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Center of mass technique and affine geometry
To the memory of Sergei Duzhin

Askold Khovanskii

Abstract. The notion of center of mass, which is very useful in kinematics, proves to
be very handy in geometry (see [1]– [2]). Countless applications of center of mass to
geometry go back to Archimedes. Unfortunately, the center of mass cannot be defined
for sets whose total mass equals zero. In the paper we improve this disadvantage and
assign to an n-dimensional affine space L over any field k the (n + 1)-dimensional

vector space M̂(L) over k of weighty points and mass dipoles in L. In this space
the sum of weighted points whose total mass λ ̸= 0 is equal to the center of mass of
these points, equipped with mass λ. We present several interpretations of the space
M̂(L) and a couple of its applications to geometry. The paper is self-contained and
is accessible for undergraduate students.

1 Introduction

1.1. I first met Sergei Duzhin a long time ago: Sergei was an active member of the famous
Arnold’s mathematical seminar in Moscow which was an important part of my life.

Sergei was an attractive and original person. He was easily learning foreign languages,
and while visiting universities in different countries he was starting to lecture in the lan-
guage of the host country. He took an accordion with him on trips, often sang his favorite
songs, and his friends and colleagues sang along with him. Sergei organized interesting
mathematical seminars, first in Pereslavl-Zalessky, and then in St. Petersburg, which at-
tracted many visitors. He was very friendly, and like many others I enjoyed his company.

He had a wide range of interests, for example, he took great pleasure in studying the
history of St. Petersburg. He was interested in very different areas of mathematics, and I
would be glad to discuss the center of mass technique with him.
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1.2. Center of mass of a system of points which are equipped with real non necessarily
positive masses can be defined on any real Euclidean, spherical or hyperbolic space and on
some other spaces (see [4]). Such generalization of the classical center of mass technique
does not come for free. For example, in the “calculus of masses” on a sphere centered at
the origin one identifies a point A equipped with a mass m with the opposite point −A
equipped with the mass −m.

In this paper we develop the center of mass technique for an affine space over an
arbitrary field. We generalize the classical approach and include into consideration the
case when the total mass of a system is equal to zero. In that case instead of its center
of mass equipped with the total mass of the system, one associates to the system its mass
dipole (see below), which could be considered as a free vector. This procedure has an
interpretation in projective geometry. Consider the natural projective compactification of
the affine space. To a free vector one associates the point at infinity hyperplane at which
the free vector is pointing. The center of mass in the case under consideration can be
interpreted as this point at the infinite hyperplane equipped with the “mass” equals the
free vector. In this paper we will not discuss this (very useful) interpretation and will
restrict yourself by affine geometry not touching projective geometry.

1.3. Applications of the center of mass technique to geometry go back to Archimedes.
They are based on the existence of the center of mass of any weighty set of points (i.e.,
of any finite set of points equipped with masses whose total mass is not equal to zero).
Center of mass satisfies some nice properties (see Axioms 1 and 2 in Section 2.2) which
suggest its applications to geometry.

As Archimedes, one can make geometrical discoveries heuristically, believing in the
existence of the center of mass (see Section 2). Of course, it is not hard to rigorously
justify the center of mass technique (see Theorems 2.1–2.2 below).

1.4. One tempted to look for a commutative group of weighty points (i.e., of points
equipped with non zero masses) in an affine space L such that the sum of weighty points
in the group is equal to the center of mass of these points equipped with their total mass.

Such a group cannot be defined: one cannot sum a set of weighty points, whose total
mass is equal to zero, since the center of mass of such a set does not exist.

One can improve this situation and define a vector space M̂(L), whose elements are
weighty points and mass dipoles in L, defined up to a shift.

Instead of the center of mass, one can assign to any weightless set, i.e., to a set of points
whose total mass is equal to zero, its mass dipole (see below) defined up to a shift.

A mass dipole {−A,B} in L is an ordered pair of points A,B equipped with masses
−1, 1, correspondingly. Two mass dipoles {−A,B} and {−C,D} are equivalent, if the
oriented segments AB and CD are parallel, equal and having the same direction (in the
other words, if the ordered pairs of points (A,B) and (C,D) are equal up to a shift).

In the additive group of the space M̂(L) the sum of weighty points, whose total mass
is λ ̸= 0, equals the center of mass of the set of these points, equipped with mass λ.



Center of mass technique and affine geometry 51

The space M̂(L) has many geometrical applications besides classical applications (see
[1]–[2]) of the center of mass. To show how it works we present an example of such
application in Section 8. One can start reading the paper with this section, looking for
needed definitions in previous sections.

1.5. In this paper, we introduce several interpretations of the vector space M̂(L) over k
of weighty points and mass dipoles in an affine space L over k. Let us briefly discuss these
interpretations.

With the affine space L one can associate the vector space M(L) of moment-like affine
maps P : L → L of L to the space L of free vectors in L whose linear part (which is a map
of the space L to itself) is proportional to the identity map. The space M(L) contains a
subspace M0(L) of codimension one which consists of constant maps P : L → L whose
linear parts are equal to zero.

The space M̂(L) is isomorphic to the space M(L). We prove basic properties of the

space M̂(L) using this isomorphism.

The space M̂(L) can be defined as the factor-space D(L)/DM(L) of the infinite di-
mensional vector space D(L) of all weighted sets in L, i.e., all finite sets of points in
L equipped with masses λi ∈ k, by its subspace DM(L), consisting of null sets in L,
whose total masses and mass dipoles are equal to zero (see Section 5.2). The isomorphism

M̂(L) ∼ D(L)/DM(L) allows to assign to any affine map F : L1 → L2 the corresponding

linear map F∗ : M̂(L1) → M̂(L2).

The space M̂(L) consists of weighty points and mass dipoles in L defined up to a shift.
One can define vector space operations (either an addition of two vectors or a multiplication
of a vector by an element of the field k) on the space M̂(L) by listing rules which allow

to perform these operations (see Section 7.1). Such presentation of the space M̂(L) is the
most convenient for geometrical applications.

If an affine space L is an affine hyperplane, not passing through the origin in a vector
space L, then the space M̂(L) can be identified with the ambient vector space L. Such

identification provides the most visual interpretation of the space M̂(L). It works only if
L is an affine hyperplane in L not passing through its origin.

One can canonically represent any affine space L as the characteristic hyperplane (see
Section 10.3) not passing through the origin in the space P ∗

1 (L), dual to the space P1(L)
of polynomials on L whose degree is ≤ 1 (see Section 10.3). This representation implies

that the space M̂(L) is canonically isomorphic to the space P ∗
1 (L).

Let LB be a vector space of all polynomials on L of degree ≤ 2, whose homogeneous
parts of degree 2 are proportional to a non-degenerate quadratic formQB (whose symmetric
bilinear form is a fixed form B).

One can show that the space M̂(L) is isomorphic to the space of differentials of polyno-
mials from the space LB. This observation implies that the critical points of polynomials
from the space LB obey the same laws as the centers of mass of weighty points in the affine
space L (see Section 10.4).
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1.6. A few words about the organization of this paper.
Section 2 contains an introduction of the classical center of mass technique. This

technique has the following disadvantage: center of mass cannot be defined for sets whose
total mass is equal to zero. In Section 3, we discuss how to improve this method. Next
sections contain a detailed presentation of such improvement.

In Section 4, we recall definitions and basic properties of affine spaces over arbitrary
fields, and of affine maps. Analogous material can be found in many places, see, for
example [3].

Sections 5–7 contain the central definitions and results of the paper: here we discuss
weighted sets of points in affine spaces, their moments and moments maps, moment-like
maps and the vector space M̂(L) of weighty points and mass dipoles in an affine space L.

In Section 8, we prove classical theorems on three altitudes in a triangle and on the
Euler line in a triangle, applying mass dipoles and centers of mass.

In Section 9, we discuss relations between affine geometry of a hyperplane L in a vector
space L, not passing through its origin, and geometry of the vector space L. We also
show that any affine space can be canonically embedded into a vector space as an affine
hyperplane not passing through the origin.

In Section 10, we show first that an affine map F : L1 → L2 induces a linear map
F∗ : M̂(L1) → M̂(L2). Then we present several interpretations of the space M̂(L).

1.6. Vladlen Timorin made many valuable suggestions which allowed me to improve the
exposition. He also edited my English. My wife Tatiana Belokrinitskaya helped me writing
the paper. In particular, she typed and edited it. I am grateful to both of them: without
their help, I would not be able to complete this project.

This work was partially supported by the Canadian Grant No. 156833-17.

2 Heuristic Applications of Centers of Mass in Geometry

A set of weighted points Ã = {(Ai, λi)} in a real n-dimensional space L is a finite set of
points Ai ∈ L equipped with (positive or negative) numbers λi which are called “masses”

of the corresponding points. The total mass λ = λT (Ã) of the set Ã is the sum
∑

λi of
masses of all points in the set. The set is weighty if its total mass is not equal to zero, and
is weightless if its total mass is equal to zero.

According to kinematics, one can assign to each weighty set Ã a point which is called
the center of mass of the set Ã. The map, that sends each weighty set to its center of
mass, satisfies some nice properties called Axioms 1 and 2 (see below).

2.1 Intuitive Meaning of the Center of Mass

Let us discuss an intuitive meaning of the center of mass of a weighty set Ã in a plane L.
One possible way of understanding what the center of mass means is to imagine the

plane L as a big flat weightless tabletop. Imagine also that to each point Ai equipped with
a mass λi a force proportional to λi is applied that pulls the tabletop down if λi is positive,
or pulls it up if λi is negative.
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It is known from numerous experiments that one can support the tabletop on just one
leg; the position of the leg depends on the weighty set Ã. This point is called the center
of mass of Ã.

Let us see what the center of mass is for a system of two positive point masses m1 and
m2 located at points A and B.

Experiments show that if m1 and m2 are positive, the center of these masses is located
at the point C on the line segment AB such that

m1 · AC = m2 · CB.

Here AC, CB are the oriented lengths of the corresponding segments. Since the point
C is located between the points A, B, the oriented lengths have the same sign and can be
taken positive.

