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On Young diagrams of maximum dimension

Vasilii Duzhin, Egor Smirnov-Maltsev

Abstract. We study the problem of finding Young diagrams of maximum dimension,
i. e. those with the largest number of Young tableaux of their shapes. Consider a
class of Young diagrams that differ from a symmetric diagram by no more than one
box (i, j) in each row and column. It is proven that when moving boxes (i, j), i > j to
symmetric positions (j, i), the original diagram is transformed into another diagram
of the same size, but with a greater or equal dimension. A conjecture is formulated
that generalizes the above fact to the case of arbitrary Young diagrams. Based on
this conjecture, we developed an algorithm applied to obtain new Young diagrams of
sizes up to 42 thousand boxes with large and maximum dimensions.

1 Introduction

One of the important problems of asymptotic representation theory is the problem of
finding irreducible representations of the symmetric group with maximum dimensions [1,6].
Since such representations are parameterized by Young diagrams, the problem is equivalent
to searching among Young diagrams of a fixed size for those in which the largest number of
Young tableaux can be placed. In other words, the problem comes down to finding Young
diagrams of maximum dimension or maximum Young diagrams.

In [9], the first 130 Young diagrams with maximum dimensions were found by an ex-
haustive search. It was also assumed there that maximum diagrams differ from symmetric
ones by no more than one box. All such diagrams were found up to level 310 of the Young
graph. Finding larger maximum diagrams is difficult due to the exponential growth of
their number.
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Different strategies for searching Young diagrams with large and maximum dimensions
were proposed in [2,7,8]. Particularly, a so-called greedy sequence of Young diagrams was
constructed from the root of the Young graph. In this sequence, each subsequent Young
diagram is obtained from the previous one by adding a box with the maximum Plancherel
probability. It was found that although such a sequence contains diagrams with large
dimensions, not all of them are maximum. For example, the 15th diagram of the greedy
sequence already does not have the maximum dimension. Some algorithms have been
proposed whose idea is to iteratively transform a Young diagram into another diagram of
the same size, but presumably of greater dimension. These algorithms were applied to
Young diagrams from the greedy sequence, resulting in a sequence whose each diagram
has the largest dimension among all known diagrams of the same size.

In [8], the so-called shaking algorithm was used to find diagrams with maximum di-
mensions. The idea of this algorithm is to add k boxes with the maximum Plancherel
probabilities to the diagram and then remove k boxes with the minimum Plancherel prob-
abilities. This algorithm was applied for different values of the parameter k.

A similar problem was studied for strict Young diagrams [3,7] parameterizing projective
representations of the symmetric group. Using an exhaustive search algorithm, the first 250
strict diagrams with maximum dimensions were found. Along with the shaking algorithm
described above, the so-called branches algorithm was also used. It considers not one, but
m greedy sequences, which are constructed from diagrams obtained from the original one
by the shaking algorithm.

In the work [2], in addition to the Plancherel greedy sequence of standard Young
diagrams, the so-called greedy blow-up sequence was constructed. In this sequence, each
new box is added to the diagram in such a way as to bring its profile as close as possible
to the Vershik-Kerov-Logan-Shepp limit shape. Also in [2] a new variant of the shaking
algorithm was proposed. Same as in the original algorithm, k boxes are sequentially added
to the diagram, and then k other boxes are removed. In this case, each box added or
removed is selected from the list of m optimal boxes, i. e. having m largest or m lowest
Plancherel probabilities, respectively.

Note that the sequence constructed using strategies from [2, 7, 8] contains all known
Young diagrams with maximum dimensions. It also turned out that the standard Young
diagrams from this sequence have an interesting geometric property. All the boxes that
distinguish them from the symmetric diagram of the nearest smaller size are concentrated
on one side of the line y = x, and in each row and in each column there is no more
than one such box. In this paper, we prove a theorem that describes a fairly wide class
of diagrams whose dimensions cannot be maximum. A conjecture was formulated that
generalizes the theorem to the case of arbitrary Young diagrams. We propose the strategy
for the algorithm for finding new Young diagrams with large and maximum dimensions.

