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Skew characteristic polynomial of graphs and embedded
graphs

Riya Dogra and Sergei Lando

Abstract. We introduce a new one-variable polynomial invariant of graphs, which we
call the skew characteristic polynomial. For an oriented simple graph, this is just the
characteristic polynomial of its anti-symmetric adjacency matrix. For non-oriented
simple graphs the definition is different, but for a certain class of graphs (namely, for
intersection graphs of chord diagrams), it gives the same answer if we endow such a
graph with an orientation induced by the chord diagram.

We prove that this invariant satisfies Vassiliev’s 4-term relations and determines
therefore a finite type knot invariant. We investigate the behavior of the polynomial
with respect to the Hopf algebra structure on the space of graphs and show that it
takes a constant value on any primitive element in this Hopf algebra.

We also provide a two-variable extension of the skew characteristic polynomial to
embedded graphs and delta-matroids. The 4-term relations for the extended polyno-
mial prove that it determines a finite type invariant of multi-component links.

To the memory of Sergei Duzhin
(1956–2015)

1 Introduction

To each graph, one can associate its adjacency matrix. The characteristic polynomial
of the adjacency matrix, as well as its roots, are important invariants of graphs, and their
study constitutes the spectral theory of graphs.
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The goal of the present paper is to introduce and start the study of another polynomial
graph invariant, which we call the skew characteristic polynomial. For an oriented graph,
the skew characteristic polynomial is just the characteristic polynomial of its antisym-
metric adjacency matrix. For a non-oriented graph, however, the relationship between its
adjacency matrix and the skew characteristic polynomial is less straightforward.

Most directly the skew characteristic polynomial can be defined for intersection graphs
of chord diagrams. Chord diagrams appeared in V. Vassiliev’s theory of finite type invari-
ants of knots as a tool for describing these invariants. Their intersection graphs admit a
family of natural orientations, and it happens that for all orientations in this family the
characteristic polynomial of the antisymmetric adjacency matrix of the resulting oriented
graph is the same. We show that these characteristic polynomials satisfy Vassiliev’s 4-term
relations and determine thus a knot invariant.

For an arbitrary intersection graph of a chord diagram, we define its skew characteristic
polynomial as this common characteristic polynomial. We extend it by linearity to the
Hopf algebra of chord diagrams modulo 4-term relations. It happens that for graphs with
at least two vertices, this polynomial becomes a constant when restricted to the subspace
of primitive elements in the Hopf algebra.

The free term of the skew characteristic polynomial of an intersection graph is either 1
or 0 depending on whether the adjacency matrix of this graph is or is not non-degenerate
over the field of two elements. This function on graphs, called the non-degeneracy of
a graph, is naturally extended to arbitrary graphs, not necessarily intersection graphs.
Simple graphs also span a Hopf algebra, and we define the skew characteristic polynomial
of graphs as the multiplicative polynomial graph invariant whose value on primitives of
degree at least 2 is a constant, and whose free term coincides with the non-degeneracy of
the graph. We show that this new graph invariant satisfies 4-term relations for graphs.

Graphs embedded in two-dimensional surfaces do not span a Hopf algebra, which does
not allow one to define their skew characteristic polynomial directly. However, a con-
struction due to A. Bouchet associates to an embedded graph its delta-matroid, and delta-
matroids span a Hopf algebra. Since non-degeneracy can be naturally defined for embedded
graphs and depends only on its delta-matroid, the skew characteristic polynomial admits
a natural extension to delta-matroids, whence to embedded graphs. We show that the
skew characteristic polynomial of embedded graphs satisfies 4-term relations for them and
determines thus a finite type link invariant.

Everywhere in the paper the ground field is C, the field of complex numbers, if otherwise
is not stated explicitly.

The paper is organized as follows. In Sec. 2, we give the definition of skew characteristic
polynomial for chord diagrams and graphs. In Sec. 3, we recall the definitions of 4-term
relations for chord diagrams and graphs and show that the skew characteristic polynomial
satisfies these 4-term relations determining thus a finite type knot invariant.

Section 4 is devoted to the definition of the skew characteristic polynomial of embedded
graphs and delta-matroids. We show that this polynomial satisfies 4-term relations and
defines, therefore, a finite type invariant of multicomponent links.

Section 5 addresses a number of natural questions and problems about the invariant
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we introduce.
The authors are grateful to M. Kazarian for valuable suggestions. The work of S. Lando

was partly funded by the RSF grant 23-11-00150 Mathematics of modern mathematical
physics.

2 Skew characteristic polynomial for graphs

In this section we give the definition of the skew characteristic polynomial for graphs.
The definition is based on the notion of non-degeneracy of a graph, and the structure
of Hopf algebra of graphs. We show that for intersection graphs of chord diagrams the
skew characteristic polynomial thus defined coincides with the characteristic polynomial
of the antisymmetric adjacency matrix of the intersection graph supplied with a natural
orientation.

2.1 Definition of the skew characteristic polynomial

Given an abstract oriented simple graph G⃗ = (V, E⃗) with vertex set V , and edge set

E⃗, its adjacency matrix AG⃗, is defined as

AG⃗ = (aij), where aij =


1, if (i, j) ∈ E⃗(G);

−1, if (j, i) ∈ E⃗(G);

0, otherwise.

The adjacency matrix of an oriented graph is antisymmetric. We define the skew char-
acteristic polynomial of an abstract oriented simple graph as the characteristic polynomial
of its adjacency matrix, that is

Definition 2.1. Let G⃗ be an abstract oriented graph and let AG⃗ be its adjacency matrix.

The skew characteristic polynomial of the graph G⃗, denoted QG⃗, is defined as

QG⃗(u) := det(uI − AG⃗).

Our goal now is to define the skew characteristic polynomial of an abstract simple non-
oriented graph. The first step consists in defining another invariant, the non-degeneracy
of the graph.

For a simple graph G = (V,E), its adjacency matrix AG is, as usual, the symmetric
matrix over the field of two elements {0, 1} given by

AG = (aij), where aij =

{
1, if (i, j) ∈ E(G);

0, otherwise.

Definition 2.2. The non-degeneracy ν(G) of a graphG is equal to 1 provided the matrix AG

is non-degenerate over the field of two elements, and it is 0 otherwise. By definition, the
non-degeneracy of the empty graph is 1.
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In particular, the non-degeneracy of any graph with an odd number of vertices is 0,
only a graph with even number of vertices can be non-degenerate. Note that we consider
non-degeneracy as taking values in the field C of complex numbers, not in the field of two
elements.