One can consider negative masses as well. A point with a negative mass could be
considered as a point of application of a force proportional to its mass and acting not
down but up.

The center of a weighted couple of points A and B, equipped with (not necessarily
positive) masses m1 and m2, is defined by the same formula, but one should allow the
point C to be located on the line AB, not necessarily in the segment AB.

A

m1

B

m2
C

Figure 1: If the mass at B is twice as big as the mass at A, then the center of mass C will
be two times closer to B than to A

The identity defining C can be rewritten more symmetrically:

m1 · CA+m2 · CB = 0.

If points A and B are equipped with masses −m and m whose sum is equal to zero,
then their center of mass is not defined. If m is the unit mass, m = 1, the corresponding
pair {−A,B} is called mass dipole.

Two mass dipoles {−A,B} and {−C,D} are equivalent if the ordered pairs of points
(A,B) and (C,D) are equal up to a shift.

For the sake of equilibrium of the tabletop, supported at the pivot point O, the effect
of putting a mass dipole {−A,B} and putting a mass dipole {−C,D} on the tabletop, are
equal, if the mass dipoles are equivalent.

Mass dipoles together with weighty points play a key role in the extension of the center
of mass technique presented in the paper.

The center of mass of a weighty set containing more than two points can be found
inductively using Axiom 2 (see below).
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ff

mB

AABB B C
A

mA

Figure 2: If AC = 2BC, then equilibrium holds if mB = −2mA

A

BC

mA+mB

mA mB

Figure 3: Force proportional to m1 +m2 must be placed at C to keep the table in equilib-
rium
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2.2 Axiomatic Definition of the Center of Mass

According to kinematics, centers of mass of weighty sets in a real n-dimensional affine
space L must satisfy the following axioms.

Axiom 1. The center of mass of two points A and B equipped with masses m1 and m2

with nonzero sum m1 +m2 is the unique point C on the line AB such that

m1 · AC = m2 · CB or m1 · CA+m2 · CB = 0.

Axiom 2. Let B̃ be a weighty subset of a weighty set Ã. Let O1 be the center of mass
of B̃ and let m1 be the total mass of B. Then the center of mass of Ã coincides with

the center of mass of the set obtained from Ã by replacing the subset B̃ by the point O1

equipped with mass m1.

Theorem 2.1. There is a unique way of assigning the center of mass to any weighty set of
points in a real n-dimensional affine space L so that Axioms 1 and 2 hold.

We will not prove Theorem 2.1 now. Its classical proof can be described in the following
way (see proof of Theorem 2.1, presented right after Lemma 7.7).

One can define the center of mass by an explicit formula and check that the center of
mass thus defined satisfies Axioms 1, 2. Uniqueness of the center of mass (see Theorem
2.2 below) implies that the explicit formula provides the unique possible definition of the
center of mass and proves its existence.

Theorem 2.2. Assuming that there is a way of assigning a center of mass to any weighty
set of points in a real n-dimensional affine space L so that Axioms 1 and 2 hold, one can
compute the center of mass of any weighty set (in many different ways) using an inductive
procedure presented in the proof of Theorem.

Remark 2.3. Theorem does not imply the existence of a center of mass satisfying Axioms
1, 2: different ways of computation of the center of mass could provide different answers.

Remark 2.4. Theorems 2.1, 2.2 hold for affine spaces over arbitrary field k whose charac-
teristic is not equal to two.These theorems are not applicable to affine spaces over fields
of characteristic two (the proof of Lemma 2.5 implicitly uses division by two and it does
not work over fields of characteristic two). Our extension of the center of mass technique
works for affine spaces over arbitrary fields.

Lemma 2.5. If a weighty set Ã contains at least two points, then it contains a weighty
subset of two points.

Proof. If all subsets of Ã containing two points are weightless, then weights of all points
are equal up to sign. A triple of such weighty points contains a pair of weighty points
equipped with equal masses. This pair of points is a weighty subset of Ã.
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Proof of Theorem 2.2. Using Axioms 1, 2 one can compute the center of mass of any
weighty set of points. Indeed:

• Axiom 1 allows to compute the center of mass for any weighty set containing two
points;

• by Lemma 2.5, a weighty set containing at least two points, contains a weighty pair
of points. By Axiom 2, one can replace this pair of points by its center of mass
equipped with its total mass;

• the above properties allow to find the center of mass of a weighty set recursively, by
reducing it to computation of the center of mass of weighty sets, containing smaller
number of points;

Theorems 2.1, 2.2 have countless applications in geometry: Theorem 2.1 implies that
all the different ways of finding the center of mass of a given weighty set, suggested by
Theorem 2.2, have to give the same answer.

Classical applications of centers of mass in geometry are based on the above statement.
Let us present the simplest classical application of centers of mass in geometry which

goes back to Archimedes.

2.3 Three Medians in a Triangle (Archimedes)

Let us prove the theorem on three medians in a triangle using the center of mass
technique. A similar proof was discovered by Archimedes who invented the center of mass
technique in geometry.

Suppose we start with a triangle ABC and three unit mass at its vertices. How can
we find the center of mass O of the resulting system?

One way is to combine masses at A and B first. This will give us mass 2 placed at the
midpoint of AB.

Now, combine the resulting mass with the unit mass at C. By doing so, we obtain that
the center of mass O lies on the segment connecting the vertex C to the midpoint of AB
and divides it in the proportion 2 : 1 (the part of it adjacent to the vertex being the longer
one).

But we could proceed differently: first, combine the masses at A and C, and then
combine the result with the mass at B. In this way we obtain that the center of mass O
of the system lies on the median from vertex B and divides it in the ratio 2 : 1.

By combining the masses in the third possible order (B and C first and adding A
afterwards), we see that it also lies on the median from the vertex A and divides it in the
ratio 2 : 1.

Thus, the center of mass O lies on all three medians of triangle ABC and divides them
in the ratio 2 : 1. We proved that all three medians of the triangle ABC pass through a
point O which divides them in the ratio 2 : 1.
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1 1
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2
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2

1
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Figure 4: Center of 3 unit masses and 3 medians

3 How to Improve the Center of Mass Technique?

The classical center of mass technique has the following disadvantage: the center of
mass is not defined for weightless sets.

One is tempted to look for a commutative group of weighty points in L with the
following addition: the sum of weighty points is equal to the center of mass of the set of
these points, equipped with its total mass.

Unfortunately, such a group does not exist: the sum of weighted points whose total
mass is equal to zero, is not defined.

3.1 The Group M̂(L) of Weighty Points and Mass Dipoles

It is possible to improve the center of mass technique and to define a commutative
group M̂(L) whose elements are weighty points in L and mass dipoles in L, defined up to
a shift.

Instead of the center of mass, one can assign to any weightless set its mass dipole,
defined up to a shift (one can identify a mass dipole {−O,B}, defined up to a shift, with
the free vector, represented by an ordered pair of points (O,B), defined up to a shift).

Addition in the group M̂(L) satisfies the following condition: the sum of points, con-

tained in a set Ã, whose total mass is λ ̸= 0, equals to the center of mass of Ã, equipped
with the mass λ.

Addition in the commutative group M̂(L) could be defined axiomatically. Instead of
one axiom, describing the center of mass of a weighty pair of points, one has to introduce
four axioms, describing the following four different types of addition in M̂(L):

• addition of two weighty points whose total mass is not equal to zero;

• addition of two weighty points whose total mass is equal to zero;

• addition of a weighty point and a mass dipole defined up to a shift;

• addition of two mass dipoles defined up to a shift.
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Numerous geometric applications of the group M̂(L) are based on its associative prop-
erty:
addition of elements of the group M̂(L) performed in different orders gives the same answer.

Along with classical applications dealing only with the centers of mass of weighty sets,
there are many natural applications, that use weightless sets and their mass dipoles as
well. To show how it works, we describe one simple geometric application of the group
M̂(L) (see Section 8).

Below we define the group M̂(L) for any affine space L over an arbitrary field k.

Moreover, we show that the group M̂(L) admits a structure of a vector space over the field
k.

The vector space M̂(L) can be naturally identified with the space of moment-like maps
P : L → L of the affine space L to the space of free vectors L in L. We deduce properties
of the group M̂(L) from the corresponding properties of the additive group of M(L).

The definition of moment-like maps is motivated by kinematics. In the next section, we
discuss a heuristic equilibrium criterion which suggests an explicit formula for the center of
mass of a weighted set of points. It allows to justify the classical center of mass technique.
It also leads to definitions of moment maps of weighted sets, of moment-like maps and of
group M̂(L).

3.2 Moments of Weighted Sets about Pivot Points and Moment Maps

Imagine a weightless tabletop L with a weighted set of points Ã on it. Assume that
the tabletop is supported by one leg at a point O.

Definition 3.1. The moment P (O) = ∆Ã(O) of a weighted set Ã = {(Ai, λi)} about a
pivot point O is a linear combination of oriented segments OAi (which we consider as free
vectors in L) with coefficients λi.

P (O) = ∆Ã(O) =
∑

λiOAi. (1)

Kinematics suggests a simple criterion of stability of the tabletop with the set Ã on it,
supported at a point O.

Kinematical Criterion. The tabletop is in equilibrium if and only if the moment P (O) =

∆Ã(O) of Ã about the pivot point O equals zero.

Only the moment of the set Ã about the pivot point O is important for the equilibrium
of a tabletop supported at O: for the sake of equilibrium of the tabletop supported at O,
the effects of putting a weighted set Ã and putting a weighted set B̃ on the tabletop are
equal if the moments of Ã and B̃ about the point O are equal.

Definition 3.2. The moment map P : L → L corresponding to a weighted set Ã is the
map P = ∆Ã, whose value P (O) at a point O ∈ L is equal to the moment ∆Ã(O) of the

set Ã about the pivot point O.
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Theorem 3.3 (Change of pivot point). Let P = ∆Ã be the moment map, corresponding

to a weighted set Ã whose total mass is equal to λ = λT (Ã). Then, for any two points
O1, O2 ∈ L, the map P satisfies the following characteristic relation:

P (O1)− P (O2) = −λO2O1. (2)

Proof. By (1), we have:

P (O1) =
∑

λiO1Ai and P (O2) =
∑

λiO2Ai.