2 Basic definitions

A Young diagram of size n is a finite set of n boxes arranged in rows of non-increasing
length [5]. The hook of a box (i, j) in a Young diagram is a set of boxes consisting of the
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box (i, j) itself, the boxes located above it in the same column, and the boxes located to
the right of it in the same row. The reverse hook of a box (i, j) includes the box itself, as
well as the boxes located below it in the same column and to the left of it in the same row.

A standard Young tableau [5] is a diagram of size n whose boxes contain the first n
natural numbers. In this case, these numbers are arranged in ascending order from bottom
to top and from left to right. The dimension of a Young diagram is the number of Young
tableaux for a given diagram. It can be calculated using the hook length formula [4]:

dim(λn) =
n!∏

(i,j)∈λn

h(i, j)
, (1)

where λn is a diagram of size n, h(i, j) is the hook length of a box (i, j), i. e. the number
of boxes in a hook (i, j).

Diagrams λn and λ∗
n are called symmetrically conjugate if one of them can be obtained

from the other by reflecting boxes with respect to the line y = x. It is obvious that
symmetrically conjugate diagrams have the same dimension since each tableau of the
shape λn has a one-to-one correspondence to some tableau of the shape λ∗

n, obtained by
reflecting the original tableau with respect to the line y = x.

The Young graph is a directed graded graph whose vertices are Young diagrams. The
level n of the graph consists of all diagrams of size n. Each edge leaves the diagram λi of
the level i and enters the diagram λi+1 of the level i+1, where λi+1 is obtained by adding
one box to λi. The root of the Young graph is a Young diagram of size 1.

You can define Markov processes on the Young graph by assigning probabilities to edges
so that for each vertex the sum of outgoing probabilities is equal to 1. In such processes,
the probability of a path is equal to the product of the probabilities of the edges along this
path. The Markov process of Plancherel growth (also known as the Plancherel process)
is of particular interest for studying the dimensions of Young diagrams. This is a central
process, i. e. the probabilities of different paths between a fixed pair of vertices are equal.
In addition, the dimension of the Young diagram λn is equal to the Plancherel probability
of the path from the root of the graph to the diagram λn multiplied by n! [4].

The dimensions of Young diagrams grow exponentially as the size of the diagrams
increases. Therefore, it is convenient to use normalization to study dimensions. The
normalized dimension of a Young diagram is calculated using the formula [10]:

c(λn) =
−1√
n
ln

dim(λn)√
n!

= −
√

(n− 1)! ·
n−1∑
i=1

ln(p(λi ↗ λi+1)), (2)

where p(λi ↗ λi+1) is the transition probability from the λi diagram to the λi+1 diagram
in the Plancherel process. Due to the centrality of the Plancherel process, the value of
c(λn) does not depend on the choice of path from the root of the Young graph to the
diagram λn. It is obvious from (2) that the smaller the normalized dimension, the larger
the exact one. Therefore, we can reformulate the problem of finding a Young diagram of
maximum dimension as the problem of finding a Young diagram of minimum normalized
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dimension. This fact will be used to construct an algorithm for searching for diagrams of
large dimensions in section 4.

3 Dimensions of asymmetric Young diagrams

A symmetric diagram is a Young diagram in which all boxes are symmetric with respect
to the straight line y = x. The base subdiagram λsym of the Young diagram λ is the maximal
symmetric subdiagram of the diagram λ.

Theorem. Let λ be a Young diagram, λsym be its base subdiagram, A be the set of boxes
of the diagram λ that are not included in its base subdiagram. Let us assume that each
column and each row of λ contains at most one box from A. Au are boxes of the set A
which are located above the line y = x, Ad are boxes of the set A which are located below
this line. Let Ãd be the set of boxes symmetric to the boxes Ad with respect to y = x.
Then the dimension of the diagram λ′ = λsym ∪ Au ∪ Ãd is greater than the dimension of
the diagram λ.