Definition 2.3. The skew characteristic polynomial Q : G 7→ QG(u) is the graph in-
variant taking values in the ring C[u] of polynomials in a single variable u, defined by
QG(u) =

∑
k qk(G)u|V (G)|−k, where

qk(G) =
∑

U⊂V (G),
|U |=k

ν(G(U)),

and G(U) is the subgraph of G induced by the subset U of the set V (G) of its vertices.

Theorem 2.4. The skew characteristic polynomial possesses the following properties:

• The degree of QG is the number of vertices |V (G)| in G;

• The polynomial QG is even (that is, contains no monomials of odd degree) if the
number of vertices |V (G)| in G is even, and it is odd (containing no monomials of
even degree) otherwise;

• All the nonzero coefficients in QG are positive integers;

• The leading coefficient of QG is 1, and the coefficient of u|V (G)|−2 is the number |E(G)|
of edges in G;

• The free term QG(0) coincides with the non-degeneracy ν(G) of G;

• It is multiplicative, that is, if G = G1 ⊔G2 is a disjoint union of two graphs G1 and
G2, then QG = QG1 ·QG2;

• For the graph with a single vertex, the polynomial is equal to u.

All the properties follow immediately from the definition.

2.2 Hopf algebra of graphs

We recall the structure of the Hopf algebra of graphs introduced by Joni and Rota
in [12]. Let G be the infinite dimensional vector space over C spanned freely by all graphs.
Any graph invariant with values in a vector space is extended to G by linearity; below, we
denote this extension by the same letter as the invariant itself.

The product of two graphs is defined as their disjoint union, and extended to a mul-
tiplication m of linear combinations of graphs by linearity. This makes G into a graded
commutative algebra, where the grading is induced by the number of vertices, and the unit
is the empty graph,

G = G0 ⊕ G1 ⊕ G2 ⊕ . . . .
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The vector space G is endowed with a coalgebra structure by the comultiplication

µ : G −→ G ⊗ G

defined as the coproduct of a graph as follows:

µ(G) =
∑

V1⊂V (G)

G(V1)⊗G(V (G) \ V1),

where G(V1) is the induced subgraph of G, with the set of vertices V1, and the sum is taken
over all subsets of the vertex set. This comultiplication is extended to G by linearity. The
multiplication m, and the comultiplication µ both respect the grading:

m : Gn1 ⊗ Gn2 −→ Gn1+n2

µ : Gn −→ (G0 ⊗ Gn)⊕ (G1 ⊗ Gn−1)⊕ . . . (⊕Gn ⊗ G0).

Theorem 2.5 ( [12]). The multiplication and the comultiplication defined above make the
algebra of graphs into a commutative cocommutative Hopf algebra.

According to the Milnor–Moore theorem, any graded cocommutative Hopf algebra is
a polynomial algebra in its primitive elements. An element p in a Hopf algebra is said to
be primitive if

µ(p) = 1⊗ p+ p⊗ 1.

Primitive elements form a graded vector subspace in a graded Hopf algebra. We denote
the subspace of primitive elements in Gn by P (Gn).

Monomials in elements of grading smaller than n span the subspace D(Gn) ⊂ Gn of
decomposable elements in Gn; in other words, decomposable elements are linear combina-
tions of disconnected graphs. Milnor–Moore theorem implies that Gn = P (Gn) ⊕ D(Gn),

for all n = 1, 2, 3, . . . , and there is a natural projection πn : Gn
D(Gn)−−−→ P (Gn) whose kernel

is D(Gn). Together, these projections πn form the projection π : G → P (G).
There is an explicit formula ( [16, 20]) for this projection, which expresses it as the

logarithm π = log(Id) of the identity mapping Id : G → G: if G is a nonempty graph, then

π : G 7→ G− 1!
∑

I1⊔I2=V (G)

G(I1)G(I2) + 2!
∑

I1⊔I2⊔I3=V (G)

G(I1)G(I2)G(I3)− . . . ,

where each summation runs over the partitions of the set V (G) of vertices of G into un-
ordered nonempty parts. The logarithm here is understood in the sense of the convolution
product, that is, Id is represented as the sum Id = 1 + Id0, where 1 is the identity in G0

and 0 in all Gn, n ≥ 1, and Id0 = Id− 1, so that

π = log(Id) = log(1 + Id0) = Id0 −
1

2
(Id0 ⊗ Id0) ◦ µ+

1

3
(Id0 ⊗ Id0 ⊗ Id0) ◦ µ⊗2 − . . . .

The following property describes the behavior of skew characteristic polynomial with
respect to the Hopf algebra structure.
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Theorem 2.6. For any graph G with at least two vertices, the value Qπ(G) of the invariant Q
on the projection π(G) to the subspace of primitives along the subspace of decomposable
elements in the Hopf algebra G of graphs is a constant.

Proof. Let us make use of the formula [14,20]

G =
∑
I

∏
ι∈I

π(G(ι)),

where the summation is carried over all partitions I = (ι1, . . . , ιk) of the set V (G) of
vertices of the graph G into disjoint nonempty parts, and G(ι) is the subgraph of G
induced by ι ⊂ V (G). This formula allows one to reconstruct a graph from the projection
to primitives of all its induced subgraphs. Separate on the right-hand side the projection
to primitives of G itself:

G = π(G) +
∑

I,|I|>1

∏
ι∈I

π(G(ι)). (1)

Now suppose the assertion of the theorem is true for all graphs with 2, . . . , n vertices,
and let G be a graph with n + 1 vertices. We want to prove that the coefficient of uk

in Qπ(G) is 0 for all k = 1, . . . , n+ 1.
The coefficient of uk in QG is

∑
U,|U |=n+1−k ν(G(U)). Pick a subset U ∈ V (G) such that

|U | = n+ 1− k. Its complement V (G) \ U consists of k vertices.
By the induction hypothesis, a partition ι of the set V (G) of vertices of G in the second

summand in the right-hand side of equation (1) can contribute to the coefficient of uk only
if this partition contains exactly k sets of size 1. For a given choice of 1-element parts,
let U denote the complimentary set of vertices. Then the contribution to the coefficient
of uk is as follows: compute the free term of the complementary sum∑

J

∏
j∈J

π(G(U)(j)),

where the summation runs over all partitions of the set U into nonempty disjoint subsets.
Equation (1) asserts that the last expression is nothing but the graph G(U), and the

free term of the polynomial QG(U), which is equal to ν(G(U)), coincides with the free term
of the skew characteristic polynomial of the sum on the right.

Hence, for each k = 1, . . . , n+1, the contribution of the non-degeneracy of an induced
subgraph with n+1−k vertices to the coefficient of uk in the skew characteristic polynomial
QG coincides with the contribution of its complement to all the terms on the right in
equation (1) but the first one. This means that the contribution to uk of Qπ(G) is 0, as
required.