Subtracting these identities, we obtain

P (O1)− P (O2) = −λO2O1.

Definition 3.4. A moment-like map P : L → L is a map of the affine space L to the vector
space L of free vectors on L that satisfies the relation (2) for some parameter λ ∈ k. The
parameter λ, which depends on the map P , is called the total mass of the map P ∈ M(L).

It is easy to see that the set M(L) of all moment-like maps has a natural structure of
a vector space, and the total mass λ is a linear function on M(L).

Applying Theorem 6.12, one can check that, if the total mass λ of a map P ∈ M(L)
does not equal to zero, then P vanishes at a unique point O called the center of mass of
the map P ∈ M(L). Such a map is uniquely determined by its center of mass O and its
total mass λ (see Theorem 6.13).

Moreover, the map P is equal to the moment map P = ∆(Ã) of the weighty set Ã
consisting of one point O equipped with the mass λ.

Equation (2) implies that, if the total mass λ of a map P ∈ M(L) equals zero, then P
is a constant map, i.e., P ≡ v, where v ∈ L is a free vector. The map P is determined by
the free vector v.

Lemma 3.5. The moment map P = ∆Ã of a mass dipole Ã = {−O,B} is a constant map
P ≡ v, where v is the free vector represented by an ordered pair of points (O,B).

Proof. The moment of Ã about a pivot point O1 is equal to the difference O1B − O1O of
oriented segments O1B and O1O, considered as free vectors. This difference is equal to
the oriented segment OB which can be considered as the free vector v, represented by an
ordered pair of points (O,B).

Let us introduce the following identifications:

• a moment-like map P with total mass λ ̸= 0 is identified with the weighty point
{(O, λ)}, where O is the center of mass of P ;

• a constant moment-like map P ≡ v is identified with a mass dipole {−O,B}, defined
up to a shift, the ordered pair of points (O,B) represents the free vector v.
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By this identification, we obtain a vector space M̂(L) whose elements are weighty points

and mass dipoles, defined up to a shift. The additive group of the space M̂(L) can be

defined by the axioms which define the addition in the set M̂(L).
Let us implement this program in more details.

4 Affine Spaces and Affine Maps

Below, we recall that Euclidean spaces, vector spaces over an arbitrary field k and
shifted vector subspaces in such spaces can be considered as affine spaces.

4.1 Vector Space of Free Vectors in a Euclidean Space

Classical Euclidean geometry, in particular, deals with points, lines and planes embed-
ded in the three dimensional space. These objects are Euclidean spaces of dimensions zero,
one, two and three.

A Euclidean space E does not have a structure of a real vector space: an operation of
multiplication of a point A ∈ E by a real number λ ∈ R and an operation of addition of
two points A,B ∈ E are not defined.

Nevertheless, to any Euclidean space E one can assign a real vector space E of free
vectors in E and define an action of the additive group of free vectors on the space E.

Let us define free vectors in a Euclidean space E.

Definition 4.1. Two ordered pairs of points (A,B) and (C,D) from the space E are equiv-
alent (A,B) ∼ (C,D), or are equal up to a shift, if the oriented segments AB and CD are
parallel, equal in length and point in the same direction.

Definition 4.2. A free vector in E is an ordered pair of points (A,B) in E, defined up to
the equivalence ∼.

One can multiply an ordered pair of points (O,A) by any real number λ. By definition,
λ(O,A) is an ordered couple of points (O,B) such that the points O,A,B belong to the
same line, and ratio OB : OA of oriented length of the segments OB and OA equals λ.

It is easy to check that if (A1, B1) ∼ (A2, B3), then λ(A1, B1) ∼ λ(A2, B3).

Definition 4.3. Let (A,B) be an ordered pair of points that represents a free vector v ∈ E.
Then, by definition, λv ∈ L is the free vector represented by the ordered pair λ(A,B).

One can add any two ordered pairs of points (O,A) and (O,B). By definition, (O,A)+
(O,B) is an ordered pair of points (O,C) such that the oriented segments AC and OB
are parallel, equal to each other and point to the same direction.

Easy to check that if (A1, B1) ∼ (A2, B2) and (A1, C1) ∼ (A2, C2), then (A1, B1) +
(A1, C1) ∼ (A2, B2) + (A2, C2).

Definition 4.4. Let (A,B), (A,C) be ordered pair of points which represent free vectors
V1, V2 ∈ E. Then, by definition, V1 + V2 ∈ L is the free vector represented by the oriented
pair (A,B) + (A,C).
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One can verify that if E in an n-dimensional Euclidean space (n = 0, 1, 2, 3), then the
space E of free vectors in E is an n-dimensional real vector space.

There is a natural operation of addition for a free vector and a point in the space E.
The result of such addition is a point in the space E.

One can add a vector to a point.

Definition 4.5. By definition, a point P ∈ E is the sum O+ v of a point O ∈ E and a free
vector v ∈ E if the ordered pair of points (O,P ) represents the free vector v ∈ E.

It is easy to check the following lemma.

Lemma 4.6. Let O be any point in E. Then

1. the identity O + v = O holds if and only if v is the zero vector in the space of free
vectors E;

2. for v1, v2 ∈ E the identity O + (v1 + v2) = (O + v1) + v2 holds.

3. for any point P ∈ E, there is a unique free vector v ∈ E such that P = O + v.

A free vector v defines the shift Shv of the space E that maps a point O ∈ E to the
point Shv(O) = O + v.

Lemma 4.6 implies that the shifts Shv constitute the action of the additive group of
free vectors on the space E. Moreover, this action is transitive and free.

Remark 4.7. Euclidean geometry equips the vector space E of free vectors in E with the
inner product ⟨x, y⟩ of vectors x, y ∈ E. The inner product is a symmetric bilinear form in
the vector space E that is positively defined, i.e., ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 only if x = 0.
The inner product allows defining distances between points and angles between lines in a
Euclidean space E.

4.2 Vector Spaces as Affine Spaces

Let L be a vector space over an arbitrary field k. In this section, we define the structure
of an affine space on L, i.e., we define the vector space L of free vectors in L and the action
of the additive group of free vectors on the space L.

Definition 4.8. A shift of the space L by a vector v ∈ L is the map Shv : L → L which
sends a point O ∈ L to the point O + v.

The additive group of the vector space L acts on the space L by shifts: a vector v ∈ k
sends a point O ∈ L to the point Shv(O).

Definition 4.9. A free vector in L is an ordered pair of points (A,B) defined up to a shift
(i.e., for any v ∈ L the ordered pair of points (A + v,B + v) defines the same free vector
as the ordered pair of points (A,B)).
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One can identify a free vector f ∈ L, represented by a pair (A,B), with the vector
v = B − A ∈ L. By definition, the vector v is well defined, i.e., is independent of a choice
of a pair (A,B), that represents the free vector f .

Definition 4.10. By definition, a vector space operation on the space L of free vectors is
induced from the corresponding vector space operation on the vector space L under the
identification of L with the vector space L.

Thus, we defined the vector space L of free vectors in L. The action of the additive
group of L on L is defined as follows: a free vector (A,B) ∈ L sends a point O ∈ L to the
point ShB−A(O) = O +B − A ∈ L.

4.3 Shifted Vector Subspaces as Affine Spaces

An affine subspace L ⊂ L is a vector subspace L̃ ⊂ L shifted by a vector O ∈ L. In
general, if O does not belong to L̃, the space L ⊂ L is not a vector space. Instead, it can
be naturally equipped with a structure of an affine space, i.e., with a vector space L of free
vectors on L and with an action of the additive group of free vectors L on the space L.

We define an affine structure on L using vector space operations in the ambient space
L.

Definition 4.11. A set L ⊂ L is a shifted subspace L̃ ⊂ L by a vector O ∈ L if L = ShO(L̃),

i.e., if each point A ∈ L is representable in the form A = Ã + O, where Ã ∈ L̃. (In other

words, the set L is a coset of the additive group of the vector subspace L̃, containing the
point O.)

Definition 4.12. Two ordered pairs of points (A,B) and (C,D) in an affine space L are
equivalent if B − A = D − C. (In other words, the pairs are equivalent if they define the
same free vector in the ambient space L.)

A free vector in an affine space L is an equivalence class of ordered pairs of points in
L.

There is a natural embedding of the set L to the vector space L which sends a free
vector in L, represented by an ordered pair of points (A,B) from L, to the free vector in
L represented by the same ordered pair of points (A,B).

Lemma 4.13. Each free vector (A,B) ∈ L as a free vector in L has a unique representative
of the form (O, C), where O is the origin of the vector space L, and C belongs to the vector

space L̃.

Proof. Indeed, a free vector (A,B) in L is equivalent to a unique ordered pair of points
(O, B − A) of the needed form.

One can identify a free vector f ∈ L, represented by a pair (A,B) with the vector

v = B − A ∈ L̃. The vector v is well defined, i.e., is independent of a choice of a pair
(A,B) which represent the free vector f .
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Definition 4.14. By definition, a vector space operation on the space L of free vectors
in L is induces from the corresponding vector space operation on the space L̃ under the
identification of L with the vector space L̃.

Thus, we defined the vector space L. The action of the additive group of L on L is
defined as follows: a free vector (A,B) ∈ L sends a point O ∈ L to the point ShB−A(O) =
O +B −A ∈ L. The vector space L is naturally embedded in the vector space L and the
actions of the additive groups of these spaces on L agree with this embedding.

Let us choose any point O in an affine space L and identify a point A ∈ L with the
free vector τO(A), such that O + τO(A) = A (in other words, one identifies a point A ∈ L
with the free vector τO(A), represented by the ordered pair of points (O,A).

This identification provides an affine space L with the structure of a vector space LO

whose origin is the point O. Different choices of the origin O ∈ L provide L with different
structures of vector spaces LO.

For any point O ∈ L, the affine space L can be considered as an affine subspace in the
vector space LO (which as a set coincides with LO). The affine structures induced in L as
a subset of LO are the same for different choices of the point O:

1. vector spaces of free vectors in different spaces LO can be naturally identified with
each other;

2. identified free vectors from different spaces L = L(O) realize the same action on the
space L.