Proof. First, we prove the theorem for the case when each of the sets Au and Ad consists
of one box. Let the original diagram be λ = λsym ∪ (k, l) ∪ (t, s).

Let the box (k, l) be located above y = x, and (t, s) be located below it. Then k < l
and t > s. In Fig. 1 the diagram λsym consists of white boxes, the diagrams from Fig. 1a
and Fig. 1b are diagrams λ and λ′, respectively.

(a) (b)

Figure 1: Transformation of an asymmetric Young diagram to a Young diagram with a
larger dimension
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Let h(i, j) be the hook length of box (i, j) in the diagram λ, and let h′(i, j) be the
hook length of box (i, j) in the diagram λ′. Note that s is not equal to k, since otherwise
the boxes (k, l) and (t, s) would be symmetric to each other with respect to y = x, and
therefore would be included in the base subdiagram of the λ diagram. Similarly, l is not
equal to t.

Diagrams λ and λ′ consist of the same number of boxes. It follows from the hook length
formula (1) that it is enough to prove that∏

(i,j)∈λ

h(i, j) >
∏

(i,j)∈λ′

h′(i, j) (3)

Let us prove this inequality. Fig. 2a and Fig. 2b show the examples of the original and
transformed diagrams, respectively.

(a) (b)

Figure 2: Different types of boxes of Young diagrams for the case k < s

Let us consider 3 types of boxes (i, j) that make up both diagrams.

1. Boxes (i, j) with coordinates i /∈ {s, t} and j /∈ {s, t}, i. e. such that are not included
in the reverse hooks of the boxes (s, t) and (t, s). These boxes are highlighted in
white in Fig. 2. The hooks of such boxes in the diagrams λ and λ′ do not contain
the boxes (s, t) and (t, s), therefore h′(i, j) = h(i, j).

2. Boxes (i, j) belonging to the union of the reverse hooks of boxes (s, t) and (t, s), with
coordinates i /∈ {k, l} and j /∈ {k, l}. In Fig. 2 such boxes are highlighted in pink.
Let λ1 = λsym ∪ (t, s), λ2 = λsym ∪ (s, t). The diagram λ1 is symmetrically conjugate
to the diagram λ2, since the subdiagram λsym is symmetric, and the box (t, s) is
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symmetric with respect to the box (s, t). So hλ1(i, j) = hλ2(j, i). On the other hand,
h(i, j) = hλ1(i, j) and h′(j, i) = hλ2(j, i), since the hooks of the boxes (i, j) and (j, i)
do not contain the box (k, l). Therefore h(i, j) = h′(j, i).

3. The remaining boxes (marked in Fig. 2 in yellow) are boxes, one of the coordinates
of which belongs to {s, t}, and the other coordinate belongs to {k, l}. Note that
the boxes (s, t) and (t, s) are pink, which means that the set of yellow boxes in the
diagram λ is equal to the set of yellow boxes in the diagram λ′. Let’s call this set Y .
It is a subset of the set

{(s, k), (s, l), (t, k), (t, l), (k, s), (l, s), (k, t), (l, t)}.

Recall that if a box (i, j) in a diagram λ is white, then h(i, j) = h′(i, j), and if a box
(i, j) in λ is pink, then h(i, j) = h′(j, i). Hence, we can cancel all factors in inequality (3)
except those related to yellow boxes. Therefore, it is enough to prove that∏

(i,j)∈Y

h(i, j) >
∏

(i,j)∈Y

h′(i, j) (4)

The box (k, l) in the diagram λ′ can be either to the left of the box (s, t) or to the right
of it. Let us consider the case when (k, l) is to the left of the box (s, t). This means that
k < s. An example of such a case is shown in Fig. 2.

