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Lie pairs

Letterio Gatto and Louis Rowen

Abstract. Extending the theory of systems, we introduce a theory of Lie semialgebra
“pairs” which parallels the classical theory of Lie algebras, but with a “null set”
replacing 0. A selection of examples is given. These Lie pairs comprise two categories
in addition to the universal algebraic definition, one with “weak Lie morphisms”
preserving null sums, and the other with “�-morphisms” preserving a surpassing
relation � that replaces equality. We provide versions of the PBW (Poincaré-Birkhoff-
Witt) Theorem in these categories.
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1 Introduction

The purpose of this paper is to take a further step towards a general flexible framework
for a unified treatment of classical algebraic structures together with those arising in a
tropical context, where typically one cannot rely on the existence of an additive inverse
(e.g., as in the celebrated max-plus algebra). The present research includes Lie algebras in
this general picture, in the sense that we are about to explain. In other words, it may be
considered as one more stage of a wider program initiated some years ago by the second
author, through the theory of triples and systems (see e.g. [21, 22]), which has already
proved successful in revisiting classical algebraic phenomena by embedding them in a
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tropical context. Among its applications, we recall the construction of an effective tropical
substitute of the exterior algebra, along with a natural extension of the Cayley-Hamilton
theorem [11] for endomorphisms of modules over semialgebras.

The simple but effective idea for remedying the lack of negation is to introduce an
endomorphism (−), whose square is the identity, to which is attached a surpassing relation.
A further step was taken in [8], where a theory of Clifford semialgebra is proposed. In
more traditional contexts, Clifford algebras are examples of Lie super-algebras, so [8] may
be considered as the first relevant example of Lie semi-(super)algebras obtained within
the already collocated framework of triples and systems. It was applied to extend to the
tropical framework the polynomial representation of Lie algebras of endomorphisms of a
vector space, in the same spirit of [10].

Meanwhile, a theory of semialgebra pairs has been developed in [2,17], with the aim of
exploiting, through their axiomatization, the formal properties enjoyed by the surpassing
relation associated to a negation map, and eventually expunging the latter. For the reader’s
convenience, we recall here that many of the classical key properties of several algebraic
structures in traditional frameworks are recovered by the formalism of systems, in which
equality is replaced by the surpassing relation.

This premise should make clear that there is ample motivation to cope with the more
tricky situation provided by the tropical version of Lie algebras; moreover, in view of [17],
it is natural to investigate and to set the foundation of a theory of Lie pairs, generalizing
Lie (semi)-algebras. These are pairs (L,L0) of modules over some commutative semiring
C, endowed with a product [ ] : L × L −→ L, (x, y) 7→ [xy], satisfying suitable properties
inspired by the classical Lie theory, and for which the skew-symmetric and “Jacobi identity”
features of the theory are all subsumed in the submodule L0 of L, which basically contains
all of the relevant relations.

To show the reader quickly what we are talking about, the Lie bracket [ ] satisfies
the property [xx] ∈ L0 for all x ∈ L. Moreover, one naturally requires [xy] + [yx] to
lie in L0, regardless of the choice of (x, y) ∈ L × L. We thereby define, in case of free
modules over a base semiring, the structure constants of a Lie pair. The attractiveness
of the theory comes from the freedom in defining L0 as the basket containing all the
undesired appurtenances (due to skew-symmetry or the Jacobi relation) occurring in the
formal manipulations, which enhance the ability to construct families of examples of Lie
pairs. It is also important to stress that the proposed axiomatization is natural, and one
recovers the Lie semialgebras in the sense that when L is a module over a commutative
ring and when L0 = {0} one obtains the classical definition of Lie algebras, and all of our
examples work in this case, and reproduce the classical ones, like, e.g., the cross product.

Although our take is more along traditional structural algebraic lines, following Ja-
cobson [15] and Humphreys [14], but relying on the subset L0 taking the place of 0, it
should be remarked that the literature has already seen research aimed to build theories
of Lie semialgebras, for instance in the work by Hilgert and Hofmann [13], relying on the
Campbell-Hausdorff formula.

As remarked, this theory of “pairs” is an outgrowth of “triples” and “systems,” cf. [2,
11, 18, 21, 22], which have unified classical algebraic theory with tropical theory and other
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examples including hyperfields, as explained in [1]. Pairs are used in linear algebra in [2],
and in generalizing commutative algebra theory in [2]. But whereas the set T of “tangible”
elements (that is the elements of the ground set) played a crucial role in semiring and
hyperring systems, in this study of “Lie pairs” we do not deal with tangible elements at
all. In other words, T = ∅.

We bring in a “surpassing relation” in §2.11, to be preserved by “�-morphisms” in
its appropriate category. There are three possible categories, corresponding to the three
versions of morphisms given in Definition 2.3 and Definition 2.15. The “weak morphisms”
and “�-morphisms” are inspired by the theory of hyperfields, cf. [23].

Among the main thrusts of this paper is to lay out the categorical foundations of
Lie pairs in Definition 3.3, paying attention to examples inspired by the classical theory,
obtaining categories parallel to [1, 2]. At times negation can be replaced by a “pre-weak
negation map” ψ satisfying x + ψ(x) ∈ L0, cf. Theorem 4.3. We also introduce pre-
Lie ε-pairs, the analog of pre-Lie algebras, in Definition 4.8, and show how to obtain
a Lie pair from a pre-Lie ε-pairs in Theorem 4.9. The Lie versions of morphisms are
given in Definition 3.20. It might seem strange that there are three different versions
of Lie morphisms, but this also happens in other non-classical algebraic theories such
as hyperfields [23]. Our main category uses “weak Lie morphisms,” with many natural
examples provided along the way.

We extend major examples from classical Lie theory, to be described shortly. On the
other hand, there is a Lie version of Krasner’s hyperfield construction of [20], given in §4.5.

To test the viability of these notions, we prove versions of the PBW (Poincare-Birkhoff-
Witt) Theorem in these three categories (Theorems 6.13, 6.14, and 6.16).

1.1 Shape of the paper

To help the reader to get oriented in the exposition of so many new, though natural,
notions, we now give a glimpse of how the paper is organized, also to share the feeling of
what is in it.

To ease the reading, and to make the paper as self contained as possible, we collect in
section 2 all the prerequisites and notation to be used in the article. The framework is very
general, which explains why we put so much emphasis on very sparse algebraic structures
like magmas and bimagmas. Pairs and negation maps are quickly recalled in Section 2.1
and 2.7. Weak Property N, introduced in Section 2.2.2, is necessary because we cannot
expect, as easily seen by basic examples, for nontrivial negation maps to exist.

The theoretical core of the paper is Section 3, where we collect foundational material
about the theory of Lie pairs in our sense, the basic morphisms used in the rest of the
paper.

To show that our theory is not empty we devote Section 4 to major Lie constructions
(such as a Lie pair from an associative pair in Theorem 4.3, and from an associative pair
with involution in Theorems 4.10 and 4.12) and examples (the classical constructions of
Theorem 4.14, and low dimensional examples in §4.4 including the cross product), as well
as Filiform pairs in §4.4.2 and an example motivated by hyperfield theory in Theorem 4.26.
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One standard technique for working with semialgebras, to cope with the unavailability
of additive inverses, is that of doubling, which in a sense recalls the construction of the
integers from the natural numbers, but where we avoid taking the quotient modulo a
congruence.

Among the most natural examples of Lie pairs, is one where the Lie bracket is obtained
as the Lie commutator in an associative semialgebra. The construction is straightforward.
The standard model of any associative (semi)-algebra is that of a quotient of the ten-
sor (semi)-algebra associated to a module. This is why in Section 6.1 we treat tensor
semialgebras of free Lie pairs.

In §6 we address the natural question: given any Lie pair (L,L0), can we construct an
associative pair (A,A0) in which (L,L0) is embedded, in such a way that the commutator
restricts to the given Lie bracket? This would be the extension of the Poincaré–Birkhoff–
Witt (PBW) theorem in our context. In our concluding subsection 6.3 we analyze the
corresponding PBW situation in the various versions of Lie pairs. We shall see that the
construction is unambiguous for each of the versions considered, although it must take into
account the corresponding category.