The center of mass technique deals with affine spaces over arbitrary fields. In particular,
it is applicable to n-dimensional Euclidean spaces which are real n dimensional affine spaces
equipped with an extra structure.

In the next section, we briefly recall the definition of multidimensional Euclidean spaces.
We will not use this definition later.

4.4 Multidimensional Euclidean Spaces

One can assign the structure of an affine space L to any vector space L: as a set, the
affine space L coincides with the vector space L, the space L of free vectors in the affine
space L and the action of the additive group of free vectors on the affine space L have
been defined above.

The real n-dimensional affine space Rn is, by definition, the affine space associated with
the real n-dimensional vector space Rn.

An n-dimensional Euclidean space is a real n-dimensional affine space L equipped with
a positive definite quadratic form on the vector space of free vectors on L.

Using a positive definite quadratic form on L, one can define distances between points,
angles between lines in L, and develop geometry based on this notions in L.

For n = 1, 2, 3 this geometry can be identified with the classical Euclidean geometries
of corresponding dimensions.

Euclidean geometry in the spaces of dimension n > 3 is a natural and rich generalization
of classical Euclidean geometry.
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4.5 Affine Maps

Let L1 and L2 be affine spaces over a field k. A map F : L1 → L2 sends an ordered
pair of points (A,B) in L1 to the ordered pair of points (F (A), F (B)) in L2.

Definition 4.15. A map F : L1 → L2 is an affine map if:

• the induced map F : L1 → L2 is well defined, i.e., if the pairs (A,B) and (C,D)
define the same free vector in L1, then the pairs (F (A), F (B)) and F ((C), F (D))
define the same free vector in L2;

• the induced map F : L1 → L2 is a linear map.

Let us choose some points O1 ∈ L1 and O2 ∈ L2 and consider affine spaces L1 and L2

as the vector spaces (L1)O1 = L1 and (L2)O2 = L2.

Definition 4.16. A map F : (L1)O1 → (L2)O2 is a shifted linear map if it can be represented
in the form

F (x) = Ax+ b,

where A : (L1)O1 → (L2)O2 is an arbitrary linear map (which is called the linear part of
F ), b ∈ (L2)O2 is an arbitrary vector, and x is any point in the vector space (L1)O1 .

Theorem 4.17. The map F : L1 → L2 is an affine map if and only if, for any choice of
points O1 ∈ L1, O2 ∈ L2, it gives rise to a shifted linear map of (L1)O1 to (L2)O2.

Moreover, the linear part A of the map F can be naturally identified with the linear
map F : L1 → L2, which is independent of choice of points O1 and O2.

Proof. Assume that F : L1 → L2 is an affine map. By definition, F induces a linear map
F : L1 → L2. Let us identify the space L1 with the space (L1)O1 and the space L2 with the
space (L2)F (O1). Under this identification, the map F can be considered as a linear map
A : (L1)O1 → (L2)F (O1). Let F (O1) be a point b ∈ (L2)O2 . Then the map F : L1 → L2 can
be identified with the map F (x) = A(x) + b from (L1)O1 to (L2)O2 .

Conversely, any map F (x) = A(x)+ b of (L1)O1 to (L2)O2 , where A is a linear map and
b is an arbitrary vector in (L2)O2 , obviously, gives rise to an affine map of L1 to L2.

Corollary 4.18. The space of polynomials of degree ≤ 1 on L coincides with the space of
affine maps of an affine space L to the one dimensional affine space k1.

Proof. In the vector space LO = L with the origin at a point O ∈ L, a function F : L → k
is a polynomial of degree ≤ 1 if it can be represented as P (x) = L(x) + b, where L(x) is
a linear function, and b ∈ k is a constant. Thus, F is a polynomial of degree ≤ 1 if and
only if it is a shifted linear map of LO to k.

One can automatically verify the following two lemmas.
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Lemma 4.19. Let L1 be an affine space over k, and let L2 be a vector space over k. Then
the space of affine maps F : L1 → L2 is a vector space over k, i.e., the sum F1 + F2 of
affine maps F1, F2 and the product λF of affine map F on λ ∈ k are affine maps.

Lemma 4.20. Let L1, L2, L3 be affine spaces over k and let F1 : L1 → L2 and F2 : L2 → L3

be affine maps, then:

1. the composition F3 = F2 ◦ F1 : L1 → L2 is an affine map;

2. the linear part F 3 of the composition is the composition F 2 ◦ F 1 of the linear parts
F 2 and F 1 of the maps F2 and F1.

It is easy to verify the following theorem.

Theorem 4.21. An affine map F : L1 → L2 is invertible if and only if its linear part
F ;L1 → L2 is invertible.

All invertible affine maps F : L → L of an affine space to itself form a group under
composition.

Definition 4.22. The group of affine transformations of an affine space L is the group of
all invertible affine maps F : L → L.

Remark 4.23. According to Felix Klein’s Erlangen program, in affine geometry of an affine
space L, two subsets X, Y are considered as equal sets if there is an affine transformation
of L which sends the set X to the set Y .

Affine geometry studies properties of sets, which are preserved under affine transfor-
mations (i.e., which are the same for equal sets).

5 Weighted Sets and their Moment Maps

In this section, we discuss weighted sets in an affine space L, their moments about a
pivot point and their moment maps.

5.1 The Vector Space of Weighted Sets

In this section, we define the vector space of finite sets of points in L equipped with
weights from the field k. The definition does not rely on the affine structure of L and can
be applied to any set L.

Let L be an affine space over an arbitrary field k.

Definition 5.1. A weighted set Ã = {(Ai, λi)} in L is a finite set A = {Ai} of points in L
equipped with elements {λi} of the field k. The element λi ∈ k is the mass assigned to

the point Ai. The total mass of a weighted set Ã is the element λ ∈ k equal to the sum∑
λi of masses λi of all points Ai in the set.
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The set D(L) off all weighted sets in L has a natural structure of a vector space over

the field k. Indeed, one can interpret a weighted set Ã as a function fÃ : L → k which
vanishes on L \ A and whose value at each point Ai ∈ A is equal to λi.

Definition 5.2. The space D̃(L) is the vector space over k of all functions on L, taking
values in the field k and equal to zero everywhere but on a finite set of points. A weighted
set Ã ∈ D(L) can be identified with the function fÃ ∈ D̃(L). This identification provides
the set D(L) with the structure of a vector space over k.

Example 5.3. A partition of a weighted set is a representation of the set as a union of its
disjoint subsets equipped with the masses induced from the weighted set.

If weighted subsets B̃ and C̃ of a weighted set Ã realize its partition, then the weighted
set Ã is the sum of the weighted sets B̃ and C̃.

A function λT : D(L) → k, which assigns to a weighted set Ã its total mass, is a linear
function on the space D(L).

Definition 5.4. A weighted set Ã in L with total mass λT ∈ k is called:

1. a weighty set if its total mass λT is not equal to zero;

2. a weightless set if its total mass λT is equal to zero.

Definition 5.5. Let us denote by D0(L) the subset of the set D(L) that consists of all

weightless sets Ã in L.

Since the total mass of a weighted set is a linear function on the vector space D(L),
the set of weightless sets is a vector subspace of codimension one in D(L).

5.2 The Moment of a Weighted Set

One can repeat almost verbatim definitions of the moment about a pivot point and of
the moment maps of weighty sets in an affine space over an arbitrary field k (see below).

Definition 5.6. The moment P (O) = ∆Ã(O) of a weighted set Ã = {(Ai, λi)} about a
pivot point O is a linear combination of the free vectors (O,Ai) with coefficients λi:

P (O) =
∑

λi(O,Ai). (3)

The following Theorem is obvious:

Theorem 5.7 (Linearity of moment). For each pivot point O, the moment P (O) = ∆Ã(O)

of a weighted set Ã about the pivot point O gives a linear map of the space D(L) to the
space L of free vectors in L.

Proof. To prove the theorem one has to check that:
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1. if Ã = B̃ + C̃, then, for every point O ∈ L, the identity ∆Ã(O) = ∆B̃(O) + ∆c̃(O)
holds;

2. if Ã = τB̃ for τ ∈ K, then, for every point O ∈ L, one has ∆Ã(O) = τ∆B̃(O).

One can easily verify each of these statements.

Corollary 5.8. For any partition of a weighted set into a union of weighted subsets, the
moment of the set about any pivot point is equal to the sum of the moments of the subsets
about the same pivot point.

Definition 5.9. Two weighted sets Ã and B̃ are equivalent, i.e., Ã ∼ B̃ if their moments
about any pivot point are equal. A weighty set in L is a null set if its moment about any
pivot point is equal to zero. Denote the set of all null sets in L by DM(L) ⊂ D(L).

By definition, two sets Ã and B̃ are equivalent if Ã− B̃ is a null set.
Theorem 5.7 implies the following corollary.

Corollary 5.10. The set DM(L) of all null sets in L is a vector subspace of the vector
space D(L). The equivalence of weighted sets respects the linear operations on weighted
sets, i.e., the following relations hold:

1. if Ã ∼ B̃, then µÃ ∼ µB̃ for any µ ∈ k;

2. if Ã1 ∼ Ã2 are B̃1 ∼ B̃2, then Ã1 + B̃1 ∼ Ã2 + B̃2.

Definition 5.11. The moment map ∆ = ∆Ã of a weighted set Ã is the map ∆ : L → L

which sends a point O ∈ L to the moment ∆Ã(O) of the set Ã about the pivot point O.

The following theorem repeats Theorem 5.12 almost verbatim and can be checked in
the same way.

Theorem 5.12 (Change of a pivot point). Let P = ∆Ã be the moment map corresponding

to a weighted set Ã, whose total mass is equal to λ = λT (Ã). Then, for any two points
O1, O2 ∈ L, the map P satisfies the following relation:

P (O1)− P (O2) = −λ(O2O1). (4)

6 The Space of Moment-like Maps and the Space of Weighty Points
and Mass Dipoles

In this section, we study the space of moment-like maps and define the space of weighty
points and mass dipoles in an affine space L over an arbitrary field k.
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6.1 Moment-like Maps

In this section, we will study a special class of affine maps which plays a key role for
the center of mass technique.