Remark 2.7. The unknown referee attracted our attention to the fact that the assertion of
the theorem follows from the representation of the skew-characteristic polynomial as the
convolution of non-degeneracy and the 4-invariant taking a graph G to u|V (G)|.
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2.3 Justification: skew characteristic polynomial for intersection graphs of chord
diagrams

The goal of this section is to justify the definition of the skew characteristic polynomial
of graphs given in the previous one. We define here the skew characteristic polynomial of
chord diagrams and show that it depends only on the intersection graph of the chord dia-
gram and coincides with the skew characteristic polynomial of this graph. Chord diagrams
carry considerable combinatorial information about Vassiliev, or finite type, invariants of
knots, whence their study often becomes imperative in learning about knots. We recall
some preliminaries. For a detailed study, see, for example, [15] or [18],

Definition 2.8. A chord diagram (of order n) is an oriented circle together with a set of n
disjoint pairs of distinct points considered up to diffeomorphisms of the circle that preserve
the orientation.

In a graphical presentation of chord diagrams, the two points in each pair are usually
connected by a chord (which is shown as either a segment or an arc).

Definition 2.9 (Intersection graph of a chord diagram). Let C be a chord diagram. The
intersection graph g(C) has the vertex set whose elements are in one-to-one correspondence
with the chords of C; there is an edge between two vertices if and only if the corresponding
chords intersect one another in C, i.e., their ends lie on the circle in the alternating order.

The intersection graph g(C) is a simple non-oriented graph. Take a point on the
underlying circle of C different from all the ends of the chords; we call this point ‘a cut
point’. A choice of a cut point allows one to orient g(C) as follows.

We cut the chord diagram C at the cut point and get a linear chord diagram (also called
‘long chord diagram’ from the terminology of long knots, or ‘arc diagram’) as follows: the
circle turns into an oriented line, and the chords become arcs with ends on this line. Then
we number the chords from 1 to n according to the order in which the left ends of the
corresponding arcs follow the underlying line and orient each edge in g(C) from the vertex
with the smaller number to that with the greater one. The resulting oriented graph will

be denoted by
−−→
g(C). Of course, the orientation of the intersection graph depends on the

choice of the cut point. Nevertheless, the characteristic polynomial of the antisymmetric

adjacency matrix of
−−→
g(C) is independent of this choice.

Proposition 2.10. The skew characteristic polynomial

det
(
uI − A−−→

g(C)

)
of the oriented characteristic graph of the chord diagram C does not depend on the choice
of the cut point determining the orientation.

Proof. In order to prove Proposition 2.10, it suffices to show that the characteristic poly-

nomial of the adjacency matrix of the oriented intersection graph
−−→
g(C) remains unchanged
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under moving the cut point to the neighboring arc of the circle of C in the positive direc-
tion. Such a move results in a renumbering of the chords; all the oriented edges incident to
the former vertex 1 change their orientation. The adjacency matrix A−−→

g(C)
of the oriented

intersection graph is replaced with the matrix (up to a simultaneous cyclic renumbering
of the columns and the rows of the matrix)

I1 · A−−→
g(C)

· I1,

where I1 is the identity n × n matrix with 1 replaced by −1 in the entry (1, 1). Of
course, such a move does not change the characteristic polynomial of the matrix, since
I1 = I−1

1 .

This property allows us to give the following definition.

Definition 2.11 (Skew-characteristic polynomial of a chord diagram). Let C be a chord
diagram of order n. The skew characteristic polynomial QC(u) of the chord diagram C is
the skew characteristic polynomial Q−−→

g(C)
(u) of the oriented intersection graph of C, which

is independent of the cut point determining the orientation.

Theorem 2.12. The free term QC(0) of the characteristic polynomial of a chord diagram C
coincides with the non-degeneracy ν(g(C)) of the intersection graph g(C) of C.

Proof. This statement is, essentially, in [6, Theorem 3], which states that the determinant
det A−−→

g(C)
is either 1 or 0 depending on whether the thickening of the chords of C provides

a connected or a disconnected curve, respectively. This invariant is called the Conway
weight system in [6], since it arises from the Conway polynomial of knots. The fact that
the resulting curve is connected if and only if the adjacency matrix Ag(C) is non-degenerate
over the field of two elements is proved, for example, in [9].

Corollary 2.13. The skew characteristic polynomial of a chord diagram C coincides with
the skew characteristic polynomial Qg(C) of its intersection graph g(C). In particular, it
depends on the intersection graph g(C) of C rather than on the chord diagram C itself;
that is, if two chord diagrams C1 and C2 have isomorphic intersection graphs, then their
skew characteristic polynomials coincide, i.e. QC1 = QC2.

Proof. The coefficient of un−k in the characteristic polynomial of the anti-symmetric adja-
cency matrix A−−→

g(C)
is the sum over all k-chord subdiagrams of C of the non-degeneracies

of these subdiagrams. Since the non-degeneracy of a chord diagram coincides with the
non-degeneracy of its intersection graph, this coefficient coincides with qk(g(C)).

For a chord diagram C, the value of the skew characteristic polynomial on its projec-
tion π(C) to the subspace of primitives admits a nice combinatorial interpretation. This
value is an integer, which is 0 if the number of chords in C is odd. If the number of chords

is even, then a sign can be assigned to each Hamiltonian cycle in
−−→
g(C): the sign is +1

provided the number of arrows in this cycle pointing in the same direction is even, and it



Skew characteristic polynomial of graphs and embedded graphs 95

is −1 otherwise. For the proof of the following statement, which is an assertion about the
non-degeneracy of chord diagrams, see [5].

Proposition 2.14. The value Qπ(C) of the skew characteristic polynomial on the projection
of a chord diagram C with an even number of chords to the subspace of primitives is twice
the difference between the number of positive Hamiltonian cycles and the number of negative

Hamiltonian cycles in
−−→
g(C), which is independent of the cut point in C determining the

orientation of g(C).

Note that no orientation of the 5-wheel or 3-prism (see Fig. 1) leads to an oriented
graph for which twice the number of Hamiltonian cycles counted with signs coincides with
the value of the non-degeneracy on the projection of the graph to the subspace of primitives.
To prove this for the 5-wheel, for example, we remark that each of its edges belongs to an
even number of Hamiltonian cycles. This means that changing the orientation of an edge
preserves residue of the number of Hamiltonian cycles modulo 4. Now, picking an arbitrary
orientation of the edges in the 5-wheel, we can compute this residue, which is −1. Hence,
under neither choice of the orientation this number can be −3, while the value of Q on
the projection of the 5-wheel to primitives is −6. This means, in particular, that the skew
characteristic polynomial of non-oriented graphs cannot be reduced to the characteristic
polynomial of these graphs with a certain orientation chosen.