2 Preliminaries and Notation

First we review some definitions from [17]. As usual we denote as N the semiring of
natural numbers (including 0), and N+ := N \ {0}.

Definition 2.1.

(i) A magma is a set with a binary operation denoted (+) (addition) or (·) (multipli-
cation). At times we also require a neutral element, written as 0 or 1 respectively.

A semigroup is a magma whose given binary operation satisfies the law of associa-
tivity.

A bimagma A is a multiplicative monoid (A, ·, 1) which also is an additive semigroup
(A,+, 0), satisfying 0b = b0 = 0 for all b ∈ A. (Thus, for us, bimagmas are associative
both for multiplication and addition.)

A d-bimagma is a bimagma which is distributive, by which we mean
(∑

i

xi

)(∑

j

yj

)
=
∑

i,j

xiyj, for all xi, yj ∈ A.

A semiring (cf. [9], [12]) (A,+, ·, 0, 1) is a (multiplicatively) associative d-bimagma
also with a multiplicative identity 1. A semifield is a semiring in which every nonzero
element is invertible.

(ii) C always will denote a commutative semiring, e.g. N or Q+ or the max-plus algebra.
Often C will be a semifield.
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(iii) A (left) A-module1 over a semigroup C is a semigroup (M,+, 0) endowed with
scalar multiplication C ×M → M satisfying the following axioms, for all c, ci ∈ C
and y, yi ∈ M:

(a) c0 = 0c = 0, (i.e., 0 is absorbing).

(b) c
∑
yi =

∑
cyi, (

∑
ci)y =

∑
(ciy).

(c) (when C is a semiring) (c1)(c2y) = (c1c2)y.

A basis of an C-module M (if it exists) is a set {xi : i ∈ I} ⊆ M such that any
element of A can be written uniquely as a sum

∑
cixi, ci ∈ C, where almost all

ci = 0. In this case we call M a free A-module of rank |I|.

(iv) A C-bimagma is a C-module which is also a bimagma and satisfies

(cy1)y2 = c(y1y2) = y1(cy2)

for all c ∈ C, yi ∈ A.. A C-bimagma ideal of a C-bimagma A is a sub-bimagma
which is also an A-module.

(v) A multiplicative ideal of a bimagma A is a subset I ⊆ A satisfying bd, db ∈ I, for
each b ∈ I and d ∈ A.

An ideal is a sub-semigroup I ⊆ A which is also a multiplicative ideal.

(vi) An involution of a C-bimagma A is an anti-automorphism (∗) : A → A of order
≤ 2, i.e., (cb)∗ = cb∗, (

∑
bi)

∗ =
∑
b∗i , (b

∗)∗ = b, and (b1b2)
∗ = b∗2b

∗
1 for b, bi ∈ A. (We

have defined an involution of the first kind.)

(vii) A semialgebra over C is a C-bimagma that is also a semiring.

(viii) A map f : M → N of C-modules is module multiplicative if f(cy) = cf(y), for
all c ∈ C, y ∈M.

(ix) Module homomorphisms are defined as usual. For a C-module M, the semialgebra
of module homomorphisms M → M is denoted as EndC M. For notational conve-
nience, we omit the subscript C when it is understood, and designate 0M ∈ EndM
for the 0 homomorphism, i.e., 0M(v) = 0, for all v ∈ M.

Remark 2.2. Any semiring A is a semialgebra over its center C = Z(A).

1For convenience, we are defining modules with 0, but since we do not require negation, the 0 element
could be dispensed with.
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2.1 Pairs

Definition 2.3.

(i) A C-pair (A,A0) is a C-module A with a C-subset A0. In particular, if C0 ⊂ C we
have the pair (C, C0), which we call the base pair.

(ii) A map f : (A,A0) → (A′,A′
0) of pairs is:

(a) a homomorphism if f(b1 + b2) = f(b1) + f(b2), for all b1, b2 ∈ A.

(b) a weak morphism if
∑
f(bi) ∈ A′

0 whenever
∑
bi ∈ A0; f is A0-injective if∑

f(bi) ∈ A′
0 implies

∑
bi ∈ A0.

(iii) A (C, C0)-pair is a C-pair (A,A0) for which C0A ⊆ A0.

Important Note 2.4. Any C-pair is automatically a (C, 0)-pair. We will identify C with
(C, 0) when appropriate.

(C, C0) is presumed given, and “pair” means (C, C0)-pair. The justification for this
approach is given in [22, Note 1.34] and [2].

Intuitively A0 replaces “zero.” Often A0 is a bimagma ideal of A.
The essential difference with [17] and [2] is that here we do not assume that C ⊆ A,

and “tangible elements” do not play a role here.
Occasionally we will merely be given a semiring A and an ideal A0. Then (A,A0)

becomes a pair when we define C as in Remark 2.2, and C0 = C ∩A0.

Definition 2.5.

(i) A bimagma pair is a pair (A,A0) for which A is a bimagma, satisfying
∑
bi ∈ A0

implies
∑
bbi ∈ A0.

(ii) A bimagma pair (A,A0) is A0-additive if A0 is an ideal of A.

(iii) A semiring pair is a bimagma pair, for which A is a semiring.

(iv) An ε-pair, for ε ∈ C, is an A0-additive bimagma pair (A,A0), for which

xy + εyx ∈ A0, for all x, y ∈ A.

(v) Given a bimagma pair (A,A0), an involution of (A,A0) is an involution (∗) of A
such that A∗

0 = A0.

(vi) A pair (A,A0) is A0-cancellative if, for y ∈ A, c ∈ C, cy ∈ A0 implies c ∈ A0 or
y ∈ A0.

(vii) A pair (A,A0) satisfies A0-elimination if y0 + y1 ∈ A0 for y0 ∈ A0, y1 ∈ A, implies
y1 ∈ A0.
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(viii) A homomorphism of bimagma pairs ϕ : (A,A0) → (A′,A′
0) is a bimagma ho-

momorphism ϕ : A → A′ (i.e., which preserves addition and multiplication), with
ϕ(A0) ⊆ A′

0.

(ix) A (left) module pair (M,M0) over a pair (A,A0) is an A-moduleM together with
a subset M0 and a bilinear product A×M → M satisfying the following properties
for all b ∈ A, y ∈ M:

(a) 0y = 0M = y0,

(b) b0M = 0M,

(c) bM0 ⊆ M0,

(d) A0y ⊆ M0.

(x) If (M,M0) is a pair, then define

EndM0 = {f ∈ EndM : f(M) ⊆ M0},

and take End(M,M0) to be the pair (EndM,EndM0).

(xi) A sub-pair of a pair (A,A0) is a pair (S, S0) where S ⊆ A and S0 ⊆ S ∩A0.

2.2 Substitutes for negation

Although we have bypassed negation, we need some versions to carry out the theory.

2.2.1 Pre-negation and negation maps

Definition 2.6 ([17]). A pre-negation map on a bimagma pair (A,A0) is a semigroup
endomorphism b 7→ ψ(b) of A, satisfying the following conditions, for all b, b1 ∈ A:

(i) ψ(bb′) = bψ(b′) = ψ(b)b′,

(ii) b+ ψ(b) ∈ A0 for all b ∈ A,

(iii) ψ(A0) ⊆ A0.

Definition 2.7 ([17]).

1. A negation map on a bimagma pair is a pre-negation map, denoted (−), on (A,A0)
of order ≤ 2, i.e., satisfying (−)((−)b) = b for all b ∈ A.

2. We write b(−)b′ for b+ (−)b′.

3. A ψ-pair is a bimagma pair with a pre-negation map ψ.
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2.2.2 Weak Property N

We avoid negation maps, and instead use the following generalization.

Definition 2.8. A pair (A,A0) satisfies Weak Property N if for each b ∈ A there is an
element b′ such that b+ b′ = b′ + b ∈ A0.

(We used “Weak” here to be consistent with the terminology of [2]. It has nothing
to do with “weak morphisms,” to be defined below.) The following very easy example is
illustrative.