Definition 6.1. An affine map P of an affine space L over a field k to the vector space L
of free vectors in L is a moment-like map if its linear part P : L → L is equal to −λI,
where I : L → L is the identity map and λ ∈ k is a parameter called the total mass of
P and denoted by λT (P ). Denote by M(L) the collection of all moment-like maps of an
affine space L to the vector space L of free vectors on L.

The definition implies that a map P : L → L is a moment-like map with total mass
λT (P ) if and only if, for any two points O1, O2 ∈ L, the following characteristic identity
holds:

P (O2)− P (O1) = −λT (P )(O2 −O1). (5)

Lemma 6.2. The set M(L) of all moment-like maps of an affine space L over a field k is
a vector space over k, i.e., the sum of two moment-like maps of L is a moment-like map
of L; the product of a moment-like map of L on an element λ ∈ k is a moment-like map
of L.

The function λT : M(L) → k, which assigns to a map P ∈ M(L) its total mass λT (P ),
is a linear function on M(L).

Proof. For each fixed pair of points O1, O2 ∈ L the characteristic identity can be considered
as a linear homogeneous equation on a map P : L → L. Solutions of any system of linear
homogeneous equations form a vector space.

Linearity of the function λT : M(L) → k is also a straightforward consequence of
definitions.

The characteristic identity can be rewritten in the following form:

P (O2) = P (O1)− λ(O2 −O1). (6)

Formula (6) immediately implies the following theorem.

Theorem 6.3. The total mass of a map P ∈ M(L) is equal to zero if and only if P is a
constant map P ≡ v, where v ∈ L. The space M0(L) ⊂ M(L) of all maps P ∈ M(L),
whose total mass equals to zero, is a vector subspace in M(L) of codimension one. The
map τ : M0(L) → L, that sends P ≡ v to the free vector v, is a natural isomorphism
between the space M0(L) and the space L.

Proof. According (6), a map P ∈ M(L) is a constant map if and only if its total mass is
equal to zero. The total mass λT : M(L) → k is a linear function on M(L). Thus, the
equation λT (P ) = 0 defines a vector subspace M0(L) of M(L) whose codimension is one.

The second statement of the theorem is obvious.
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Lemma 6.4. A constant map P ≡ v is the moment map ∆Ã of a mass dipole Ã = {−O,B}
such that the ordered pair of points (O,B) defined up to a shift, represents the free vector
v.

Proof. The lemma can be proven in almost the same way as Lemma 3.5.

Lemma 6.5. There is a unique map P ∈ M(L), whose total mass is a given element λ ∈ k
and whose value P (O1) at a chosen point O1 ∈ L is a given free vector v ∈ L.

Proof. According to (6), the value P (O2) of the map P at a point O2 ∈ L is equal to
v − λ(O2 −O1).

Conversely, the map P defined by the formula P (O2) = v − λ(O2 − O1) satisfies the
assumption of the lemma.

Corollary 6.6. The vector space M(L) is isomorphic to the direct sum L⊕ k1 (an isomor-
phism is not canonical).

Proof. Fix a point O ∈ L. The map τO : M(L) → L ⊕ k1 that sends a map P ∈ M(L)
to the pair (P (O), λT (P )) for each point O ∈ L, provides an isomorphism between M(L)
and L⊕ k1. This isomorphism depends on the point O ∈ L and is not canonical.

Corollary 6.7. The dimension of the space M(L) is equal to the dimension of the space
L plus one, i.e., the dimension dimk M(L) of the space M(L) is equal to dimk L + 1 =
dimk L+ 1.

Definition 6.8. Let P ∈ M(L) be a map whose total mass is not equal to zero. The center
of mass of the map P is a point O ∈ L at which the map P vanishes, i.e., P (O) = 0.

Definition 6.9. The normalized map of a map P ∈ M(L) whose total mass λ is not equal
to zero, is the map λ−1P .

Lemma 6.10. A map P ∈ M(L) with nonzero total mass λ and the normalized map λ−1P
vanish at the same point. The normalized map λ−1P has the total mass 1.

Proof. Two proportional vector-valued functions P and λ−1P vanish at the same points.
The total mass is a linear function on the space M(L). The total mass of the normalized
map is equal to λ−1 · λ = 1 ∈ k.

Theorem 6.11. Assume that the total mass of a map P ∈ M(L) is equal to 1 ∈ k. Then,
for any point Q ∈ L, the free vector P (Q) ∈ L sends the point Q to the point O = Q+P (Q)
which is independent of the point Q.

Moreover, the point O is the unique point at which the function P vanishes.

Proof. Indeed, for any two points Q1, Q2 ∈ L the characteristic identity P (Q1)−P (Q2) =
Q2 − Q1 can be rewritten in a following form: Q1 + P (Q1) = Q2 + P (Q2). Thus, the
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points Q1 and Q2 are mapped by the free vectors P (Q1) and P (Q2) to the same point
O = Q1 + P (Q1) = Q2 + P (Q2).

The point O itself has to be sent to the point O, so thatO = O + P (O) which implies
that P (O) = 0. For any other point Q ̸= O, we have Q+P (Q) = O ̸= Q. Thus, P (Q) ̸= 0.
The theorem is proven.

Theorem 6.12. Assume that the total mass λ of a map P ∈ M(L) is not equal to zero.
Then P has a unique center of mass O. For any point Q ∈ L the following relation holds:
the free vector λ−1P (Q) ∈ L sends the point Q to the center of mass O, i.e.,

O = Q+ λ−1P (Q). (7)

Moreover, if the affine space L has a structure of a liner space L, then the vector O ∈ L
satisfies the following relation:

O = λ−1P (O), (8)

where O ∈ L is the zero in the space L.

Proof. The theorem follows from Theorem 6.11 applied to the normalized map λ−1P .
Formula (8) can be obtained by plugging Q = O into formula (7).

Theorem 6.13. A map P ∈ M(L) with nonzero total mass is uniquely determined by its
center of mass O and by its total mass λ.

Moreover, for any point Q ∈ L, the following identity holds: P (Q) = −λ(O − Q).

Thus, P is the moment map of the set Ã consisting of one point O equipped with mass λ.
Conversely, the moment map P = ∆Ã of the set Ã = {(O, λ)} has total mass λ and

center of mass O.

Proof. Two maps from the space M(L) having the same center of mass O and the same
total mass coincide, since their values at the point O are equal, and their total masses are
the same.

The point O, obviously, is the center of mass of the map P ∈ M(L) given by the
relation P (Q) = −λ(O −Q), and total mass of P is λ.

Lemma 6.14. If two maps P1, P2 ∈ M(L) are equal at two different points O1, O2 ∈ L,
then they are equal identically.

Proof. Indeed, any non-zero map P ∈ M(L) vanishes no more than at one point. The
maps P1−P2 vanishes at two different points O1 and O2. Thus, P1−P2 is identically equal
to zero.

6.2 The Space M(L) and the Space D(L) of Weighted Sets in L

In this section, we show that the space M(L) of moment-like maps is isomorphic to
space of equivalence classes of weighted sets, i.e., is isomorphic to the space D(L)/DM(L)
(see Corollary 5.10).
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Definition 6.15. The moment correspondence is the map ∆ : D(L) → M(L) which sends

each weighted set Ã ∈ D(L) to its moment map ∆Ã ∈ M(L).

The kernel of the moment correspondence is the space DM(L) ⊂ D(L) of null sets in

L. It is easy to see that a weighted set Ã is a null set if and only if its total mass and its
mass dipole are equal to zero.

Theorem 6.16. The moment correspondence is a surjective map, i.e., any moment-like
map is a moment map of some weighted set Ã. The space M(L) is isomorphic to a factor-
space D(L)/DM(L) of the space D(L) by its subspace DM(L).

Proof. Assume that the total mass λ of a moment-like map P ∈ M(L) is not equal to zero,

and its center of mass is a point O. Then, by Theorem 6.13, P = ∆Ã, where Ã consists of
one point O equipped with mass λ.

Assume that the total mass λ of a moment-like map P ∈ M(L) is equal to zero, that

is P is a constant map P ≡ v. Then, by Lemma 6.4, P = ∆Ã, where Ã is a mass dipole
{−O,B}, where (O,B) is an ordered pair of points that represents the free vector v.

Thus, the correspondence map ∆ is onto. Since its kernel is the space DM(L) of null
sets in L, the space M(L) is isomorphic to the factor-space D(L)/DM(L).

7 The Space M̂(L) of weighty Points and Mass Dipoles in L

Let L be an affine space over an arbitrary field k. In this section, we define the vector
space M̂(L) over k of weighty points and mass dipoles in L. The additive group of that
vector space has many applications in geometry.

The space M̂(L) can be interpreted as the factor-spaceD(L)/DM(L) of the spaceD(L)
of weighted points in L by its subspace DM(L) of all null sets in L. Our presentation is
based on the isomorphism between the spaces D(L)/DM(L) and M(L) discussed above
and on the properties of the space M(L).

Definition 7.1. A weighty point {(O, λ)} in L is the point O ∈ L equipped with a nonzero
mass λ ∈ k.

Definition 7.2. A mass dipole {−A,B} in L is an ordered pair of points (A,B) in L
equipped with masses −1, 1 respectively. Two mass dipoles {−A,B} and {−C,D} are
called equal if the ordered pairs of points (A,B) and (C,D) are equal up to a shift.

By definition, a mass dipole {−A,B} can be identified with a free vector, represented
by the ordered pair of points (A,B) in L. The class of the empty set can in D(L)/DM(L)
be considered as a mass dipole {−A,A} or as the zero free vector.

Definition 7.3. The set M̂(L) defined as the set of all weighty points in L and all mass
dipoles in L defined up to a shift.
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There is a natural one-to-one correspondence τ : M̂(L) → M(L) between the sets

M̂(L) and M(L) (see Definition 7.5 below).