Note that (k, l) and (s, t) are corner boxes of λ′. Therefore, it follows from k < s that
l > t. So k < s < t < l. The boxes (s, l) and (l, t) are not included in the diagram λ, since
even the box (s, t) is not included in it. The boxes (t, l) and (l, s) are not included in λ,
since (t, s) is a corner box. Therefore, Y = {(s, k), (t, k), (k, s), (k, t)}.

The inequality (4) in this case can be rewritten as follows

h(s, k) · h(t, k) · h(k, s) · h(k, t) > h′(s, k) · h′(t, k) · h′(k, s) · h′(k, t). (5)

Since the lengths of rows and columns with numbers k, s, t, l are known, we can express
the hook lengths of yellow boxes in both diagrams as follows:

h(t, k) = l − t+ s− k

h(k, t) = s− k + l − t

h′(t, k) = l − t+ s− k − 1

h′(k, t) = l − t+ s− k + 1

h′(s, k) = l − s+ t− k

h′(k, s) = t− k + l − s

h(s, k) = l − s+ t− k − 1

h(k, s) = t− k + l − s+ 1.

(6)

Expressing all hook lengths in (5) in terms of h′(s, k) and h(t, k) using (6) and ex-
panding the brackets, we obtain the inequality

h′(s, k)2 > h(t, k)2.
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It is true because s < t.
Now consider the case when the box (k, l) in the diagram λ′ is located to the right of

the box (s, t), i. e. k > s. It is shown in Fig. 3.

(a) (b)

Figure 3: Different types of boxes of Young diagrams for the case k > s

The boxes (k, l) and (s, t) are the corner boxes of the diagram λ′ and k is greater than
s, therefore l is less than t. From this it follows that s < k < l < t. Similar to the first
case, the boxes (k, t), (t, k), (t, l) and (l, t) are not included in the diagram λ. Therefore
Y = {(s, k), (l, s), (k, s), (s, l)}.

Inequality (4) in this case can be rewritten as follows

h(s, k) · h(l, s) · h(k, s) · h(s, l) > h′(s, k) · h′(l, s) · h′(k, s) · h′(s, l). (7)

Let us calculate the hook lengths of yellow boxes in both diagrams using k, l, s, t:

h(s, l) = k − s+ t− l

h(l, s) = t− l + k − s

h′(s, l) = k − s+ t− l + 1

h′(l, s) = t− l + k − s− 1

h′(s, k) = l − s+ t− k

h′(k, s) = t− k + l − s

h(s, k) = l − s+ t− k − 1

h(k, s) = t− k + l − s+ 1.

(8)
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Expressing all hook lengths in (7) in terms of h′(s, k) and h(s, l) and expanding the
brackets, we obtain

h′(s, k)2 > h(s, l)2.

This inequality is true because k < l.
Let us proceed to the proof of the theorem in the general case. Let

Au =
⋃
α

(kα, lα), Ad =
⋃
β

(tβ, sβ).

Then 
λ = λsym ∪

⋃
α

(kα, lα) ∪
⋃
β

(tβ, sβ)

λ′ = λsym ∪
⋃
α

(kα, lα) ∪
⋃
β

(sβ, tβ).

In Fig. 4 the λsym diagram is made up of white boxes, the diagrams from Fig. 4a and
Fig. 4b are λ and λ′, respectively. Let h(i, j) be the hook length of a box (i, j) in the

(a) (b)

Figure 4: Transformation of an asymmetric Young diagram to a Young diagram with a
larger dimension

diagram λ, and let h′(i, j) be the hook length of this box in λ′.
By analogy with the case when Au and Ad consist of one box, we consider three types

of boxes of the diagrams λ and λ′. Boxes of different types are highlighted in colours in
Fig. 5.