Example 2.9. For any C-bimagma A, picking any element ε in C for which 1+ ε ∈ C0, the
map b 7→ εb is a pre-negation map ψ of (A, (1 + ε)A), which is a ψ-pair satisfying Weak
Property N, since b+ εb = (1 + ε)b ∈ A0.

Important Note 2.10. When C has a negation map, we can take ε = (−)1 in Example 2.9.
In general, the element ε is a more general version of (−)1, since we do not require ε2 = 1,
but nevertheless 1 + ε replaces 0.

2.3 Surpassing relations

Definition 2.11. A surpassing relation � on a bimagma pair (A,A0) is a pre-order
satisfying the following conditions for all bi, b

′
i ∈ A, c ∈ C:

(i) If b1 � b2 and b′1 � b′2 then b1 + b′1 � b2 + b′2 and b1b
′
1 � b2b

′
2.

(ii) If b1 + b0 = b′1 for some b0 ∈ A0, then b1 � b′1.

(iii) If c ∈ C and b1 � b′1 then cb1 � cb′1.

(iv) When A has a given negation map (−), if b1 � b′1 then (−)b1 � (−)b′1.

We also write b1 � b2 to denote that b2 � b1.

Example 2.12.

• Our main example in this paper of a surpassing relation on a pair (A,A0), denoted
�0, is given by b1 �0 b2 iff b2 = b1 + z for some z ∈ A0. Then A0 = {b ∈ A : 0 �0 b}.
When A0 = 0, the relation � becomes equality.

• For ψ-pairs, we write �ψ for �0; i.e., b1 �0 b2 iff b2 = b1 + (b+ψ(b)) for some b ∈ A.

• Another example, motivated by hypergroup theory, to be used in Theorem 4.26: Let
P(H) denote the power set of a set H. We say that S1 �⊆ S2 if S1 ⊆ S2.

Remark 2.13.

1. Any surpassing relation � on a pair (M,M0) induces a surpassing relation element-
wise on End(M,M0), by f � g if f(y) � g(y), for all y ∈ M.
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2. The surpassing relation �0 restricts to a surpassing relation on sub-pairs.

Important Note 2.14. A surpassing relation � can be useful, since we may generalize
classical formulas by replacing equality by �.

2.3.1 �-morphisms

Definition 2.15. A map f : (A,A0) → (A′,A′
0) of pairs is a �-morphism if satisfies

f(b1 + b2) � f(b1) + f(b2) for b1, b2 in A, and f(b1) � f(b2) whenever b1 � b2; f is
�-injective if f(b1) � f(b2) implies b1 � b2.

Lemma 2.16. Every �-morphism is a weak morphism.

Proof. If b1 + b2 ∈ A0 then b1 + b2 � 0, so f(b1) + f(b2) � 0, i.e., f(b1) + f(b2) ∈ A0.

2.4 Identities and varieties

We appeal to some of the notions from universal algebra, without going into the tech-
nicalities. Jacobson’s book [16] is a good resource.

In brief, an Ω-algebra is a set which has n-ary operations which we assume here include
addition and multiplication and their bimagma laws, and when appropriate, the negation
map. The 0-ary operations are just distinguished elements. We also admit identities, i.e.,
equality of universal atomic formulas (in terms of the operations). A homomorphism of
Ω-algebras is a function which preserves all the given operations.

We generalize this notion to an Ω-algebra pair to be a pair (A,A0) of Ω-algebras such
that A0 is a multiplicative ideal of A invariant under the given unary operations.

Definition 2.17. A free object for V is some U ∈ V together with an index set I and a
set X = {xi : i ∈ I}, such that for any A ∈ V and {bi : i ∈ I} ⊆ A there is a unique
homomorphism Φ : U → A for which Φ(xi) = bi, for all i ∈ I.

Example 2.18. Let I be an index set, and I0 ⊂ I.

• The free C-module of rank |I| was defined in Definition 2.1, which we denote as C(I).

• The free C-pair (C(I), C(I0)) of rank (|I|, |I0|); one can notice that C(I0) =
∑

i∈I0
Cxi

has a basis {xi : i ∈ I0} which is expanded to a basis {xi : i ∈ I} of C(I) =
∑

i∈I Cxi.

• One can take the free (C, C0)-module (C, C0)(I) = (C(I), C(I)
0 ) over (C, C0).

• The free C-module with a formal negation map, of rank |2I|, has a formal basis

{xi : i ∈ I} ∪ {yi : i ∈ I},

where we define (−)xi = yi and (−)yi = xi. (This idea will be pursued in Exam-
ple 5.1.)



Lie pairs 81

• The free multiplicative magma M(I) is constructed as the set of words in the inde-
terminates xi, i ∈ I, without associativity. Multiplication is juxtaposition, but with
putting in parentheses at each stage. To wit, the xi are words, and if w1 and w2 are
words, then (w1w2) is a word. For example, (x1(x2x3)) and ((x1x2)x3) are different
words.

We get a pair by taking M(I)0 to be the submagma consisting of words, at least one
of whose indeterminates is xi for i ∈ I0.

• The free d-bimagma F(I) is the magma semialgebra of the free multiplicative magma,
i.e., is built from the free module having as basis the free multiplicative magma
M(I), whose multiplication is extended via distributivity, as elaborated below in
Example 2.23.

• The free d-bimagma pair is (F(I),F(I)0).

• The free semigroup is constructed as the set of words in indeterminates xi, with
multiplication being juxtaposition, but without parentheses.

• The free semiring is the semigroup semiring of the free semigroup.

Recall that a variety V in universal algebra is closed under direct products, substruc-
tures, and homomorphic images.

Lemma 2.19.

(i) If (A,A0) is a pair and ϕ : A → A is a homomorphism, then (A, A0 :=ϕ(A0)) is a
pair. Furthermore, a surpassing relation � on (A,A0) induces a surpassing relation
(A,A0), by putting b̄1 � b̄2 if b1 � b2.

(ii) If (Ai,Ai0) are pairs for each i ∈ I, then the direct product (
∏

i∈I Ai,
∏

i∈I Ai0) is a
pair, and surpassing relations on each pair (Ai,Ai0) induce a surpassing relation on
(
∏

i∈I Ai,
∏

i∈I Ai0), componentwise.

(iii) Generalizing (ii), for any filter F on I, one can define the reduced product (cf. [7])

∏

i∈I

Ai/F

by saying (bi) ∼= (ci) if {i ∈ I : bi = ci} ∈ F , and then get the reduced pair

(
∏

i∈I Ai/F ,
∏

i∈I Ai0/F), which inherits the surpassing relation; i.e., (bi) � (ci) if
and only if {i : bi � ci} ⊆ F .

(iv) Negation maps are preserved under reduced products.

(v) Weak Property N is preserved under reduced products.
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Proof. The verifications are routine, noting that a filter is closed under finite intersections.

For the �-theory, we introduce the relation � into the language, even though it intro-
duces difficulties.

Remark 2.20. 1. In general a surpassing relation � need not pass to homomorphic
images, because one could conceivably have b1 � b2 and b3 � b4 with b̄2 = b̄3, but
b̄1 6� b̄4.

2. The surpassing relation �0 does remain a surpassing relation under homomorphic
images. Namely, if b2 = b1 + c0 and b4 = b3 + d0 for c0, d0 ∈ A0, with b̄2 = b̄3, then

b̄4 = b̄3 + d̄0 = b̄2 + d̄0 = b̄1 + c̄0 + d̄0,

i.e., b̄1 �0 b̄4.

3. The surpassing relation �0 need not pass to sub-pairs, because we might lose null
elements.

Definition 2.21.

(i) An identity is a universal atomic formula f(x1, . . . , xm) = g(x1, . . . , xm′).

(ii) A �-identity is a universal atomic formula f(x1, . . . , xm) � g(x1, . . . , xm′).

Proposition 2.22. Any class of Ω-algebras defined by identities and �0-identities on pairs
has free objects.

Proof. For identities we simply impose the relations on the elements of U and U0 by means
of congruences, as is customary in universal algebra. For �0-identities f �0 g we adjoin
fresh distinct indeterminates yf,g to U0 and impose the relations f + yf,g = g.

