− k)(2− k)
r2−k + γr + δ,

where δ, γ, β are real constants with β ̸= 0.
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[3] M. T. K. Abbassi and G. Calvaruso. Harmonic maps having tangent bundles with g-natural
metrics as source or target. Rend. Semin. Mat. Univ. Politec. Torino, 68(1):37–56, 2010.

[4] M. T. K. Abbassi, G. Calvaruso, and D. Perrone. Some examples of harmonic maps for
g-natural metrics. Ann. Math. Blaise Pascal, 16(2):305–320, 2009.

[5] M. T. K. Abbassi, G. Calvaruso, and D. Perrone. Harmonic maps defined by the geodesic
flow. Houston J. Math., 36(1):69–90, 2010.

[6] M. T. K. Abbassi, G. Calvaruso, and D. Perrone. Harmonic sections of tangent bundles
equipped with Riemannian g-natural metrics. Q. J. Math., 62(2):259–288, 2011.

[7] M. T. K. Abbassi and S. Doua. On the biharmonicity of vector fields and unit vector fields.
J. Geom. Anal., 32(3):Paper No. 82, 52, 2022.

[8] M. T. K. Abbassi and I. Lakrini. Conformal vector fields on vector bundle manifolds with
spherically symmetric metrics. Publ. Math. Debrecen, 97(3-4):289–311, 2020.

[9] M. T. K. Abbassi and I. Lakrini. On the completeness of total spaces of horizontally con-
formal submersions. Commun. Math., 29(3):493–504, 2021.

[10] M. T. K. Abbassi and I. Lakrini. On harmonic sections of vector bundles endowed with
spherically symmetric metrics. Adv. Geom., 22(1):135–150, 2022.



On biharmonic functions on vector bundles 279

[11] M. T. K. Abbassi and I. Lakrini. Some classes of harmonic functions on vector bundles.
Beitr. Algebra Geom., 64(1):175–196, 2023.

[12] R. Albuquerque. On vector bundle manifolds with spherically symmetric metrics. Ann.
Global Anal. Geom., 51(2):129–154, 2017.

[13] M. Benyounes, E. Loubeau, and C. M. Wood. The geometry of generalized cheeger-gromoll
metrics. Tokyo J. Math., 32(2):287–312, 2009.

[14] S. Y. Cheng and S. T. Yau. Differential equations on Riemannian manifolds and their
geometric applications. Comm. Pure Appl. Math., 28(3):333–354, 1975.

[15] T. H. Colding and W. P. Minicozzi II. On function theory on spaces with a lower Ricci
curvature bound. Math. Res. Lett., 3(2):241–246, 1996.

[16] T. H. Colding and W. P. Minicozzi II. Harmonic functions on manifolds. Ann. Math..,
146(3):725–747, 1997.

[17] T. H. Colding and W. P. Minicozzi II. Harmonic functions with polynomial growth. J. Diff.
Geom., 46(1):1–77, 1997.

[18] T. H. Colding and W. P. Minicozzi II. Weyl type bounds for harmonic functions. Invent.
Math., 131(2):257–298, 1998.

[19] S. Dragomir and D. Perrone. Harmonic Vector Fields: Variational Principles and Differen-
tial Geometry. Elsevier Science, 2012.

[20] J. Eells and L. Lemaire. A report on harmonic maps. Bull. London Math. Soc., 10(1):1–68,
1978.

[21] J. Eells and L. Lemaire. Selected topics in harmonic maps, volume 50 of CBMS Regional
Conference Series in Mathematics. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983.

[22] G. Jiang. 2-harmonic maps and their first and second variatinal formulas. Note Mat.,
28(1):209–232, 2008.

[23] O. Kowalski. Curvature of the induced Riemannian metric on the tangent bundle of a
Riemannian manifold. J. Reine Angew. Math., 250:124–129, 1971.

[24] E. Musso and F. Tricerri. Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl.
(4), 150:1–19, 1988.

[25] W. A. Poor. Differential geometric structures. McGraw-Hill Book Co., New York, 1981.

[26] S. Sasaki. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku
Math. J. (2), 10:338–354, 1958.

[27] S. T. Yau. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl.
Math., 28:201–228, 1975.



280 Mohamed Tahar Kadaoui Abbassi, Souhail Doua and Ibrahim Lakrini

Received: August 4, 2023
Accepted for publication: October 14, 2023
Communicated by: Ilka Agricola


	Preliminaries
	Harmonic and biharmonic functions
	Vector bundles and spherically symmetric metrics
	Some classes of functions on vector bundles

	Biharmonicity of vertical lifts of functions to vector bundles
	Biharmonicity of r-radial functions