In [5, 8], the number of Hamiltonian cycles in oriented intersection graphs of chord
diagrams counted with signs is related to the weight system defined by the Lie algebra
sl(2), which comes from the well-known knot invariant called the colored Jones polynomial.

2.4 Examples

Proposition 2.15. For complete graphs Kn on n vertices, we have

QKn(u) =

⌊n/2⌋∑
k=0

(
n

2k

)
un−2k.

Indeed, the non-degeneracy of a complete graph with odd number of vertices is 0, and
it is 1 if the number of vertices is even. A graph on n vertices contains

(
n
2k

)
induced

subgraphs with 2k vertices, and for a complete graph Kn all the induced subgraphs also
are complete graphs.

The sequence of polynomials QKn , for n = 0, 1, 2, . . . starts with

1, u, u2 + 1, u3 + 3u, u4 + 6u2 + 1, u5 + 10u3 + 5u, u6 + 15u4 + 15u2 + 1, . . .

Note that a complete graph Kn is the intersection graph of a unique chord diagram,
the one with n chords, and any choice of the cut point leads to the same orientation, up to
isomorphism: for an arbitrary numbering of the vertices each edge is oriented from a vertex
with a smaller number to that with the greater one.

Proposition 2.16. For complete bipartite graphs Km,n, we have

QKm,n(u) = um+n +mnum+n−2.
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Indeed, each induced subgraph of a complete bipartite graph is a complete bipartite
graph, and the non-degeneracy of a complete bipartite graph having at least 2 elements in
one of its parts is 0.

Similarly to complete graphs, for a complete bipartite graph Km,n there is unique
chord diagram having it as the intersection graph: a family of m mutually parallel chords
intersects transversally another family of n mutually parallel chords. However, in contrast
to complete graphs, the intersection graphKm,n admits several non-isomorphic orientations
depending on the choice of the cut point. If we choose the cut point between the two
families of mutually parallel chords constituting the two parts of the graph, then all the
edges will be oriented from one part to the other one. This orientation allows one to easily
compute QKm,n(u).

Now let us compute the skew characteristic polynomial of the two graphs with 6 vertices
that are not intersection graphs, namely, the 5-wheel and the 3-prism. These graphs are
shown in Figure 1. They are the smallest graphs possessing this property.
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Figure 1: The 5-wheel and the 3-prism

Proposition 2.17. The skew characteristic polynomial of the 5-wheel is

u6 + 10u4 + 10u2 + 1,

while that of the 3-prism is
u6 + 9u4 + 12u2.

These results can be obtained directly from the definition.

2.5 Refined skew characteristic polynomial

The number of connected components of the boundary of a thickened chord diagram
is 1 if and only if the intersection graph of the chord diagram is non-degenerate. This
statement can be generalized:

The number of connected components of the boundary of a thickened chord diagram C
is one greater than the corank of the adjacency matrix Ag(C) of its intersection graph g(C),
considered as a matrix over the field of two elements (see, e.g. [9]).

Following the suggestion of M. Kazarian, we define the refined skew characteristic
polynomial QG(u, v) in two variables u, v of a graph Q by the formula

QG(u, v) =
∑

U⊂V (G)

u|V (G)|−|U |vcorankAG(U) .
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The v-free term of the refined skew characteristic polynomial coincides with the original
skew characteristic polynomial, QG(u, 0) = QG(u), for any graph G.

Proposition 2.18. For complete graphs Kn, we have

QKn
(u, v) =

⌊n/2⌋∑
k=0

(
n

2k

)
un−2k + v

⌊(n−1)/2⌋∑
k=0

(
n

2k + 1

)
un−2k−1.

Indeed, the corank of the adjacency matrix of a complete graph on odd number of
vertices is 1.

For a chord diagram, one can define its refined skew characteristic polynomial either
as the refined skew characteristic polynomial of its intersection graph, or, equivalently, as
a sum of the corresponding monomials over all chord subdiagrams, with the degree of the
variable w equal to the number of connected components of the boundary of the thickened
subdiagram, minus 1.

3 4-term relations and knot invariants

One of the fundamental results in the theory of invariants of finite type, due to M. Kont-
sevich, is that over a field of characteristic 0 every ‘weight system’ of order n comes from
a Vassiliev invariant of type n, which is well-defined up to Vassiliev invariants of order at
most n− 1, see [4]. The goal of this section is to show that the skew characteristic polyno-
mial for chord diagrams, as well as that for graphs, satisfies the 4-term relation and defines
thus a knot invariant. The same is true for the refined skew characteristic polynomial.

3.1 4-term relations for chord diagrams and matrices

Definition 3.1. A function f on chord diagrams is a weight system if it satisfies the 4-term
relation, i.e. the following alternating sum is equal to zero.

f
( )

- f
( )

+ f
( )

- f
( )

= 0

In the above diagrams, the chords whose end points lie on the dotted part of the
circle remain fixed throughout the expression. Replacement of the first chord diagram in
the 4-term relation with the second one is called the first Vassiliev move, and with the
fourth one the second Vassiliev move. Such a move is defined by a pair of chords having
two neighboring ends. We denote by An the vector space spanned by all chord diagrams
with n chords modulo the subspace spanned by linear combinations of chord diagrams
entering the 4-term relations.

We now want to give the vector space A = ⊕n≥0An, the structure of an algebra. Let
C1, C2 be two chord diagrams of orders m and n respectively. Define their product as their
connected sum, i.e., for each diagram, mark two points on the circle such that the marked
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arc does not have an endpoint of a chord; then join C1 and C2 along those arcs respecting
the orientation (in all the figures, the outer circle of the diagrams is assumed to be oriented
counter-clockwise by default) as shown in the example below:

=

Extend this map using linearity to get the mapping

m : Am ⊗An → Am+n.

The following statement is well-known, see, e.g. [18].

Lemma 3.2. The product m is well-defined modulo the 4-term relations.

Comultiplication of chord diagrams is defined in terms of the coproduct in A as follows

µ : An →
⊕
k+l=n

Ak ⊗Al

C 7→
∑

J⊂V (C)

CJ ⊗ CJ ,

where V (C) is the set of chords of C and J = V (C)\J and µ is extended to A by linearity.
Note that in contrast to multiplication, comultiplication does not require 4-term rela-

tions to be well-defined: it introduces a coalgebra structure on the space of chord diagrams
even if we do not factor out the 4-term relations.

Theorem 3.3. The skew characteristic polynomials of chord diagrams satisfy the 4-term
relations and whence determine a knot invariant.