Example 2.23. The elements of the free d-bimagma are obtained by repeated addition and
multiplication. Distributivity permits us to rewrite any element f(x1, . . . , xm) as a sum∑

j hj of monomials, i.e., products of the xi, together with some coefficient. We say that
the monomial hj is multilinear of degree m if each xi, 1 ≤ i ≤ m, appears exactly once
in hj ; moreover f is multilinear of degree m if each of its monomials hj is multilinear
of degree m.

In each case, an identity or �-identity is multilinear of degree m if in the notation
of Definition 2.21, m = m′ and both f and g are multilinear of degree m.

Lemma 2.24. To verify a multilinear identity or �-identity in an A0-additive bimagma
pair, it is enough to check it on a spanning set S over C.

Proof. Just write each element bi as
∑

j cijsj for sj ∈ S, and open up the expression.
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3 The basic theory of Lie pairs

We introduce adjoints as a preparation for the Lie theory.

Definition 3.1. For a bimagma pair (A,A0), and x ∈ A, we define the adjoint maps
adx : A → A and ad†

x : A → A, by adx(y) = xy and ad†
x(y) = yx for y ∈ A. We

also define AdA = {adx : x ∈ A}, Ad†
A = {ad†

x : x ∈ A}, AD(A) = AdA +Ad†A, and
AD(A)0 = {f ∈ AD(A) : f(A) ⊆ A0}.

Remark 3.2.

(i) Suppose (A,A0) is a pair (A,A0), and x ∈ A. Then adx, ad
†
x ∈ End(A,A0).

(ii) (AD(A),AD(A)0) is a sub-pair of (EndA,EndA0).

3.1 Lie brackets and Lie pairs

We are ready to bring in the Lie bracket, the focus of this paper.

Definition 3.3.

(i) A L0-Lie bracket on a pair (L,L0) is a map, written [ ] : L×L → L, satisfying the
following Lie bracket axioms, for all x, y ∈ L, with adx and ad†

x as in Definition 3.1:

(a) adx(x) ∈ L0, i.e., [xx] ∈ L0,

(b) adx+ad†x ∈ End(L,L0)0, i.e., [xy] + [yx] ∈ L0 (the intuition being that right
multiplication acts like the negation of left multiplication),

(c) ad[xy]+adx ad
†
y +ad†

y adx ∈ End(L,L0)0, called the Jacobi L0- identity.

(c′) ad†

[xy]+ad†
y adx+ady ad

†
x ∈ End(L,L0)0, called the reflected Jacobi L0- iden-

tity.

(d) adcx = c adx for all c ∈ C;

(e) If
∑

i xi ∈ L0, then
∑

i ad
†
y(xi) ∈ L0, and

∑
i ady(xi) ∈ L0 for all y ∈ L.

Remark 3.4.

(i) For z ∈ L, Axiom (c) of (i) translates to

[[xy]z] + [x[yz]] + [y[zx]] ∈ L0. (1)

(ii) Interchanging y and z in (2) yields adx ady = ad†
y ad

†
x . If this holds then axiom (c′)

is superfluous.

Lemma 3.5. Axiom (b) is implied by (a) in any Lie pair satisfying L0-elimination.

Proof. [xx] + [yy] + [xy] + [yx] = [(x + y)(x + y)] ∈ L0. But [xx] + [yy] ∈ L0 by (a), so
[xy] + [yx] ∈ L0.
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Definition 3.6. A quasi Lie pair is a pair (L,L0) endowed with a L0-Lie bracket. A
Lie pair is a quasi Lie pair (L,L0) whose L0-Lie bracket is C-bilinear, also satisfying the
condition that if

∑
i xi ∈ L0, then

∑
i adxi ∈ End(L,L0)0,

∑
i ad

†
xi

∈ End(L,L0)0. The

L0-Lie bracket is †-reversible if ad†
x ady = adx ad

†
y, for all x, y ∈ L.

The †-reversibility translates to

[[yz]x] = [x[zy]]. (2)

Here are other desirable properties that hold in the classical situation.

Definition 3.7.

(i) The reflected L0-Lie bracket is defined as [xy]† = [yx]. (L,L0)
† is (L,L0) with the

reflected L0-Lie bracket.

(ii) The L0-Lie bracket is L0-reversible if [xy] ∈ L0 implies [yx] ∈ L0,

(iii) The L0-Lie bracket is L0-symmetric if adx = ad†
x for x ∈ L0.

(iv) The reflected quasi Lie pair is the quasi Lie pair (L,L0) with reflected L0-Lie
bracket.

(v) A reversible Lie pair is a Lie pair (L,L0) whose L0-Lie bracket is †-reversible.

Remark 3.8. The reflection of a Lie pair is a Lie pair.

Important Note 3.9.

(i) We always assume that L 6= L0, since otherwise the axioms are vacuous.

(ii) If L0 = {0}, the axioms revert to classical Lie theory.

(iii) We often view L as a bimagma, whose multiplication is the Lie bracket. Usually L0

is a sub-bimagma.

(iv) We need bilinearity to determine a Lie bracket in terms of products of basis elements.
But there is an interesting example (Theorem 4.26) arising from hyperrings, which
fails bilinearity yet satisfies part of distributivity.

(v) In general neither †-reversibility nor L0-reversibility holds, cf. the cross product ex-
amples of §4.4.3. But if L0-elimination holds, then L0 reversibility holds. Indeed, if
[xy] ∈ L0, then [xy] + [yx] ∈ L0, implying [yx] ∈ L0.
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3.1.1 Lie brackets on a free module over a base pair (C,C0)

The following observation provides a method of constructing Lie brackets on a free module
over a base pair (C, C0), especially in the finite dimensional case.

Lemma 3.10. If L is a free module over a base pair (C, C0) with basis {bi : i ∈ I}, then
the Lie bracket can be defined in terms of the products

[bibj ] =
∑

k

ckijbk, ckij ∈ C,

and (L,L0) is a Lie pair if and only if these coefficients satisfy the following axioms for
each i, j, k,m ∈ I:

1. cmii ∈ C0,

2. cmi,j + cmj,i ∈ C0,

3.
∑

l(c
l
ijc

m
lk + clkjc

m
li + clkic

m
lj ) ∈ C0,

4.
∑

l(c
l
ijc

m
lk + clkjc

m
li + clkic

m
lj ) ∈ C0.

Moreover †-reversibility holds if and only if
∑

l c
l
ijc

m
lk =

∑
l c
l
kjc

m
li , for all i, j, k,m.

Proof. The only axiom in Definition 3.3(i) which is not multilinear is (a), which says for
all ci ∈ C that (∑

cibi

)2
=
∑

i

c2i b
2
i +

∑
cicj(bibj + bjbi) ∈ L0,

implied by b2i ∈ L0 and (b).
So we need

∑
m c

m
ii bm ∈ C0, which means cmii ∈ C0 for each m ∈ I.

We check all the other axioms on basis elements bi, bj , bk. Axiom (b) requires that∑
m(c

m
i,j + cmj,i)bm = bibj + bjbi ∈ C0, so cmi,j + cmj,i ∈ C0 for each m ∈ I.

The Jacobi L0-identity reads as

[[bibj ]bk] + [[bjbk]bi] + [[bk, bi]bj ] =
∑

l,m

(clijc
m
lk + cljkc

m
li + clkic

m
lj )bm,

so we need
∑

l(c
l
ijc

m
lk + cljkc

m
li + clkic

m
lj ) ∈ C0, for each i, j, k,m ∈ I.

Similarly, †-reversibility means
∑

l(c
l
ijc

m
lk+c

l
kjc

m
li +c

l
kic

m
lj ) ∈ C0 for each i, j, k,m ∈ I.

In this way, any Lie pair is determined via the L valued matrix

([bibj ])1≤i,j≤n

such that all the diagonal elements [bibi] ∈ L0 and [bibj ] + [bjbi] ∈ L0 (L0-skew symmetry).

Definition 3.11.
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(i) For V,W subsets of a bimagma L, we define [VW ] to be the C-subspace of L generated
by {[vw] : v ∈ V, w ∈ W}.

(ii) An ideal of a Lie pair (with respect to the Lie bracket) (L,L0) is also called a Lie
ideal, for emphasis.