The correspondence τ : M̂(L) → M(L) allows to identify the sets M̂(L) with the space

M(L) and to define a structure of a vector space on the set M̂(L).

Definition 7.4. The structure of a vector space over k on M̂(L) is the structure induced

by the identification τ : M̂(L) → M(L) from the k-vector space structure on M(L).

The above definition implies that the vector space operations on the set M̂(L) are

defined as follows. To perform a vector space operation on points from the set M̂(L) one
has to:

• identify the points in M̂(L) with the maps from the space M(L);

• perform the desired vector space operation on the maps from M(L), and

• identify the map, obtained as the result of this operation, with a point of M̂(L).

We will specify vector space operation on the space M̂(L) in Section 7.1. Now we will

define the one-to-one correspondence τ : M̂(L) → M(L).
The space M(L) contains maps of two types: maps of the first type whose total mass

is a nonzero element of the field k, and maps of the second type whose total mass is equal
to zero.

Each map of the first type is uniquely determined by its center of mass O and by its
total mass λ ̸= 0.

Each map of the second type is a constant map P ≡ v, where v ∈ L is a free vector
represented by an ordered pair of points (A,B) defined up to a shift.

We now define the map τ .

Definition 7.5. The map τ sends a weighty point {(O, λ)} to the map P ∈ M(L) of first
type whose total mass is λ and whose center of mass is the point O.

The map τ sends a mass dipole {−A,B} to the map P ≡ v, P ∈ M(L) of the second
type, where v is a free vector, corresponding to an ordered pair of points (A,B).

Now, that vector space operations on the set M̂(L) are defined, one can describe
each type of vector space operation separately, see lemmas in Section 7.1 below. Each of
these lemmas can be easily verified. The content of the lemmas can be considered as an
axiomatic definition of the space M̂(L). The additive group of the space M̂(L) is important
for geometrical applications.

Since the set M̂(L) contains points of very different nature, definition of addition is a

bit tricky: addition of different types of pairs of points in M̂(L) is performed by different
rules. Because of that, the associativity of addition is not obvious.

Geometrical applications of the additive group M̂(L) come from the following state-
ment:
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The sum of several elements of the group M̂(L) is well defined: it does not depend on order
in which the addition of pair of elements is performed.

7.1 The Vector Space Operations on M̂(L)

Let us describe vector space operation on the space M̂(L).

Lemma 7.6. The product of a weighty point {(O, λ)} by µ ∈ k, is the weighty point
{(O, µλ)} if µ ̸= 0, and is a zero mass dipole {−A,A} if µ = 0. The product of a
mass dipole {−A,B}, corresponding to a free vector (A,B), by µ ∈ k, is the mass dipole,
corresponding to the free vector µ(B − A).

In geometrical applications, the additive group of the space M̂(L) plays a key role. Let

us give more detailed description of addition in M̂(L).

Lemma 7.7. The sum of two weighty points {(A, µ)} and {(B, ρ)} with µ + ρ = λ ̸= 0 is
the weighty point {(O, λ)}, where O is a point such that the free vectors (A,O) and (O,B)
are proportional and their ratio (A,O) : (O,B) satisfies the relation

(A,O) : (O,B) =
ρ

µ
. (9)

Proof. By definition, the center of mass of the weighty set defined in the statement of the
lemma, is a point O such that µ(O,A) + ρ(O,B) = 0, or µ(A,O) = ρ(O,B) which is
equivalent to (9).

If L is a real affine space, then Lemma 7.7 implies that the oriented segments AO and
OB are proportional and

AO : OB =
ρ

µ
.

Lemma 7.7 implies that the point O as a vector in a vector space L containing the
affine space L, satisfies the following relation:

O =
µ

λ
A+

ρ

λ
B.

Let us justify the classical center of mass technique.

Proof of Theorem 2.1. We have to prove that there is a way of assigning the center of mass
to every weighty set that satisfies Axioms 1, 2. The uniqueness of such center of mass is
proved above (Theorem 2.2). Above, we defined the center of mass of a weighty set Ã as
the only point where the moment map ∆Ã vanishes. Lemma 7.7 implies that the center of
mass defined in such a way satisfies Axiom 1. It satisfies Axiom 2, since the moment map
∆Ã, by Theorem 5.7, depends linearly on the weighted set Ã.

The next three lemmas describing other types of addition in the group M̂(L), are also
straightforward. We will nor present their proofs.
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Lemma 7.8. The sum of a weighty point {(A, λ)} and a mass dipole {−B,C} is the
weighted point {(O, λ)}, where the point O is the sum A + λ−1(B,C) of the point A and
the free vector λ−1(B,C).

A

O

B

C

mA=2

mB=−1

mC=1

Figure 5: The center of mass of a weighted set {(A, 2), (B,−1), (C, 1)} is the point O,
where 2AO = BC

If L is a real affine space, then the lemma implies that the oriented segments AO and
λ−1(B,C) are parallel, equal and point to the same direction (see Figure 5).

The lemma implies that the point O as vectors in a vector space L containing an affine
space L, satisfy the following relation:

O = A+ λ−1(C −B).

Lemma 7.9. The sum of two mass dipoles {−A,B} and {−C,D} is the mass dipole
{−E,F} that corresponds to the free vector (A,B) + (C,D).

If L is a real affine space, then the lemma implies that the oriented segmentsAB,CD,CF
(which we consider us free vectors defined up to shifts) satisfy the following relation:

EF = AB + CD.

The lemma implies that the points E,F as vectors in a vector space L containing an
affine space L, satisfy the following relation:

F − E = (B − A) + (C −D).

Lemma 7.10. The sum of two weighted points {(A, µ)} and {(B,−µ)} is the mass dipole
{−C,D} that corresponds to the free vector µ(A,B).

If L is a real affine space, then the lemma implies that the oriented segments CD, µAB,
defined up to a shift, satisfy the following relation:

CD = µAB.

The lemma implies that the points C,D as vectors in a vector space L containing an
affine space L, satisfy the following relation:

D − C = µ(B − A).
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8 The Orthocenter and the Euler Line

In this section, we give a simple application of the extended center of mass technique
(in other words, of the additive group M̂(L)). We will prove the following classical results:

1. the three altitudes of a triangle have a common point; it is called the orthocenter;

2. for any triangle, its orthocenter H, its barycenter M (i.e., the intersection points of
its medians) and its circumcenter O (i.e., the center O of a circle, passing through
all the vertices of the triangle) belong to one line (which is called the Euler line of
the triangle). Moreover, the relation HM : OM = 2 : 1 holds.

8.1 The Three Altitudes of a Triangle and Masses

Applying the extended center of mass technique, one can show that the three altitudes
of a triangle pass through a common point (which is called the orthocenter of the triangle).
Moreover, one can see how the orthocenter is located at each of these altitudes (see Theorem
8.2).

Consider a triangle ABC. Let O be the center of the circle passing through the vertices
A,B,C.

Consider a weighted set T̃ containing the points A,B,C,O, in which the points A,B,C
have mass 1 and the point O has mass −2.

Let us compute the center of mass of the set T̃ in several different ways.
Let CC ′ be the altitude of ABC passing through the vertex C and let OAB be the

midpoint of the side AB.

Lemma 8.1. Denote by HC the point on the line CC ′ such that the oriented segment CHC

is equal to the oriented segment OOA,B multiplied by two, i.e., CHC = 2OOAB. Then the

point HC is the center of mass of weighty set T̃ .

C

A B

O

H

OA,B

Figure 6: If the masses at A,B,C are equal to 1, and the mass at O is equal to −2, then
the center of mass is the point H such that CH = 2OOA,B
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Proof. Partition T̃ into two subsets: {A,B,O} and {C}.
The sum 1 + 1 − 2 of the masses of the points A,B,O is equal to zero. The mass

dipole of these weighted points is equal to the sum of vectors OA + OB which is equal
to the vector 2 · OOAB. Since the point C has mass 1, the center of mass of the set T̃ is
at the point C shifted by the vector 2 · OOAB (see Lemma 7.8). Thus, it is equal to the
point HC .

In the same way, one can compute the center of mass of the set T̃ by its subdividing
it into two weighted subsets: a weighty vertex of the triangle and a weightless set compli-
mentary to the vertex. Since the center of mass is well defined, we obtain the following
result.

Theorem 8.2 (The three altitudes theorem). In a triangle ABC the three altitudes pass
through a common point H. Moreover, for any vertex V (where V is A, B or C), the
vector V H is equal to 2 · OV ′, where V ′ is the midpoint of the side opposite to the vertex
V .

8.2 The Euler line of a Triangle and Masses

In the previous section, we considered the weighty set T̃ consisting of the vertices
A,B,C of a triangle equipped with the unit masses and the center O of the circle passing
through the vertices A,B,C equipped with mass −2. We proved that the center of mass
of the set T̃ is the orthocenter H. In the proof, we used three different subdivisions of the
set T̃ .

Let us subdivide T̃ in a fourth way and apply this subdivision to another computation
of the center of mass of T̃ . It will allow us to prove a beautiful Euler line theorem for the
triangle ABC.

Let H be the orthocenter of the triangle ABC, i.e., the point of intersection of its three
altitudes.

Let M be the barycenter of the triangle ABC, i.e., the point of intersection of its three
medians (see Section 2.3).

Let O be circumcenter of the triangle ABC.

Theorem 8.3 (The Euler line). For any triangle ABC, the points H,M,O are collinear.
Moreover, the point M divides the segment HO in proportion 2 : 1, i.e.,

HM : MO = 2 : 1.

Proof. Let us subdivide the weighted set T̃ into weighted sets {A,B,C} and {O}. Instead
of the weighted set {A,B,C}, one can take its center of mass M equipped with mass

1 + 1 + 1 = 3. Thus, the center of mass H of T̃ is equal to the center of mass of the
weighted set {M,O}, where M has mass 3 and O has mass −2.

From the properties of the center of mass, we conclude that

3 ·MH = −2 ·HO.
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We also have the following relations:

MH = −HM and HM +MO = HO.

These identities imply the theorem.