This theorem can be either proved directly (basing on the fact that the non-degeneracy
of the intersection graph of a chord diagram satisfies the 4-term relation) or deduced
from a similar theorem for skew characteristic polynomial of graphs, see below. One
more approach to proving this theorem consists in proving its analogue for antisymmetric
matrices, see Sec. 3.3.

3.2 4-term relation for graphs

The 4-term relation for graphs is defined in a way similar to that for chord diagrams,
see [17]. A graph invariant is a function on isomorphism classes of graphs attaining values
in a commutative group or a commutative ring. Let G = (V,E) be a simple graph, with
the vertex set V = V (G) and the edge set E = E(G). Let a, b ∈ V (G) be distinct. Define
G′

ab to be the graph obtained by deleting the edge (a, b) ∈ E(G) if it exists and adding the
edge otherwise (switching the adjacency); this is the first Vassiliev move for graphs. The

graph G̃ab is obtained in the following way. Let c ∈ V (G)\{a, b}. If c is connected to b,
then we change its adjacency with a; we do nothing otherwise. This is the second Vassiliev
move. It is straightforward to see that the operations G 7→ G′

ab and G 7→ G̃ab commute.



Skew characteristic polynomial of graphs and embedded graphs 99

Definition 3.4. A graph invariant is a 4-invariant if it satisfies the four-term relation

f(G)− f(G′
ab) = f(G̃ab)− f(G̃′

ab)

for an arbitrary graph G, and any pair of vertices a, b ∈ V (G).

The space G modulo the 4-term relations

G−G′
ab − G̃ab + G̃′

ab = 0

is denoted by F . It inherits the Hopf algebra structure from G. The grading on F is
induced by the number of vertices since the 4-term relation consists of terms with the
same number of vertices:

F = F0 ⊕F1 ⊕F2 ⊕ . . . ,

where Fk is the subspace spanned by graphs with k vertices, modulo the 4-term relations.
The mapping taking a chord diagram to its intersection graph preserves the 4-term relations
and is thus extended by linearity to a graded Hopf algebra isomorphism A → F . As
a consequence, any 4-invariant of graphs determines a weight system and hence a finite
type invariant of knots.

The non-degeneracy of graphs is a 4-invariant; moreover, it satisfies the 2-term relation:

ν(G) = ν(G̃ab)

for any simple graph G and any pair of vertices a, b ∈ V (G). Note that the proof of
Theorem 2.12 in [6] shows that the determinant of the adjacency matrix also satisfies the
2-term relation for chord diagrams. This fact immediately implies

Theorem 3.5. The skew characteristic polynomial of simple graphs is a 4-invariant.

Knowing that the skew characteristic polynomial of graphs satisfies 4-term relations
produces one more way to compute it for those graphs that are not intersection graphs.
If such a graph can be expressed, modulo 4-term relations, as a linear combination of
intersection graphs, then the same linear combination of their skew characteristic polyno-
mials yields its skew characteristic polynomial. For the 5-wheel and the 3-prism, this is
shown in Figure 2 and Figure 3. However, any graph is known to be equivalent modulo
4-term relations to a linear combination of intersection graphs only for graphs with up to 8
vertices, see [7]. For an arbitrary number of vertices, the question remains open.

Theorem 3.6. The refined skew characteristic polynomial of simple graphs satisfies the
4-term relations for graphs.

The proof of the theorem is similar to that for skew characteristic polynomial and is
based on the fact that the corank of the adjacency matrix of a graph is preserved by the
second Vassiliev move, see equation (2) below, that is, satisfies the 2-term relations.
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Figure 2: 4-term relations for the 5-wheel expressed in terms of intersection graphs; the
value of the skew characteristic polynomial is indicated
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Figure 3: 4-term relations for the 5-wheel expressing them in terms of intersection graphs;
the value of the skew characteristic polynomial is indicated

3.3 Characteristic polynomial of antisymmetric matrices and 4-term relations

Symmetric matrices over the field of two elements, considered up to simultaneous per-
mutations of rows and columns, are in one-to-one correspondence with isomorphism classes
of simple graphs. Following the pattern for adjacency matrices of graphs in the 4-term
relation, we are able to define the 4-term relation for arbitrary square matrices. It hap-
pens that, for antisymmetric matrices, the characteristic polynomial satisfies these 4-term
relations. We hope that this property will find applications outside the theory of finite
type knot invariants.

Let Mn be the set of n× n matrices over the base field, considered up to simultaneous



Skew characteristic polynomial of graphs and embedded graphs 101

permutations of rows and columns. Let f be a function on Mn. We say that f satisfies
the 4-term relations if for any matrix A = (aij) ∈ Mn we have

f(A)− f(A′
12) = f(Ã12)− f(Ã′

12),

where

• the matrix A′
12 is the matrix obtained from A by replacing the two entries a12 and

a21 with zeroes;

• the matrix Ã12 is
Ã12 = BtAB, (2)

where B is the block square matrix consisting of a 2× 2-block(
1 1
0 1

)
in the first two rows and columns and a complementary identity block;

• the matrix Ã′
12 is the result of applying to A the operations, tilde and prime, in the

elements 1 and 2, and is independent of the order of the two.

We prove that the characteristic polynomial satisfies this 4-term relation for antisym-
metric matrices of order n. In particular, this is true for adjacency matrices of oriented
simple graphs. It is also true for adjacency matrices of non-oriented simple graphs, if we
consider them over the field of two elements, since in this case symmetric matrices are
also antisymmetric. It is easy to check that for symmetric matrices, for example, the
corresponding assertion is wrong.

Theorem 3.7. The characteristic polynomial satisfies the 4-term relations for the space of
antisymmetric n× n-matrices.

Proof. Let A be an antisymmetric matrix of order n, and let χA be its characteristic
polynomial, i.e. χA(u) = |uI − A|. Suppose

A =


0 −a12 −a13 . . . −a1n
a12 0 −a23 . . . −a2n
...

...
. . .

...
a1n a2n . . . . . . 0


Then,

A′ =


0 0 −a13 . . . −a1n
0 0 −a23 . . . −a2n
...

...
. . .

...
a1n a2n . . . . . . 0

 , Ã =


0 −a12 −a13 − a23 . . . −a1n − a2n
a12 0 −a23 . . . −a2n

a13 + a23 a23 0 . . . −a2n
...

...
. . .

...
a1n + a2n a2n . . . . . . 0

 , and
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Ã′ =


0 0 −a13 − a23 . . . −a1n − a2n
0 0 −a23 . . . −a2n

a13 + a23 a23 0 . . . −a2n
...

...
. . .

...
a1n + a2n a2n . . . . . . 0

 .