Lemma 3.12.

(i) Any bimagma sub-pair (W,W0) of a Lie pair (L,L0) is itself a Lie pair, which is
W0-reversible (resp. †-reversible) if (L,L0) is L0-reversible (resp. †-reversible).

(ii) ([WL], [WL] ∩ L0) is a Lie ideal of (L,L0) for any ideal W of L.

(iii) Let L′ := [LL]. (L′,L∩ L0) is a Lie ideal of (L,L0) that satisfies Weak Property N.

Proof. (i) We show that (W,W0) is a Lie pair, by verifying the conditions of Defini-
tion 3.3(i), for x, y, z ∈ W .

1. [xx] ∈ L0 ∩W =W0.

2. [xy] + [yx] ∈ L0 ∩W = W0.

3. Likewise the Jacobi W0-identity (and its reflection) and adx = ad†
x for x ∈ W0 are a

fortiori, as well as †-reversibility.

4. The other axioms are clear.

(ii) Clearly [x[yw]], [[yw]x] ∈ [WL] for w ∈ W.
(iii) Using (ii), we only need to verify the Weak Property N, which is clear since

[xy] + [yx] ∈ L0.

3.1.2 Negated Lie pairs

Definition 3.13. A negated Lie pair is a Lie pair with a negation map (cf. Definition 2.7),
such that [yx] = (−)[xy] for all x, y.

Remark 3.14. Negated Lie pairs are rather restrictive. For example any negated Lie pair
is reflexive and L0-symmetric.

3.2 Lie pairs with a surpassing relation

One could introduce a surpassing relation �.

Definition 3.15.

1. A �-Lie bracket with regard to a surpassing relation � is a L0-Lie bracket also
satisfying, for all x, xi, y ∈ L:

(a) (The Jacobi �-identity) ad[xy] � adx ady +ady ad
†
x.
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(b) ad∑
i
xi �

∑
i adxi,

(c) adx(
∑
yi) �

∑
adx(yi) and ad†

x(
∑
yi) �

∑
ad†

x(yi) for all x, yi ∈ L.

(d) ad†∑
i
xi
�
∑

i ad
†
xi
.

(e) If x � y, then adx � ady and ad†
x � ad†

y.

2. A �-weak Lie pair is a weak Lie pair (L,L0) with a surpassing relation �.

3. A �-Lie pair is a Lie pair (L,L0) with a surpassing relation �.

Important Note 3.16. The classical Lie theory has equality holding in (1), but we find
this too restrictive to obtain a workable algebraic theory for semialgebras.

Remark 3.17. Assume that (L,L0) is a reversible Lie pair. One can rewrite Axiom (1)(a)
as

[[xy]z] � [x[yz]] + [y[zx]]. (3)

Lemma 3.18. Assume that (L,L0) is L0-reversible (Definition 3.7).

(i) The Jacobi �-identity also is equivalent to each of:

(d′) ady ad
†
x � ad[xy]+adx ad

†
y.

(d′′) ad†

[xy] � ad†
x ad

†
y +ad†

y adx.

(ii) If [[xy]z] + w = [x[yz]] + [y[zx]] for w ∈ L0, then

[z[yx]] + w = [[zy]x] + [[xz]y].

Proof. Use Equation (3) throughout.
(i) To obtain Axiom (d′) switch y and z. The reverse argument gives us (3) from (d′).
To obtain Axiom (d′′), plug Definition 3.7(ii) into each term of (3), and then exchange

x and y. The reverse argument gives us (3) from (d′′).
(ii) When [[xy]z] + w = [x[yz]] + [y[zx]] for w ∈ L0,

[z[yx]] + w = [[xy]z] + w = [x[yz]] + [y[zx]] = [[zy]x] + [[xz]y].

Remark 3.19. Axioms (d′) and (d′′) remain consistent when A0-symmetry holds.
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3.3 Categories involving Lie pairs

There are three natural kinds of morphisms of Lie pairs, each of which defines its
category.

Definition 3.20. A C-module homomorphism f : (L,L0) → (N ,N0) of Lie pairs is a Lie
bracket map if f(L0) ⊆ N0 and f([b1b2]) = [f(b1)f(b2)], for all b1, b2 ∈ L. A Lie bracket
map f is a weak Lie morphism, �-Lie morphism, resp. Lie homomorphism, if f is
a weak morphism, resp. �-morphism, resp. homomorphism.

Lemma 3.21.

(i) The Lie pairs and their weak Lie morphisms comprise a category.

(ii) The �-Lie pairs and their Lie �-morphisms comprise a subcategory of (i).

(iii) The Lie pairs and their Lie homomorphisms comprise a subcategory of (ii).

Proof. One checks easily that the composition of two Lie homomorphisms is a Lie ho-
momorphism, and likewise for weak Lie morphisms and Lie �-morphisms. The other
assertions are by Lemma 2.16.

Important Note 3.22. Although Lie homomorphisms are the definition from universal
algebra, the first category, using weak Lie morphisms, fits best into the general theory of
pairs.

Example 3.23. Suppose (L,L0) is any Lie pair, and L0 ⊂ L1 ⊂ L. Then (L,L1) also
is a Lie pair, and the identity map can be viewed as a Lie homomorphism from (L,L0)
to (L,L1). Likewise for weak Lie pairs and �-Lie pairs.

4 Lie pair constructions

In this section we show how celebrated examples of Lie theory can be generalized to
Lie pairs.

4.1 ψ-Lie pairs from associative and pre-Lie ε-pairs

In the classical theory of Lie algebras one knows that for each associative algebra
(and more generally for pre-Lie algebras [4]), the additive commutator makes it into a Lie
algebra. In our situation, this cannot work since we do not have negation. Nevertheless,
there is an analogous procedure for pairs.

Definition 4.1.

(i) A ψ-Lie pair is a Lie pair having a pre-negation map ψ.

(ii) A strong ψ-Lie pair is a ψ-Lie pair satisfying [yx] = ψ([xy]) for each x, y ∈ L.
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(iii) For ε ∈ C, an ε-Lie pair is a Lie pair satisfying x + εx ∈ L0 for all x ∈ L and
[xy] + [yx] ∈ (1 + ε)L ⊆ L0.

(iv) For ε ∈ C, a strong ε-Lie pair is a ε-Lie pair satisfying [yx] = ε([xy]) for each
x, y ∈ L.

When L0 = (1+ ε)L for ε ∈ C, (iii), (iv) are special cases of (i),(ii) respectively, taking
ψ to be the map x 7→ εx.

Lemma 4.2. Any strong ψ-Lie pair (L,L0) is †-reversible, and is L0-reversible.

Proof.
[[xy]z] = ψ(ψ[[xy]z]) = [[ψ(x)y]ψ(z)] = [z[yx]],

so †-reversibility holds.
If [xy] ∈ L0, then [yx] = ψ([xy]) ∈ L0.

Theorem 4.3. Given a semiring ψ-pair (R,R0), define (R,R0)ψ := (R,R0), endowed with
the Lie bracket defined by [xy]ψ = xy + ψ(y)x. Then (R,R0)ψ is a ψ-Lie pair. Moreover,
(R,R0)ψ is a strong ψ-Lie pair when ψ2 = 1R.

Proof. We verify the axioms in Definition 3.3(i).

(a) [xx] = x2 + ψ(x)x = x2 + ψ(x2) ∈ R0.

(b) [xy] + [yx] = xy + ψ(y)x+ yx+ ψ(x)y = xy + yx+ ψ(xy + yx) ∈ R0.

(c) [[xy]z] + [[yz]x] + [[zx]y]

= (xy + ψ(y)x)z + ψ(z)(xy + ψ(y)x) + (yz + ψ(z)y)x

+ ψ(x)(yz + ψ(z)y) + (zx + ψ(y)x)y + ψ(y)(zx+ ψ(x)z)

= ψ(xyz) + yxz + ψ(zxy) + ψ2(zyx) + yzx+ ψ(zyx)

+ ψ(xyz) + ψ2(xzy) + zxy + ψ(xzy) + ψ(yzx) + ψ2(yxz)

= ψ
(
(xyz + yzx+ zyx) + ψ(zyx+ xzy + yxz)

)

= ψ
(
[xy]z + [yz]x+ [zx]y + ψ([xy]z + [yz]x+ [zx]y)

)
∈ R0.