1. Boxes (i, j) with coordinates i /∈
⋃
β

{sβ, tβ} and j /∈
⋃
β

{sβ, tβ}, i. e. boxes not lying

on the reverse hooks of boxes (sβ, tβ) and (tβ, sβ) for any β. Such boxes (i, j) are
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highlighted in white in Fig. 5. The hooks of these boxes in the diagrams λ and λ′ do
not contain boxes from the sets

⋃
β

(sβ, tβ) and
⋃
β

(tβ, sβ). So h′(i, j) = h(i, j).

2. Boxes (i, j) belonging to the union of the reverse hooks of boxes (sβ, tβ) and (tβ, sβ)
for any β, with coordinates i /∈

⋃
α

{kα, lα} and j /∈
⋃
α

{kα, lα}. In Fig. 5 such boxes

are highlighted in pink. The hooks of pink boxes do not contain boxes (kα, lα) for
any α. Therefore, the hook length of the pink box (i, j) in the diagram λ is equal to
the hook length of the box (j, i) in the diagram λ′.

3. The remaining boxes (marked in yellow) are boxes, one of the coordinates of which
belongs to

⋃
α

{kα, lα}, and the other belongs to
⋃
β

{sβ, tβ}. Note that for any β the

boxes (sβ, tβ) and (tβ, sβ) are pink, which means the set of yellow boxes in the diagram
λ is equal to the set of yellow boxes in the diagram λ′. Let us call this set Y .

(a) (b)

Figure 5: Different types of boxes of Young diagrams

For each fixed pair of boxes (α, β) from Au and Ad, we select a group of four yellow
boxes in which one of the coordinates belongs to the set {kα, lα}, and the other belongs
to the set {sβ, tβ}. Since in the original diagram in each column and in each row no more
than one box does not belong to the base subdiagram, the selected groups of boxes for
different α and β do not intersect. The union of these groups over all pairs α and β gives
the entire set Y . For a fixed pair (α, β) we denote such groups as Yαβ. In Fig. 5 they are
designated by numbers 1, 2, 3, 4.



42 Vasilii Duzhin, Egor Smirnov-Maltsev

Since λ and λ′ are the same size and based on the hook length formula (1) it is enough
to prove that ∏

(α,β)

∏
(i,j)∈Yαβ

h(i, j) >
∏
(α,β)

∏
(i,j)∈Yαβ

h′(i, j). (9)

Obviously, (9) holds if for any pair (α, β) the following inequality is true∏
(i,j)∈Yαβ

h(i, j) >
∏

(i,j)∈Yαβ

h′(i, j).

Consider the diagrams λ1 = λsym ∪ (kα, lα)∪ (tβ, sβ) and λ2 = λsym ∪ (kα, lα)∪ (sβ, tβ).
For any box (i, j) ∈ Yαβ it is true that h(i, j) = hλ1(i, j) and h′(i, j) = hλ2(i, j), since the
hooks h(i, j) and h′(i, j) can only contain boxes of the diagram λsym, (kα, lα), (tβ, sβ) and
(sβ, tβ), i. e. only the boxes of the diagrams λ1 and λ2. So it is enough to prove that∏

(i,j)∈Yαβ

hλ2(i, j) >
∏

(i,j)∈Yαβ

hλ1(i, j). (10)

The inequality (10) corresponds to the case when each of the sets Au and Ad consists of
one box, and was proven earlier.

In the theorem proved above, the original Young diagram consists of some symmetric
subdiagram with at most one box added to each row and each column. We assume that
this theorem can be generalized to the case of an arbitrary Young diagram on which no
additional conditions are imposed.

Such a diagram is the union of its base subdiagram λsym, boxes Au lying above the line
y = x, and boxes Ad lying below this line. Moreover, at least one of the sets Au and Ad

is non-empty. Let Au be non-empty. A generalization of the procedure described in the
theorem in section 3 is to remove ⌈ li

2
⌉ boxes from the column i containing li boxes, followed

by the adding the same number of boxes to the row i. An example of this transformation
is shown in Fig. 6.