We have

χA − χA′ =

∣∣∣∣∣∣∣∣∣
u a12 a13 . . . a1n

−a12 u a23 . . . a2n
...

...
. . .

...
−a1n −a2n . . . . . . u

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣

u 0 a13 . . . a1n
0 u a23 . . . a2n
...

...
. . .

...
−a1n −a2n . . . . . . u

∣∣∣∣∣∣∣∣∣
Expanding χA along the first row, and χA′ along the first column, we get

χA − χA′ = −a12

∣∣∣∣∣∣∣∣∣∣∣∣

−a12 a23 a24 . . . a2n
−a13 u a34 . . . a3n
... −a34 u . . .

...
...

...
. . .

...
−a1n −a3n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣∣
+ a13



∣∣∣∣∣∣∣∣∣∣∣∣

−a12 u a24 . . . a2n
−a13 −a23 a34 . . . a3n
...

... u . . .
...

...
...

. . .
...

−a1n −a2n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

0 a13 . . . . . . a1n
u a23 . . . . . . a2n

−a24 −a34 . . . a4n
...

...
. . .

...
−a2n −a3n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣



+ · · ·+ (−1)k−1a1k



∣∣∣∣∣∣∣∣∣∣∣∣

−a12 u a23 . . . a2(k−1) a2(k+1) . . . a2n
−a13 −a23 u . . . a3n
...

... . . . . . .
...

...
... . . .

. . .
...

−a1n −a2n . . . −a(k−1)n −a(k+1)n . . . u

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a13 . . . . . . a1n
u a23 . . . . . . a2n

−a23 u . . . a3n

−a2(k−1)

... . . . a(k−1)n

−a2(k+1)

...
. . . a(k+1)n

...
...

. . .
...

−a2n −a3n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



+ . . .+ (−1)n−1an



∣∣∣∣∣∣∣∣∣∣∣∣

−a12 u a23 . . . a2(n−1)

−a13 −a23 u . . . a3(n−1)

...
... u . . .

...
...

...
. . . u

−a1n −a2n −a3n . . .−a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

0 a13 . . . . . . a1n
u a23 . . . . . . a2n

−a23 u . . . a3n
...

...
. . .

...
−a2(n−1) −a3(n−1) . . . u a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣

 .

Now, we make some observations:

1. For k ≥ 3, in each summand, there is a difference term of two (n − 1) × (n − 1)
minors of a1k, coming from χA and χA′ respectively. We expand one with respect to
the first row, and the other with respect to the first column.

2. It follows that, in each summand, the terms corresponding to the expansion wrt a1k
cancel out.

3. Also, for k, l ≥ 3, k ̸= l,

(−1)n−1(a1k)(a1l)
(
|A1| − |A2|

)
= −(−1)n−1(a1l)(a1k)

(
|A2| − |A1|

)
,
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where A1, A2 are the minors of a1l, in the expansion inside the summand correspond-
ing to a1k. Note that they are also the minors of a1k, in the expansion inside the
summand corresponding to a1l. Therefore, they also cancel out.

Hence, we are left with the following expression,

χA − χA′ = − a12

∣∣∣∣∣∣∣∣∣∣∣

−a12 a23 a24 . . . a2n
−a13 u a34 . . . a3n
... −a34 u . . .

...
...

...
. . .

...
−a1n −a3n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣
+ (a13)(−a12)

∣∣∣∣∣∣∣∣∣
−a23 a34 . . . a3n
... u . . .

...
...

. . .
...

−a2n . . . . . . u

∣∣∣∣∣∣∣∣∣ (3)

+ · · ·+ (−1)k−1(a1k)(−a12)

∣∣∣∣∣∣∣
−a23 u . . . a3n
...

. . .
...

−a2n . . . u

∣∣∣∣∣∣∣
+ · · ·+ (−1)n−1(a1n)(−a12)

∣∣∣∣∣∣∣∣∣
−a23 u . . . a3(n−1)
...

. . .
...

... . . . u
−a2n −a3n . . . −a(n−1)n

∣∣∣∣∣∣∣∣∣ ,
where the minor in the first summand, is of order (n− 1)× (n− 1), and in the rest of the
summands are of order (n− 2)× (n− 2).

Now, consider an analogous procedure for χÃ − χÃ′ :

χÃ − χÃ′ = −a12

∣∣∣∣∣∣∣∣∣∣∣∣

−a12 a23 a24 . . . a2n
−(a13 + a23) u a34 . . . a3n

... −a34 u . . .
...

...
...

. . .
...

−(a1n + a2n) −a3n −a4n . . . u

∣∣∣∣∣∣∣∣∣∣∣∣
+ (a13 + a23)(−a12)

∣∣∣∣∣∣∣∣∣∣
−a23 a34 . . . a3n
... u . . .

...
...

. . .
...

−a2n . . . . . . u

∣∣∣∣∣∣∣∣∣∣
+ . . .

· · ·+ (−1)k−1(a1k + a2k)(−a12)

∣∣∣∣∣∣∣
−a23 u . . . a3n
...

. . .
...

−a2n . . . u

∣∣∣∣∣∣∣+ . . .

· · ·+ (−1)n−1(a1n + a2n)(−a12)

∣∣∣∣∣∣∣∣∣∣
−a23 u . . . a3(n−1)
...

. . .
...

... . . . u
−a2n −a3n . . . −a(n−1)n

∣∣∣∣∣∣∣∣∣∣
.

Now, in the above expression of χÃ(u)−χÃ′(u), expand the determinant in the first sum-
mand along the first column. Then a straightforward calculation shows that the summands
can be rearranged to form an expression that is exactly equal to the right-hand side of
equation (3).
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As an immediate consequence of this theorem, we obtain

Corollary 3.8. The skew characteristic polynomial QC of chord diagrams satisfies the 4-
term relations and is hence a weight system.

4 Skew characteristic polynomial for delta-matroids and embedded
graphs

In this section, we extend the skew characteristic polynomial to a two-variable polyno-
mial invariant of embedded graphs and delta-matroids. Chord diagrams can be considered
as embedded graphs with a single vertex (the vertex corresponds to the underlying circle
of the chord diagram, while the chords are the edges). In contrast to chord diagrams,
embedded graphs with more than one vertex do not span a Hopf algebra in a natural
way, even when considered modulo 4-term relations. Fortunately, however, a construction
due to A. Bouchet allows one to associate to each graph and each embedded graph its
delta-matroid. In turn, delta-matroids span a Hopf algebra [19], and one can define the
skew characteristic polynomial for delta-matroids following the same pattern as above.
The construction makes use of the fact that we know how to extend non-degeneracy to
delta-matroids.