(c′) is analogous, and (d),(e) are easy.

When ψ2 = 1R, we have [yx] = yx+ ψ(x)y = ψ(xy + ψ(y)x) = ψ([xy]).

Remark 4.4.

(i) For instance, for a C-semialgebra R, pick any element ε ∈ C, and define C0 = C(1+ε)
and R0 = (1+ ε)R. Then (R,R0) is a semiring pair satisfying the hypothesis of the
theorem, taking the pre-negation ψ to be b 7→ εb.
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(ii) As an example for when A0-reversibility holds, in any bimagma with a negation map
(−), we write [b, b′] for the Lie commutator bb′(−)b′b.

Corollary 4.5. Any semiring pair (A,A0) with a negation map (−) becomes a negated
Lie pair, denoted by (A,A0)

(−), under the Lie product [bb′] = [b, b′], which also satisfies
†-reversibility and A0-reversibility.

Proof. Take ε = (−)1.

We also can obtain a �-version, by extending the Leibniz �-identities given in [22,
Lemma 2.35] to a pre-negation map ψ cf. Definition 2.6:

Remark 4.6. If ψ is a pre-negation map on a semiring, then

ψ(x1 . . . xn) = x1 . . . xi−1ψ(xi)xi+1 . . . xn

for all i, by induction on n.

Lemma 4.7 (Leibniz ψ-identities). In any semiring A, defining [x, y]ψ = xy + ψ(yx).

(i) [x, y]ψz + y[x, z]ψ = [x, yz]ψ + yxz + ψ(yxz).

(ii) z[x, y]ψ + [x, z]ψy = [x, zy]ψ + zxy + ψ(zxy).

(iii) [x, [yz]ψ]ψ + yxz + zxy + ψ(yxz + zxy) = [[x, y]ψ, z]ψ + [y, [x, z]ψ]ψ. In particular,
[x, [y, z]ψ]ψ �ψ [[x, y]ψ, z]ψ + [y, [x, z]ψ]ψ.

Proof. (i) As in [22, Lemma 2.35], we compute:

[x, y]ψz + y[x, z]ψ = (xy + ψ(yx))z + y(xz + ψ(z)x) = xyz + ψ(yzx) + yxz + ψ(yxz).

(ii) By symmetry.
(iii) Add (i) to (ii).

4.1.1 Pre-Lie ψ-pairs

The construction of Lie algebras from pre-Lie algebras also can be extended to Lie pairs.
Recall that ψ is a pre-negation map.

Definition 4.8. The ψ-associator in a C-bimagma is given by

(x, y, z)ψ := (xy)z + ψ(x(yz)).

An A0-additive bimagma pair (A,A0) is a pre-Lie ψ-pair if (x, y, z)ψ+ψ((x, z, y)ψ) ∈ A0

for all x, y, z ∈ A.
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Theorem 4.9. Any A0-additive pre-Lie ψ-pair (A,A0) becomes an ψ-Lie pair under the
Lie bracket [xy]ψ := xy + ψ(yx).

If ψ is invertible, the reverse bracket of [xy]ψ is ψ([xy]ψ−1).

Proof. We modify the proof of Theorem 4.3. (a) and (b) are the same, and to get (c) we
have

[[xy]z] + [[yz]x] + [[zx]y] = (xy)z + ψ(yx)z + ψ(z)(xy) + ψ(z)ψ(yx) + (yz)x

+ ψ((zy))x+ ψ(x)(yz) + ψ(x)ψ(zy) + (zx)y

+ ψ(xz)y + ψ(y)(zx) + ψ(y)ψ(xz)

= (x, y, z)ψ + (y, z, x)ψ + (z, x, y)ψ + ψ((z, y, x)ψ

+ (x, z, y)ψ + (y, x, z)ψ)

= ((x, y, z)ψ + ψ((x, z, y)ψ) + ((y, z, x) + (y, x, z)ψ)

+ ((z, x, y)ψ + ψ((z, y, x)ψ))

(4)

which is in R0.
(c′) is analogous, and (d),(e) are easy.
Finally, [xy]†ψ = [yx]ψ = yx+ ψ(xy) = ψ((xy + ψ−1(y)x).

4.2 Lie pairs from semiring pairs with involution

We can also get examples from involutions. Let R be an associative C-semialgebra
equipped with an involution ∗ : R → R, cf. Definition 2.5. Define L to be R, endowed
with the bracket:

[xy] = xy + y∗x (5)

and L0 be the C-module∑

x∈R

R(x+ x∗) +
∑

x∈R

(x+ x∗)R+
∑

x∈R

R(x+ x∗)R.

In particular x(y + y∗), (x+ x∗)y, and x(y + y∗)z belong to L0 for any arbitrary choice of
x, y, z ∈ R.

Theorem 4.10. (L,L0) as defined above is a Lie pair.

Proof. Let us check the axioms 3.3(i).
(a) [xx] = x2 + x∗x = (x+ x∗)x ∈ L0.
(b) [xy] + [yx] = xy + y∗x+ yx+ x∗y = (x+ x∗)y + (y + y∗)x ∈ L0.
(c) The Jacobi L0- identity holds, since

[[xy]z] + [[yz]x] + [[zx]y] = (xy + y∗x)z + z∗(xy + y∗x) + (yz + z∗y)x+ x∗(yz + z∗y)

+ (zx+ x∗z)y + y∗zx + x∗z)

= (x+ x∗)︸ ︷︷ ︸ yz + (y∗ + y)︸ ︷︷ ︸ zx+ (z∗ + z)︸ ︷︷ ︸xy

+ y∗ (x+ x∗)︸ ︷︷ ︸ z + z∗ (y + y∗)︸ ︷︷ ︸x+ x∗ (z + z∗)︸ ︷︷ ︸ y.

(6)
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Since each bracketed term belongs to L0, the left side of (6) belongs to L0.
(d) Follows from the fact that L0 is an ideal.

Important Note 4.11. Theorem 4.10 is the L0-version of skew symmetric elements (de-
fined by x+ x∗ = 0), since here we have stipulated x+ x∗ ∈ L0.

4.2.1 ε-Skew symmetric pairs2

More generally, let us now fix ε ∈ C and define the bracket on R by

[xy] = xy + εy∗x. (7)

Take L = R and stipulate that L0 contains {x+ εx∗ : x ∈ R}.

Theorem 4.12. (L,L0) is a Lie pair under the bracket of (7).

Proof. Again let us check the axioms of Definition 3.3(i). First of all

[xx] = x2 + εx∗x = x(x+ εx∗) ∈ L0.

This proves that axiom 3.3(i)(a) holds.
To check (b), [xy] + [yx] = xy + εy∗x + yx + εx∗y = (x + εx∗)y + (y + εy∗)x which

belongs to L0 because (x+ εx∗) and (y + εy∗) do.
For (c), the Jacobi L0-identity, we use again expression (6) with ε inserted in the

appropriate places.
(d) and (e) are obvious.

4.3 The “classical” Lie pairs

We can now describe the paired version of the classical Lie algebras An, Bn, Cn, Dn.
We need the trace tr (A) :=

∑
aii of a matrix A = (aij).

Lemma 4.13. tr(AB) = tr(BA) for matrices A,B over C.

Proof. tr(AB) =
∑
aijbji =

∑
bjiaij = tr(BA), since C is commutative.

Theorem 4.14. Fix ε ∈ C such that ε+ 1 ∈ C0. (See footnote 2.)

(i) The paired version of the classical Lie algebra An is given by the special linear

pair sln := (L,L0), where L = {x ∈ Mn(C) : tr(x) ∈ C0}, and L0 is obtained as in
Theorem 4.9.

(ii) The ε-paired version of the classical Lie algebra Bn is given by so
(ε)
2n+1 := (L,L0),

where L = x ∈ M2n+1(C) : x + εxT ∈ M2n+1(C0)}, and L0 is obtained as in Theo-
rem 4.10.