9 Affine Hyperplanes not Passing Through the Origin in a Vector
Space

In this section we discuss geometry of an affine hyperplane not passing through the
origin in a vector space. We also show that any affine space can be canonically embedded
into a vector space as an affine hyperplane not passing through the origin.

9.1 Affine Transformations of a Hyperplane and Linear Transformations of the Am-
bient Space

In this section, we discuss a natural relation between affine geometry of hyperplane,
not passing through the origin, and linear algebra of the ambient vector space.

Let L be an affine hyperplane in a vector space L not passing through the origin O of
L. Let L̃ be a vector subspace parallel to L. The space L̃ can be naturally identified with
the vector space L of free vectors in the hyperplane L.

Theorem 9.1. Any affine map F : L → L extends to a unique linear map F̂ : L → L. The
affine space L and the vector space L̃ are invariant subspaces for F̂ .

Conversely, let G : L → L be a linear map such that L is invariant under G. Then the
restriction G|L of G to L is an affine map G|L : L → L.

Proof. The space L of free vectors in L can be identified with the space L̃. Under this
identification, the linear part F : L → L of an affine map F : L → L becomes a linear map
F̃ : L̃ → L̃. Let us define F̂ : L → L as the linear map whose restriction to L̃ is equal to
F̃ and whose value F̂ (A) at a chosen vector A ∈ L is equal to the vector F (A) ∈ L ⊂ L.

It is easy to see that the linear map F̂ , thus defined is an extension of F : L → L. The
uniqueness of an extension is obvious, since any vector in L can be represented as a linear
combination of vectors from L.

Conversely, it is easy to see that the restriction of G to an invariant subspace L is an
affine map GL : L → L.

Definition 9.2. Let GL(L, L) be the subgroup of the group GL(L) consisting of invertible
linear transformations of L under which the hyperplane L is invariant.

Theorem 9.3. The restriction of a transformation G ∈ GL(L, V ) to the L is an affine
automorphism of L. Any affine automorphism of L is the restriction of a unique linear
transformation G ∈ GL(L, V ).
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Proof. The theorem follows from Theorem 9.1. We only have to show that if an affine map
F : L → L is invertible, then its extension F̂ : L → L also is invertible.

Indeed, the linear part F : L → L is invertible. Thus, the restriction of F̂ to the
invariant subspace L̃ is invertible. The dimension of the factor-space L/L̃ is equal to one,

and the image of L spans the space L/L̃. The map F̂ induces the identity transformation

the factor-space L/L̃, since it sends L to L. Thus, F̂ is an invertible map.

Remark 9.4. According to Felix Klein’s Erlangen program, geometry of an affine space L
is determined by the group of affine transformations of the space L.

Theorem 9.3 provides a simple description of this group for affine hyperplanes in a
vector space. This description is applicable to any affine spaces, since any affine space can
be canonically embedded as a hyperplane in a vector space (see Theorem 9.12 below).

Theorem 9.5. Any polynomial F of degree ≤ 1 on an affine hyperplane L ⊂ L in a vector
space L can be uniquely extended to linear function F̂ on the space L.

Conversely, the restriction of any linear function on L to L is a polynomial of degree
≤ 1.

Proof. A polynomial F of degree ≤ 1 on an affine space L is an affine map F : L → k1.
The linear part F : L → k is a linear function on L which can be considered as a linear
function on the space L̃. Let us choose any point A ∈ L ⊂ L. An extension F̂ can be
constructed as the linear function on L that coincides with F on the L̃ and whose value a
chosen point A ∈ L ⊂ L is F (A).

The uniqueness of linear extension is obvious, since any vector from L can be repre-
sented as a linear combination of elements of L.

Corollary 9.6. One can naturally identify the ambient vector space L with the vector space
P ∗
1 (L) dual to the space P1(L) of degree ≤ 1 polynomials on L.

Proof. Theorem 9.5 allows to canonically identify the space P1(L) with the space L∗ dual
to the space L. This identification canonically identifies the space P ∗

1 (L) dual to the space
P1(L) with the space L.

9.2 Canonical Realization of an Affine Space as a Hyperplane in Vector Space

Let us describe a canonical realization of an affine space L as a hyperplane, not passing
through the origin, in a vector space.

We will need a general definition of Kodaira’s map. Let X be a set, and let W be a
space of functions on X taking values in a field k.

Definition 9.7. Kodaira’s map Kod : X → W ∗ is the map of X to the dual space W ∗ that
sends a point A ∈ X to the linear function on W whose value at f ∈ W is equal to f(A).

Lemma 9.8. Kodaira’s map is an embedding if W separates points in X, i.e., for any
points A ̸= B in X, there is a function fA,B ∈ W such that fA,B(A) ̸= fA,B(B).
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Proof. If W separates points A,B ∈ X, then Kodaira’s map sends A and B to different
linear functions on W , since their values at the function fA,B are different.

Definition 9.9. Assume that the space W contains a constant function f ≡ µ for any
µ ∈ k. A characteristic hyperplane H ∈ W ∗ is a hyperplane consisting of all linear
functions f ∈ W ∗ on W whose value at the function f ≡ 1 is equal to 1.

Lemma 9.10. Assume that the space W contains all constant functions on X. Then
Kodaira’s map sends X to the characteristic hyperplane of the space W ∗.

Proof. The value of the function f ≡ 1 at each point A ∈ X is equal to 1.

Set X = L, an affine space, and W = P1(W ).

Lemma 9.11. Kodaira’s map L → P ∗
1 (L) is an affine map.

Proof. A polynomial P of degree ≤ 1 is an affine map P : L → k1. Its linear part P is a
linear function on the space L of free vectors in L. Thus, the difference P (B) − P (A) is
invariant under all translations of the pair (A,B) (i.e., if (A,B) ∼ (C,D), then P (B) −
P (A) = P (D) − P (C)) and depends linearly on the free vector (A,B). These properties
imply that Kodaira’s map L → P1(L)

∗ is an affine map.

Theorem 9.12. Kodaira’s map L → P ∗
1 (L) provides a canonical affine embedding of the

affine space L to the vector space P ∗
1 (L). The image of L under the embedding coincides

with the characteristic hyperplane H in the space P ∗
1 (L).

Proof. By Lemma 9.8, the map L → P ∗
1 (L) is an embedding, since all constant functions

on L are polynomial of degree ≤ 1. By Lemma 9.11, the map L → P ∗
1 (L) is affine;

by Lemma 9.10, it maps L to the characteristic hyperplane H ∈ P ∗
1 (L). The dimension

dimkH of the characteristic hyperplane is equal to the dimension dimk L of L. Indeed,
dimkH = dimk P1(L)− 1 = dimk L. Thus, the map L → P ∗

1 (L) provides an isomorphism
between the affine spaces L and H.

10 Several Interpretations of the Space of Weighty Points and Mass
Dipoles

In this section, we show first that an affine map F : L1 → L2 induces the linear map
F∗ : M̂(L1) → M̂(L2). Then we give three interpretations of the space M̂(L).

10.1 A Linear Map of the Space of Weighty Points and Mass Dipoles Induced by
an Affine Map

Let L1, L2 be affine spaces over a field k, and let D(L1), D(L2) be vector spaces over k
of sets of weighted points in L1 and L2 correspondingly. Consider any map F : L1 → L2.
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Definition 10.1. The map F∗ : D(L1) → D(L2) induced by the map F : L1 → L2 is
the map that sends any single point A ∈ L1, equipped with mass 1, to the single point
F (A) ∈ L2 equipped with mass 1, and which extends the above map by linearity to the
space D(L).

The definition implies the total mass of the set Ã in L1 and F∗(Ã) in L2 are equal.
Thus, the following inclusion holds: F∗(D0(L1) ⊂ D0(L2).

The definition of the map F∗ : D(L1) → D(L2) does not use affine structures on L1

and L2 (and it could be applied to vector spaces of weighted points in any sets L1 and L2).
The following Lemma uses the affine structures on L1 and L2 in a very essential way.

Theorem 10.2. If F : L1 → L2 is an affine map, then F∗ takes the null sets in L1 to null
sets in L2.

Proof. Let Ã be a set of points A1, . . . , AN equipped with masses λ1, . . . , λn. Since Ã
is a null set, its total mass is equal to zero, and, for any point O ∈ L1, the free vector∑

λi(O,Ai) is equal to zero. Thus, F (
∑

λi(O,Ai)) is the zero free vector in L2. It implies

that the free vector
∑

λi(F (O), F (Ai)) equals to zero. Thus, the moment of the set F∗(Ã)

about the point F (O) equals to zero. Since the total mass of the set F∗(Ã) is zero, the set

F∗(Ã) is a null set.

Corollary 10.3. If F : L1 → L2 is an affine map, then the map F∗ : M̂(L1) → M̂(L2) is a
well defined linear map.

Proof. By Theorem 10.2, the linear map F∗ : D(L1) → D(L2) takes the subspace DM(L1)
of null sets in L1 to the subspace DM(L2) of null sets in L2. Thus, F∗ induces a well

defined linear map from the factor-space D(L1)/DM(L1) = M̂(L1) to the factor-space

D(L2)/DM(L2) = M̂(L2).

Corollary 10.4. Let F : L1 → L2 be an affine map. If Ã is a weighty set in L1 with
nonzero total mass λ and the center of mass O, then the set F∗(Ã) is a weighty set in L2

with nonzero total mass λ and the center of mass F (O).

If Ã is a weightless set in L1 whose total mass equals to zero and whose mass dipole is
{−O,B}, then the set F∗(Ã) is a weightless set in L2 whose total mass equals to zero and
whose mass dipole is {−F (O), F (B)}.

Proof. If two weighted sets in L1 are equivalent in L1, then their images under the map
F∗ are equivalent in L2, since F∗ maps null sets in L1 to null sets in L2.

If a weighty set Ã in L1 is equivalent to a weighty point {(O, λ)}, then the set F∗(Ã)
in L2 is equivalent to the weighty point {(F (O), λ)}. Thus, the first statement of the
Corollary is proved.