Fig. 6a shows the original diagram λ, and Fig. 6b shows the diagram λ′ obtained after
the transformation. The subdiagram λsym is highlighted in white, the boxes Au that are
added and removed are in red, the remaining boxes Au are in green, and the boxes Ad

are in blue. All green boxes, as well as red boxes symmetric to them, are included in the
base subdiagram of the λ′ diagram (see Fig. 6b). A similar operation can be done if Ad is
non-empty, however, boxes will be removed from the row i and added to the column i.

The results of the computer experiments described in section 5 give reason to believe
that Young diagrams obtained using this transformation always have a larger dimension
than the original ones. A consequence of this assumption is the following conjecture about
the structure of the Young diagram λn, which has the maximum dimension among all the
diagrams of size n.

We assume that a Young diagram λ of size n of maximum dimension is a disjoint union
of its base subdiagram λsym and the set of boxes A lying on one side of the line y = x.
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(a) (b)

Figure 6: An example of constructing a Young diagram with a presumably higher dimen-
sion

Moreover, if these boxes lie below the line y = x, then each row can contain only one box
from A. Similarly, if they lie above this line, then each column can contain only one box
from A.

4 Algorithm for searching Young diagrams with large and maximum
dimensions

The problem of finding Young diagrams of maximum dimension can be formulated
as the shortest path problem in the Young graph. This requires to assign a weight
ω(λn−1, λn) = − ln(p(λn−1 ↗ λn)) to each edge of the graph, where p(λn−1 ↗ λn) is
a Plancherel transition probability of an edge connecting diagrams λn−1 and λn. Then the
length of any path from the root of the Young graph to the diagram λn is equal to the nor-
malized dimension (2) of this diagram divided by

√
(n− 1)!. It is known that the smaller

the normalized dimension of the Young diagram, the larger its exact dimension. Thus,
searching for a diagram of size n of maximum dimension is nothing more than searching
for the shortest path from the root of the graph to its level n. In order to speed up the
algorithm, you can consider not the entire Young graph, but only its subgraph, consisting
of diagrams that have certain properties.

Firstly, based on the conjecture formulated in section 3, it was decided to take into
account only diagrams consisting of their base subdiagrams and boxes located below y = x.
Moreover, each row can contain at most one such box. Consider the subgraph G′ of the
Young graph consisting exclusively of diagrams satisfying this condition. Obviously, for
every diagram λn in G′, there is at least one path from the root to λn. Therefore, we can
use search algorithms on G′ rather than on the entire Young graph.

Secondly, due to the centrality of the Plancherel process, the costs of all paths from
the root of the subgraph G′ to the diagram λn are equal. Therefore, we can consider some
spanning tree of the subgraph G′. There are different ways to select a spanning tree. We
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built the so-called greedy path tree as follows. Let the diagram λn be a vertex of G′ to
which we can add boxes (i, j) and (i′, j′), and dim(λn ∪ (i, j)) > dim(λn ∪ (i′, j′)). Then
we assume that all subtree diagrams rooted at λn ∪ (i′, j′) will have no box (i, j).

Such a subgraph of the graph G′ is indeed a tree since there is a unique path from the
root to any vertex λn. This is a path in G′ in which at each step that box from λn is added
that maximizes the dimension of the diagram. In such paths, the dimension increases
gradually, since the path to the λn diagram passes exclusively through high-dimensional
diagrams.

In this work, the search for the shortest path in this graph is implemented using the
A∗ algorithm. It uses information about the weights of the graph edges. Namely, for
intermediate diagrams λm the value f(λm) = (g(λm) + h(λm)) ·

√
(n− 1)! is calculated,

where g(λm) is the length of the path to the vertex, and h(λm) is a heuristic estimate
of the remaining length. That is, f(λm) shows the expected normalized dimension of a
Young diagram of size n of maximum dimension containing the diagram λm. This value
is first calculated from the children of the root. At each next step, the vertex with the
minimum f value found is selected and the f function for its descendants is calculated.
These steps are repeated until a diagram of size n is reached. This diagram is the result
of the algorithm. The absence of a sharp increase in dimensions in the greedy path tree
allows us to more accurately determine h(λm) and thereby reduce the running time of A∗.