2We could do this for a general pre-negation map ε if we stipulate that ψ preserves the involution,
i.e., ψ(x∗) = ψ(x)∗.
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(iii) The ε-paired version of the classical Lie algebra Cn is given by sp
(ε)
2n := (L,L0), with

L = {x ∈M2n(C) : Jx+ εxTJ ∈M2n+1(C0)}, where J is the matrix

(
0 1
ε 0

)
, and L0

is obtained as in Theorem 4.10.

(iv) The ε-paired version of the classical Lie algebra Dn is given by so
(ε)
2n := (L,L0), where

L = {x ∈M2n(C) : Jx+ εxTJ ∈M2n(C0)}, and L0 is obtained as in Theorem 4.10.

Proof. (i) By Theorem 4.9, noting that sl(ε)n is closed under [ ]ψ since trAB + εBA ∈ C0.
(ii), (iv) By Theorem 4.10.
(iii) Also by Theorem 4.10, using the involution x 7→ J−1xTJ (formally adjoining ε−1

if necessary).

The exceptional Lie pairs could also be defined, but this is effected most easily via the
Jordan version.

4.4 Non-classical examples

Other Lie pairs cannot be obtained by means of Lie commutators.

Example 4.15. The C0-skew 3 × 3 matrices deserve further analysis. In L := M3(C) we
consider matrices of type J0, J1, J2, which depend on two C0-constrained parameters of C,
namely

J0 :=



J0(a, a

′) :=




0 a 0
a′ 0 0
0 0 0



∣∣∣∣∣∣
a+ a′ ∈ C0



 ∈ C3×3,

J1 :=



J1(b, b

′) =



0 0 b
0 0 0
b′ 0 0



∣∣∣∣∣∣
b+ b′ ∈ C0



 ∈ C3×3,

J2 :=



J2(c, c

′) =



0 0 0
0 0 c
0 c′ 0



∣∣∣∣∣∣
c+ c′ ∈ C0



 ∈ C3×3.

Clearly each element of L can be written (not uniquely) as a C-linear combination of a
matrix of type J0, one of type J1, and one of type J2. We claim that

(a) [JiJi] ∈ L0;

(b) [Ji, Jj] ⊆ J(i+j) mod 3.

We know already that (L,L0) is a Lie pair but nevertheless it is instructive to perform
explicit computations to obtain Property (b).

[J0(a, a
′), J1(b, b

′)] = J0(a, a
′)J1(b, b

′) + J1(b, b
′)TJ0(a, a

′)
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=




0 a 0
a′ 0 0
0 0 0





0 0 b
0 0 0
b′ 0 0


+



0 0 b′

0 0 0
b 0 0






0 a 0
a′ 0 0
0 0 0




=



0 0 0
0 0 ab
0 ab′ 0


 = aJ2(b, b

′) ∈ J2.

Clearly the same argument holds for the other possible choices of indices, and b) is
proven.

To go further in producing examples, we start with the most fundamental ones. Given
a pair (L,L0) we will write its product as the bracket [xy], with the hope of showing that
it is a Lie bracket. Write L′ := [LL].

Definition 4.16. A pair (L,L0) is L0-Lie abelian if L′ ⊆ L0. More generally, (L,L0) is
L0-Lie nilpotent of index 2 if [LL′] ⊆ L0.

Lemma 4.17.

(i) All L0-Lie nilpotent pairs of index 2 satisfy the Jacobi L0- identity.

(ii) If (L,L0) is L0-Lie abelian, then the Jacobi �-identity holds.

Proof. (i) All the terms are in L0.
(ii) [xy], [yz] ∈ L0 imply [[xy]z] = [[zy]x]] = [x[yz]], and [y[zx]] ∈ L0, which in turn

implies that [[xy]z] � [x[yz] + [y[zx]].

4.4.1 Low dimensional examples

If L =
⊕n

i=1 Cxi we say that L has dimension n. Many of the lowest dimensional examples
lack negation maps. Blachar [6, §2.3] provided the 3-dimensional examples of Lie pairs over
a semifield C having a negation map, so we shall only consider Lie pairs over a semifield
pair (C, C0).

Example 4.18. The only 1-dimensional example is supplied by the trivial algebra L = Cx,
with [xx] = 0.

Example 4.19. The 2-dimensional examples where the Lie pair is L0-Lie abelian, so the
Jacobi L0-identity holds. Let L = Cx+ Cy.

1. L0 = {0}; then we get the classical examples in [15].

2. L0 = Cy, where [xx] = y and one of the following holds:

• [xy] = [yx] = [yy] = y.

• [xy] = [yx] = y and [yy] = 0.
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• [xy] = [yx] = [yy] = 0.

3. Now L0 = C(µx+ νy), with µ, ν 6= 0. One example is µ+ ν = 1, [xx] = [yy] = 0, and
[xy] = [yx] = µx+ νy.

[x[xy]] = ν[xy] and [y[xy]] = µ[xy].

[x[yx]] = µ[xy] and [y[yx]] = [[xy]x] = ν[yx].

A relevant 3-dimensional example, whose aim is to recover the situation of the cross
product, will be studied separately in Section 4.4.3 below.

Example 4.20. Some 4-dimensional examples. Let L = Cx ⊕ Cy ⊕ Cz1 ⊕ Cz2, and let
L0 = Cz1 ⊕ Cz2, where [xx] = [yy] = 0, [xy] = z1, [yx] = z2, and

1. [xzi] = [yzi] = [zizj ] = 0 for all i, j.

2. (The Heisenberg pair) [xz1] = [z1y] = [z2x] = [yz2] = z1, [zizj ] = 0 and additionally
[xz2] = [z2y] = [z1x] = [yz1] = z2.

3. [xz1] = [z1y] = [z2x] = [yz2] = [z1z2] = z1, [xz2] = [z2y] = [z1x] = [yz1] = [z2z1] = z2.

Example 4.19 (1) satisfies the Jacobi L0-identity, by computation. The other Lie pairs are
L0-Lie abelian, so satisfy the Jacobi L0-identity.

4.4.2 Filiform pairs

Another large class of examples is provided by the filiform algebras [3], an important class
of nilpotent Lie algebras which has a Verne basis {x1, . . . , xn} satisfying

(i) [x1xi] = xi+1, 1 ≤ i ≤ n− 1,

(ii) [x1, xn] = 0,

(iii) [xixj ] =
∑

k≥i+j ci,jxk, ci,j ∈ C.

Definition 4.21. A filiform pair is a Lie pair (L,L0) such that L is a free (C,C0)-module
with basis x1, . . . , xn satisfying the conditions

1. [x1xi] = xi+1, 1 ≤ i ≤ n− 1,

2. [x1, xn] ∈ L0,

3. [xixj ] ∈
∑

k≥i+j ci,jxk + L0, where ci,j + cj,i ∈ L0.

(In particular [xx], [xy] + [yx] ∈ L0, for all x, y ∈ L.)

Example 4.22. Let us see a few instances.
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1. The standard 3-dimensional filiform pair has generators x1, x2, x3. Choose ℓ21
as c1x1 + c2x2 + c3x3 ∈ L arbitrarily (ci ∈ C), and take L0 = C(x3 + ℓ21), together
with the relations

[x1x2] = x3, [x2x1] = ℓ21, [xixj ] = 0 otherwise.

The Jacobi L0- identity then holds trivially, checked on generators.

2. More generally choose ℓ13, ℓ31, ℓ23, ℓ32, and define L0 as being the C-submodule gen-
erated by (ℓij + ℓji, ℓ21 + x3) (i+ j ≥ 4). Then the commutators

[x1x2] = x3, [x2x1] = ℓ21, [x1x3] = ℓ13,

[x3x1] = ℓ31, [x2x3] = ℓ23, [x3x2] = ℓ32,

define a Lie pair (L,L0).

4.4.3 The cross product Lie pair

In any reasonable theory of Lie pairs one should be able to recover the classical example
of the Lie algebra (R3,×), the cross product in the three-dimensional real vector space.
We will do it via the procedure described in Section 3.1.1.

Example 4.23 (The cross product). Let

L = Cb0 ⊕ Cb1 ⊕ Cb2.