Our approach to extending the skew characteristic polynomial to embedded graphs
and delta-matroids is similar in nature to that of [10], where an extension of Stanley’s
symmetrized chromatic polynomial has been constructed. M. Nenasheva and V. Zhukov
are basing more specifically on combinatorial Hopf algebra structures, and constructed
a character for the extended invariant, which is a graded Hopf algebra homomorphism.
For the skew characteristic polynomial, this is not true, and we use only the knowledge
of the value of the extended invariant on primitives. Extensions of graph invariants to
delta-matroids in their relationship with knot and link invariants are studied also in [2,11].

The 4-term relations also admit an extension to embedded graphs and binary delta-
matroids. Since non-degeneracy respects these relations, the extended skew characteristic
polynomial also satisfies them, whence determining an invariant of multi-component links.

Below, we recall necessary knowledge about embedded graphs and delta-matroids. We
follow mainly [3].

4.1 Embedded graphs

Definition 4.1. A ribbon graph (or a cellularly embedded graph) Γ = (V,E), is a surface
with boundary such that it can be represented as the union of two sets of disks, namely,
a set V of vertices, and a set E of edges such that:

• The vertices and edges intersect in disjoint line segments;

• Each such line segment lies on the boundary of exactly one vertex, and exactly one
edge;
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• Every edge contains exactly two such line segments.

This surface can be orientable or non-orientable. Below, we restrict ourselves to the
case of oriented embedded graphs.

We can form ribbon graphs (with one vertex) from chord diagrams by attaching a disk
to the outer circle and thickening the chords to form ribbons and hence inducing a natural
cyclic order to the ribbons. If we consider arbitrary embedded graphs, allowing for more
than one vertex, we are led to obtain a generalization of the concept of weight systems for
knots, expanding it to a notion of weight systems for links. The number of components of
a link then correspond to the number of vertices in the embedded graph.

For an arbitrary embedded graph Γ = (V,E), it is not conducive to assign an intersec-
tion graph to it, so we focus on the associated so-called ‘delta-matroid’ of the embedded
graph Γ. This delta-matroid is binary. First, some preliminaries on delta-matroids are
discussed. A detailed study can be found in [3].

4.2 Delta-matroids of graphs and embedded graphs

Definition 4.2 (Set System). A set system is a pair D = (E; Φ), where E, called the ground
set, is a finite set, and Φ ⊂ 2E, called the set of feasible sets, is a subset of the family of
subsets of E.

A set system D = (E; Φ) is ‘proper’ if Φ is nonempty.

Definition 4.3 (Delta-Matroid). A proper set system D = (E; Φ) is called a delta-matroid
if it satisfies the following ‘Symmetric Exchange Axiom’ (SEA):

∀ X,Y ∈ Φ,∀a ∈ X△Y, ∃b ∈ X△Y such that X△{a, b} ∈ Φ.

Example 4.4. Let E = {a, b, c}, and Φ = {{a}, {b}, {a, b}, {a, b, c}}; then D = (E; Φ) is
a delta-matroid.

A delta-matroid (E; Φ) is called even if for any pair of feasible sets X, Y ∈ Φ, we have
|X| ≡ |Y | mod 2.

To a given simple graph G = (V,E) with vertex set V and edge set E, we can associate
its graphic delta-matroid D(G) = (V (G); Φ(G)), also called the non-degeneracy delta-
matroid of G with ground set E(D(G)) = V (G) and admissible sets Φ(G) consisting of
all A ⊂ V (G) such that the adjacency matrix of the subgraph G(A) induced by A is
non-degenerate.

Definition 4.5 (Local duality/Partial dual/twist). For a delta-matroid D = (E; Φ), and
a subset A ⊂ E, the partial dual of D with respect to A is defined as

D ∗ A = (E; Φ ∗ A), where Φ ∗ A = {F△A : F ∈ Φ}.

The above operation ∗ is also called the twist operation. For embedded graphs, it was
introduced in [13].



106 Riya Dogra and Sergei Lando

Definition 4.6 (Binary Delta-Matroid). A delta-matroid D = (E; Φ) is binary if there exists
A ⊂ E such that D ∗ A is a graphic delta-matroid.

Definition 4.7. A quasi-tree is a ribbon graph with exactly one boundary component.
A ribbon subgraph of a connected ribbon graph Γ is a spanning quasi-tree of Γ if it is
a quasi-tree and has the same vertex set as Γ.

Definition 4.8 (Ribbon graphic delta-matroid). Let Γ = (V,E) be a ribbon graph and let

Φ(Γ) := {F ⊂ E(Γ) : F is the edge set of a spanning quasi-tree of Γ};

then D(Γ) := (E(Γ); Φ(Γ)) is the delta-matroid of the ribbon graph Γ.

We state some well-known properties of ribbon graphs and their corresponding delta-
matroids in the form of a lemma, without proof.

Lemma 4.9. (see [1])

1. The delta-matroid D(Γ) of a ribbon graph Γ is binary.

2. The delta-matroid D(C), where C is a ribbon graph with a single vertex, is isomorphic
to the graphic delta-matroid associated to the intersection graph g(C) of the chord
diagram C.

3. D(Γ) is an even binary delta-matroid if and only if the ribbon graph Γ is orientable.

4. Given a delta-matroid D(Γ) = (E = E(Γ); Φ) and A ⊂ E, D ∗A is the delta-matroid
of the partial dual [3] of the ribbon graph Γ with respect to A, ΓA.

4.3 The Hopf algebra of delta-matroids

Two set systems are said to be isomorphic if there is a one-to-one correspondence
between their ground sets taking the feasible sets of the first set system to that of the
second one and vice versa. Isomorphism classes of set systems span an infinite dimensional
graded vector space:

S = S0 ⊕ S1 ⊕ S2 ⊕ . . . ,

where Si is the vector space spanned by isomorphism classes of set systems with ground
set of cardinality i. Given two set systems D1 = (E1; Φ1), D2 = (E2; Φ2), their product is
defined as

D1D2 = (E1 ⊔ E2; {X ⊔ Y : X ∈ Φ1, Y ∈ Φ2}).

This product extends to S by linearity to a graded bilinear multiplication

m : S ⊗ S → S, m(D1 ⊗D2) = D1D2.

The unit with respect to m is given by (∅; {∅}), and it generates S0.
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The product of two binary delta-matroids is a binary delta-matroid [3]. Thus, the vector
space of (isomorphism classes of) binary delta-matroids, B, forms a graded commutative
subalgebra of the algebra of set systems S:

B = B0 ⊕ B1 ⊕ B2 . . .

Similarly, the vector space of even binary delta-matroids, Be, forms a graded subalgebra
of B:

Be = Be
0 ⊕ Be

1 ⊕ Be
2 ⊕ . . .