5 Computer experiments

The A∗ algorithm was used to search for Young diagrams of maximum dimension on
a tree of greedy paths. In order to estimate the cost of the path from a diagram λm of
size m to level n, the function h(λm) = P (λm) · (n −m) was calculated, where P (λm) is
the minimum cost of an edge leaving λm in the greedy path tree. This heuristic does not
guarantee that we have found diagrams with maximum dimensions, but it can significantly
speed up the process of searching for such diagrams. During the experiments, a sequence
of 1000 Young diagrams was constructed. Nine of the resulting diagrams have a larger
dimension than diagrams of the same size from the sequence Λ, which was obtained in the
works [2, 7, 8].

We also searched for the minimum path from some diagram λm in the greedy path tree
to the level n. It allows you to find diagrams of maximum dimension that contain the
original diagram λm. This approach increases the efficiency of the algorithm but reduces
the probability that the found diagram will be the diagram of maximum dimension. Using
this strategy, a sequence of Young diagrams was constructed based on the sequence Λ.
Namely, the diagram λm contained in the original sequence was taken, then the algorithm
A∗ was run, searching for the minimum path from λm to level n = m + 3. Each of the
diagrams obtained using A∗ was compared with a diagram of the same size from the original
sequence. The diagram with the larger dimension was saved. Fig. 7 shows the ratio of the
exact dimensions of the Young diagrams obtained in this work to the dimensions of the
diagrams from Λ.
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Figure 7: Ratios of dimensions of Young diagrams from the new and original sequences

In total, in a sequence of length 42 thousand, we managed to find 7278 Young diagrams
with dimensions exceeding the dimensions of diagrams of the corresponding size from Λ.

6 Conclusion

The article is devoted to the search for Young diagrams with large and maximum
dimensions. We consider a class of Young diagrams that differ from a symmetric diagram
by no more than one box (i, j) in each row and column. It is proven that when moving
boxes (i, j), i > j to symmetric positions (j, i), the original diagram is transformed into
another diagram of the same size, but with a greater or equal dimension. It has been
suggested that this fact can be generalized to the case of an arbitrary Young diagram,
i. e. consisting of a symmetric subdiagram with more than one box added to some of its
columns and/or rows. A consequence of this assumption is that all boxes of a diagram
of maximum dimension that are not included in its maximum symmetric subdiagram are
located on one side of the line y = x, and each row and column contains at most one such
box. This statement has not been strictly proven, but during computer experiments it was
found that all known Young diagrams with large and maximum dimensions with sizes up
to 106 boxes have this geometric property.

Using this assumption, the search area for diagrams of maximum dimension was re-
duced. We consider the subgraph G′ of the Young graph, consisting exclusively of diagrams
that satisfy the above geometric property. It contains a so-called greedy path tree, in which
there is only one path from the root of the tree to each vertex. In the subgraph G′ this path
is greedy, i. e. at each step the edge with the maximum Plancherel transition probability is
selected. The problem of searching for Young diagrams of maximum dimension is reformu-
lated as searching for the shortest path in the resulting tree. This problem solved using the
A∗ algorithm. As a result, a sequence of 1000 Young diagrams with large dimensions was
obtained. Nine of these diagrams have larger dimensions than previously known diagrams
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of the same size. Also, with the help of A∗, an existing sequence of Young diagrams of up
to 42 thousand boxes with large dimensions was updated. We found 7278 Young diagrams
with dimensions exceeding the dimensions of diagrams of the original sequence.

Future plans include optimizing algorithms for searching for Young diagrams of max-
imum dimension and adapting them to search for strict Young diagrams of maximum
dimension. It is also planned to further study the constructed sequences to identify the
properties of Young diagrams of maximum dimension.
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