If a weightless set Ã in L1 is equivalent to a mass dipole {−O,B}, then the set F∗(Ã)
in L2 is equivalent to the mass dipole {−F (O), F (B)}. Thus, the second statement of the
Corollary is proved.
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Corollary 10.5. If F : L1 → L2 is an affine embedding, then the map F∗ : M̂(L1) → M̂(L2)
is a linear embedding.

Proof. By Corollary 10.3, the map F∗ is linear. Corollary 10.4 implies that if F is an
embedding, then F∗ sends nonzero elements of the space M̂(L1) to nonzero elements of

the space L̂2.

10.2 The Space M̂(L) of an Affine Hyperplane L in a Linear Ambient Space L

In this section, we will consider an affine embedding F : L → L, where L is an affine
hyperplane in a vector space L not containing the origin O of the space L. We will show
that the vector space M̂(L) of weighty points and mass dipoles in L is naturally isomorphic
to L.

Let L̃ be the vector subspace in L parallel to the affine hyperplane L. It is easy to
verify the following lemma.

Lemma 10.6. If an affine hyperplane L ⊂ L does not contain the origin O ∈ L, then
there is a unique linear function TL : L → k that is identically equal to 1 ∈ k on the
hyperplane L.

Moreover, the function TL vanishes on the vector space L̃ ⊂ L parallel to the affine
hyperplane L.

To provide an isomorphism between the vector spaces M̂(L) = D(L)/DM(L) and L
we define a linear map Ψ of the space D(L) to the ambient vector space L whose kernel is
the space DM(L) of null sets in L.

Definition 10.7. Let D(L) be the space of weighted points in a vector space L. Then the

evaluation map Φ : D(L) → L is the map, which sends a weighty set Ã = {(Ai, λi)} in L
to the vector

∑
λiAi ∈ L.

Lemma 10.8. The evaluation map Φ : D(L) → L sends all null sets in D(L) to zero.

Proof. Indeed, by definition, the vector Φ(Ã) is equal to the moment of the set Ã about
the origin O ∈ L.

Definition 10.9. Let D(L) be the space of weighted points in an affine hyperplane L ⊂ L.
Then the Ψ-map is the map Ψ : D(L) → L which is the composition Ψ = Φ ◦ F∗ of the
map F∗ : D(L) → D(L), induced by the embedding F : L → L and the evaluation map
Φ : D(L) → L.

Lemma 10.10. Let TL be the linear function on L that takes value 1 on the affine hyper-
plane L. Then the total mass of a set Ã ∈ D(L) is equal to TL(Ψ(Ã)).

Proof. Indeed, if Ã is a weighty point A1 of mass 1, then TL(Ã) = TL(Φ ◦ F∗(Ã)) =

TL(A1) = 1. This relation can be extended by linearity to any set Ã = {(Ai, λi)}:

TL(Ψ(Ã)) = TL(
∑

λiF (Ai)) =
∑

λiTL(Ai) =
∑

λi.
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The lemma is proven.

Lemma 10.11. If Ψ(Ã) = 0, then Ã is a null set.

Proof. Let Ã be a weighted set {(Ai, λi)} in D(L). By definition, its image Ψ(Ã) =
∑

λiAi

is the moment of the set F∗(Ã) ∈ D(L) about the origin O ∈ L. Thus, if Ψ(Ã) = 0, then

the weighted set Ã ∈ D(L) has zero moment about the pivot point O. The total mass of

the set Ã is also equal to zero, since IL(Ψ(Ã)) = TL(0) = 0. Thus, the weighty set Ã is a

null set in L. The map F : L → L is an embedding. Thus, the set Ã as a weighted set in
L also is a null set.

Theorem 10.12. The map Ψ : D(L) → L is an isomorphism between the space M̂(L) of
weighty points and mass dipoles of an affine hyperplane L ⊂ L not passing through the
origin O ∈ L and the ambient vector space L.

Proof. By Lemma 10.11, the induced map Ψ : M̂(L) → L is an embedding. The image of

M̂(L) under the map Ψ, obviously, contains the hyperplane L. The smallest vector space

that contains this hyperplane is the space L. Thus, the induced map Φ : M̂(L) → L is an

embedding and a surjective map. Thus, Ψ is an isomorphism between the spaces M̂(L)
and L.

Consider an affine hyperplane L in a vector space L not passing through the origin.
Let Ã be a set of points {A1, . . . , AN} in L equipped with masses λ1, . . . , λN . Let λ be the

total mass of the set Ã. Theorem 10.12 implies the following corollary.

Corollary 10.13. If λ ̸= 0, then
∑

λiAi = λO, where O is the center of mass of the set Ã.

If λ = 0, then
∑

λiAi = B−O ∈ L̃, where {−O,B} is a mass dipole of the set Ã, and

B −O is a well defined vector in the vector space L̃ parallel to the affine space L.

10.3 The Spaces M̂(L) and P ∗
1 (L) are Canonically Isomorphic

Let L be an affine space over a field k, and let P1(L) be a vector space of degree ≤ 1
polynomials on L.

Recall that the Kodaira’s map Kod : L → P ∗
1 (L) sends a point x ∈ L to the linear

function on P1(L) which assigns to a polynomial f ∈ P1(L) its value f(x) ∈ k at the point
x.

In Section 9.2, we showed that the map Kod is an affine embedding of L to P ∗
1 (L),

whose image is the characteristic hyperplane (see Section 9.2) in P ∗
1 (L).

Thus, the Kodaira’s map provides a canonical representation of an affine space L as
the characteristic hyperplane in the vector space P ∗

1 (L).

Corollary 10.14. There is a natural identification between the vector space M̂(L) of weighty
points and mass dipoles in an affine space L and the dual space P ∗

1 to the space P1(L) of
polynomials of degree ≤ 1 on L.
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Let Ã be a set of points {A1, . . . , AN} in L equipped with masses λ1, . . . , λN , and let

λ be the total mass of the set Ã. Theorem 10.12 and Corollary 10.14 imply the following
theorem.

Theorem 10.15. Consider a linear function Kod(Ã) on the space P1(L) which sends a
polynomial f ∈ P1 to

∑
λif(Ai) ∈ k. If λ ̸= 0, then

∑
λif(Ai) = λf(O), where O is

the center of mass of the set Ã and f is any polynomial from P1(L). If λ = 0, then∑
λif(Ai) = f(B)−f(O) ∈ L̃, where {−O,B} is a mass dipole of the set Ã, and f is any

polynomial from the space ∈ P1(L).

10.4 Differentials of Quadratic Polynomials and the Space of Weighty Points and
Mass Dipoles

Consider a vector space L over a field k as an affine space L. Let B be a non-degenerate
symmetric bilinear form on L and let LB be a space of polynomials T on L, representable
in the form P = λQB + l + c, where QB(x) = B(x, x) is the quadratic form, associated
with B, l ∈ L∗ is an arbitrary linear function, and λ, c ∈ k are arbitrary constants.

The differential DTx of a polynomial T on L give rise to the map DT : L → L∗ which
assigns to a point x ∈ L the linear function DTx(y) of y ∈ L.

With the space LB, one can associate the vector space DLB of differentials of all
polynomials T ∈ LB.

Theorem 10.16. The vector space DLB of differentials of all polynomials from the space
LB is isomorphic to the space M̂(L) of weighted points and mass dipoles in L. Under this
isomorphism:

1. a weighty point O ∈ L of a nonzero mass λ ∈ k corresponds to the differential
of a polynomial T = λQB + l + c whose critical point is the point O, i.e., T =
λQB(x−O) + c0, where c0 ∈ k is an arbitrary constant;

2. a mass dipole {−C,D} corresponds to the differential of a polynomial P = l + c of
degree ≤ 1, where l is the linear function defined by relation l(x) = −2B(D − C, x).

Consider a polynomial T ∈ LB representable in the form

T (x) =
∑

λiQB(x− Ai).

Denote by Ã the set of points {A1, . . . , AN} equipped with masses λ1, . . . , λN . Let λ be

the total mass of the set Ã. The theorem implies the following corollary.

Corollary 10.17. If λ ̸= 0, then T (x) = λQB(x − O) + c0, where O is the center of mass

of the set Ã and c0 ∈ k is some constant.
If λ = 0, then T (x) = l(x) + c0, where l is the linear function defined by relation

l(x) = −2B(D−C, x), where {−C,D} is the mass dipole of the set Ã, and c0 ∈ k is some
constant.
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The differential DTx of a polynomial T provides a map from the space L to the space
L∗ of linear functions on L.

One can identify the vector space L with the space L∗ by choosing a non-degenerate
symmetric bilinear form F on L.

Definition 10.18. The linear function F -dual to a vector X ∈ L is defined as the linear
function l = x∗

F ∈ L∗, satisfying the following identity l(y) ≡ F (x, y).
A vector F -dual to a linear function l ∈ L∗ is defined as the vector x = l∗F ∈ L such

that l = x∗
F .

Definition 10.19. TheF -gradient ∇FT (x) of a polynomial T at a point x ∈ L is the vector
that is F -dual to the differential DTx of T at x ∈ L, i.e., the following identity holds:

F (∇FT (x), y) ≡ DTx(y).

One can check that the differential DxT (y) of a polynomial T = λQB + l+ c at a point
x ∈ L is equal to 2λB(x, y) + l(y) (as a function of y).

We will identify the space L with the dual space L∗ using a symmetric bilinear form
F = −2B.

With this choice of a bilinear form F , the F -gradient ∇FT (x) satisfies the following
relation:

∇FT (x) = −λx+ b, (10)

where b = l∗F .

Proof of Theorem 10.16. The space of differentials of polynomials T ∈ LB is isomorphic
to the space of F -gradients of polynomials T . Formula (10) implies that the F -gradient of
a polynomial T ∈ LB is a moment-like map whose total mass equals λ. If λ ̸= 0, then the
F -gradient vanishes at a single point which is the center of mass of the moment-like map
and at the same time the critical point of the polynomial T . If λ = 0, then F -gradient is
identically equal to the constant b defined above.

The space M̂(L) is isomorphic to the space M(L) of moment-like maps. It is easy

to see that the isomorphism between M̂(L) and M(L) agrees with the statement of the
theorem.
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