If an embedded graph Γ is obtained as a result of gluing a vertex chosen arbitrarily in
an embedded graph Γ1 to a vertex chosen arbitrarily in an embedded graph Γ2, then the
delta-matroid of Γ is the product of delta-matroids of Γ1 and Γ2: D(Γ) = D(Γ1)D(Γ2).

Given a delta-matroid D = (E; Φ), its coproduct µ(D) is given as

µ(D) =
∑
E′⊂E

D(E ′)⊗D(E \ E ′),

where D(E ′) is the restriction of a delta-matroid to the subset E ′ of E. It is easily proved
that µ(D1D2) = µ(D1)µ(D2). The notion of a restriction for delta-matroids is described
below. The coproduct is extended by linearity to a comultiplication

µ : B → B ⊗ B,

which respects the property of being even.
Let D = (E; Φ) be a delta matroid. A coloop is defined to be an element e ∈ E such

that ∀X ∈ Φ, e ∈ X; and a loop is an element e ∈ E such that ∀X ∈ Φ, e /∈ X.

Definition 4.10 (Deletion). Given a delta-matroid D = (E; Φ) and an element e ∈ E, the
deletion D \ e is the set system defined as D \ e := (E \ e; Φ′), where, if e is not a coloop,
then

Φ′ = {X : X ∈ Φ : e /∈ X},

and if e is a coloop, then
Φ′ = {X \ e : X ∈ Φ, e ∈ X}.

Definition 4.11 (Contraction). Given a delta-matroid D = (E; Φ) and an element e ∈ E,
the contraction D/e is the set system defined as D/e := (E \ e; Φ′), where, if e is not
a loop, then

Φ′ = {X \ e : X ∈ Φ : e ∈ X},

and if e is a loop, then
Φ′ = Φ.

Lemma 4.12. If D is a delta-matroid, then D \ e and D/e are also delta-matroids, and
D/e = (D ∗ e) \ e.
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Hence, we can define D\A and D/A, for a given subset A of the ground set as the result
of a sequence of contractions or deletions with respect to all elements in A. In particular,
the restriction of a delta-matroid to a subset E ′ of its ground set E, is the delta-matroid
obtained by deleting all elements in E \ E ′.

Proposition 4.13. If D(Γ) = (E(Γ); Φ(Γ)) is the delta-matroid of an embedded graph Γ
and E ′ ⊂ E(Γ) is a subset of its edges such that the corresponding spanning subgraph is
connected, then D(E ′) is the delta-matroid of the spanning subgraph (V (Γ), E ′).

Proposition 4.14. For a binary delta-matroid D = (E; Φ), its restriction D(E ′) to an
arbitrary subset E ′ ⊂ E is a binary delta-matroid.

Theorem 4.15. The vector space B endowed with the multiplication and comultiplication
defined above forms a graded commutative cocommutative Hopf Algebra. The subalgebra
Be ⊂ B spanned by even binary delta-matroids forms a Hopf subalgebra in this Hopf algebra.

4.4 Skew characteristic polynomial for delta-matroids

Motivated by the correspondence between embedded graphs and binary delta-matroids,
we can generalize the skew characteristic polynomial to the bialgebra B of binary delta-
matroids.

Note that the non-degeneracy ν admits a natural extension to binary delta-matroids: if
D = (E; Φ) is a binary delta-matroid, define ν(D) = 1 if E ∈ Φ and 0 otherwise. Indeed,
for a chord diagram C, its intersection graph g(C) is non-degenerate if and only if the
boundary of C is connected, that is, if and only if C is a quasi-tree.

Definition 4.16. The skew characteristic polynomial Q : D 7→ QD(u,w) is the invariant
of even binary delta-matroids taking values in the ring C[u,w] of polynomials in two
variables u,w possessing the following properties:

• it is multiplicative, that is if D is a product of two even binary delta-matroids D1

and D2, D = D1D2, then QD = QD1 ·QD2 ;

• for the delta-matroid ({1}; {∅}) corresponding to an orientable embedded graph with
a single vertex and a single edge, the polynomial is u;

• for the delta-matroid ({1}; {{1}}) corresponding to the embedded graph with two
vertices and a single edge (such an embedded graph is necessarily orientable), the
polynomial is w + 1;

• for any even binary delta-matroid D whose ground set contains at least two elements,
the value Qπ(D) of the invariant Q on the projection π(D) to the subspace of prim-
itives along the subspace of decomposable elements in the Hopf algebra Be of even
binary delta-matroids is a constant;

• the free term of the polynomial QD coincides with ν(D).
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Remark 4.17. We chose the value of the skew characteristic polynomial on the delta-
matroid ({1}; {{1}}) to be w + 1 rather than just w in order to make it consistent with
the requirement that the free term of the polynomial coincides with the non-degeneracy
of the delta-matroid.

Since the set V (G) of vertices of a graph G is admissible for the delta-matroid of the
graph if and only if ν(G) = 1, we deduce

Theorem 4.18. The skew characteristic polynomial of a graph G coincides with the skew
characteristic polynomial of its delta-matroid.

The notions of the first and the second Vassiliev moves for binary delta-matroids, as
well as 4-term relations for invariants of binary delta-matroids, where introduced in [19].
Similarly to the case of chord diagrams and graphs, since the non-degeneracy of delta-
matroids satisfies 2-term relations, we immediately deduce

Theorem 4.19. The skew characteristic polynomial of even binary delta-matroids satisfies
4-term relations and defines, therefore, a finite type link invariant.

4.5 Examples

The delta-matroid ({1, 2}; {{1}, {2}}) corresponds to the orientable embedded graph
with two vertices connected by two ribbons. Its projection to primitives looks like

π : ({1, 2}; {{1}, {2}}) 7→ ({1, 2}; {{1}, {2}})− ({1}; {{1}})2.

This gives the value

Q({1,2};{{1},{2}}) = (w + 1)2 − 1 = w2 + 2w.

More generally, for the delta-matroid of the orientable embedded graph of genus 0
consisting of two vertices connected by n ribbons, the skew characteristic polynomial is

wn + nwn−1.

5 Problems and questions

The following questions arise naturally in the study of any newly introduced invariant
of graphs and delta-matroids:

• Compute explicitly the skew characteristic polynomials for important series of graphs
and delta-matroids;

• Isolate properties of graphs and delta-matroids reflected in their skew characteristic
polynomials;

• Try to find out natural contraction-deletion relations allowing one to compute the
skew characteristic polynomial more efficiently than directly from the definition;
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• Construct an analogue of the Laplacian operator whose spectral theory is governed
by the skew characteristic polynomial;

• Categorify the skew characteristic polynomial.
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