Take arbitrarily two arbitrary 3-tuples (c0, c1, c2) and (d0, d1, d2) in L3, not necessarily
C-linearly independent. We define a Lie bracket on L, depending on the choice of (di) and
(ci) (i.e. a 6- parameter family) by encoding it into a L-valued 3×3 matrix A : L×L −→ L
given by:

A :=



d0 b2 c1
c2 d1 b0
b1 c0 d2


 ∈ L3×3 ∼= L∗ ⊗ L∗ ⊗ L, (8)

stipulating that
[bibj ] = A(i, j), 0 ≤ i, j ≤ 2.

We obtain a Lie pair generically, imitating the natural structure of the cross product. For
this reason we define

L0(A) = C〈di, bi + ci, bici〉.

The notation reflects the fact that the submodule L0(A) of L depends on the ma-
trix A. Let us check that (L,L0(A)) satisfies the axioms of (a), (b) (c), (c′), (d) and (e) of
Definition 3.3(i). To this purpose, we first compute the product of two generic elements

x = x0b0 + x1b1 + x2b2 and y = y0b0 + y1b1 + y2b2

of L, using the multiplication matrix. A simple computation yields:

[xy] = x0y0d0 + x1y1d1 + x2y2d2

= x1y2b0 + x2y1c0 + x2y0b1 + x0y2c1 + x2y0b1 + x0y1b2 + x1y0c2
(9)
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(a) Let us check that [xx] ∈ L0(A). Indeed,

[xx] = x20d0 + x21d1 + x22d2 + x0x1(b2 + c2) + x0x2(b1 + c1) + x1x2(b0 + c0) ∈ L0(A);

(b) Let us check that adx(y) + ad†x(y) = [xy] + [yx] ∈ L0(A).

[xy] + [yx] = 2x0y0d0 + 2x1y1d1 + 2x2y2d2 + (x0y1 + x1y0)(b2 + c2)
+(x0y2 + x2y0)(b1 + c1) + (x1y2 + x2y1)(b0 + c0) ∈ L0(A) (10)

(c) We now come to the Jacobi identity. Besides the generic elements x and y mentioned
before, let z = z0b0 + z1b1 + z2b2 and consider the Jacobi sum

(xy)z + (yz)x+ (zx)y. (11)

Expanding (11) in terms of the component of x, y and z, one easily get

[[xy]z] + [[yz]x] + [[zx]y]

=
∑

0≤i,j,k≤2

xiyjzk
(
[[bibj ]bk] + [[bjbk]bi] + [[bkbi]bj ]

)
.

For each choice of (i, j, k) ∈ {0, 1, 2}3 we have basically two cases.

i) (i, j, k) is either an even or odd permutation of (0, 1, 2). In the even case we
have

[[bibj ]bk] + [[bjbk]bi] + [[bkbi]bj ]
= [bkbk] + [bibi] + [bjbj ] = d0 + d1 + d2 ∈ L0(A).

In the odd case:

[[bibj ]bk] + [[bjbk]bi] + [[bkbi]bj = ckbk + cibi + cjbj ∈ L0(A).

ii) If i = j then

[[bibi]bk] + [[bibk]bi] + [[bkbi]bi] = [dibk] + [(bj + cj)bi] ∈ L0(A).

iii) The case i = k works the same as in (ii).

The †-reversibility does not hold in general. We compute [[b0b1]b2] = [b2b2] = d2,
whereas [[b2b1]b0] = [c0b0], so in general we need [cibi] = di, which normally fails.

Example 4.24. Generalizing Example 4.23, let V be a free module over C and also let
A : V ⊗ V → V be a V -valued bilinear form over C. If V =

⊕
1≤i≤n Cbi, let us denote

A = (aij) for aij ∈ V , where bibj = aij , and let

L =
⊕

i<j

C · aij
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Define
L0(A) := C · 〈aij + aji, aii, aijaji〉 (12)

i.e., L0(A) is the C-submodule spanned by the expressions listed in (12). Then (L,L0(A))
is a Lie pair. The verification works the same as in the case of n = 3 (Example 4.23), so
we omit it.

Remark 4.25. If A is an algebra (i.e., with additive inverses) and ci = −bi and di = 0, the
matrix C as in (8) defines the usual cross product (for A = R).

4.5 Krasner type

One can also insert some hypergroup theory into the theory of Lie pairs.

Theorem 4.26.

(i) (Inspired by [20]) Let R be a semiring, and G a normal multiplicative subgroup of R.
Pick ε ∈ R. Then H = R/G is a hyper-semiring, and let A = P(R/G), i.e., the
elements S ∈ A are unions ∪aiG of cosets of R. In other words, if a ∈ S then
aig ∈ S for each g ∈ G. Addition is defined by

⊞aiG = {
∑

aigi : gi ∈ G}.

(A,A0)
(ε) of Theorem 4.3, and A0 = {S ∈ P(R/G) : 0 ∈ S}. H satisfies all of the

axioms of a reversible weak �⊆-Lie pair, under the Lie bracket [aG bG] = [a, b]G.

(ii) In (i), we could take a Lie multiplicative ideal M of R and instead take

A0 = {S ∈ P(R/G) : S ∩M 6= ∅}.

(iii) Let R be a semiring with an involution (∗), and G a normal multiplicative symmetric
subgroup of R. Then the analog of H of (i), in Theorem 4.10, is a weak Lie pair,
with surpassing relation ⊆.

(iv) In (iii), we could take a symmetric Lie multiplicative ideal M of R and instead take
A0 = {S ∈ P(R/G) : S ∩M 6= ∅}.

Proof. (i) We get the Lie product in R as in [22, Proposition 10.7]. [2, Proposition 5.18]
yields associativity of addition.

(ii) Analogous to (i).
(iii) A/G is a hyper-semiring, as in [2]. Then we apply (i), defining

[S1, S2] = {[ai1, aj2] : ai1 ∈ S1, aj2 ∈ S2},

and have a weak Lie pair with surpassing relation ⊆.
(iv) Analogous to (iii).

Remark 4.27. (⊞iaiG)(⊞jbjG) ⊆ ⊞i,jaibjG in each of the Krasner-type constructions,
in view of (4.7), which shows that there formally are more terms in the right side of
Definition 2.11(ii) than the left, and the extra ones are paired off.
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5 Doubling

Example 5.1. (Abstract doubling of a C-module, also see [2, Example 1.7(iii)]). This is a
way to create a pair with a negation map, from any C-module A.

1. Define Â := A × A with pointwise addition. We think of the first component as a
positive copy of A, and the second component as a negative copy of A.

2. Define multiplication in Â by the twist action

(b1, b2)(b
′
1, b

′
2) = (b1b

′
1 + b2b

′
2, b1b

′
2 + b2b

′
1). (13)

3. Â has the “switch” negation map given by (−)(b1, b2) = (b2, b1).

4. If A is a C-module, then Â is a Ĉ-module with the respect to the twist action

(c1, c2)(b1, b2) = c1b2 + c2b2, c1b2 + c2b1).

Note that (−)(1, 0) = (0, 1).

5. If f, g : (A, T ) → (A′, T ′) are homomorphisms, then define (f, g) : Â → Â′ given by
(f, g)(b1, b2) = (f(b1) + g(b2), f(b2) + g(b1)).

Lemma 5.2. Any doubled d-bimagma Â is Z2-graded as (A× {0}) ⊕ ({0} × A).

Proof. A × {0} is the “+” part, and {0} × A is the “−” part. We need d-bimagmas to
decompose multiplication according to the grading.

Remark 5.3. As in [22] one could obtain a pair by defining

Â0 = Diag := {(b, b) : b ∈ A},

noting that (b1, b2)(−)(b1, b2) = (b1, b2) + (b2, b1) = (b1 + b2, b1 + b2).

5.1 Doubling a pair

As in [2], we rather modify the doubling construction when working in the category of
pairs, as follows:

Example 5.4 (Doubling a pair).

(i) Given a pair (A,A0), we obtain a pair ̂(A,A0) := (Â, Â0) by defining

Â0 = Diag+{(b1, b2) : b1 + b2 ∈ A0}.

(ii) If (A,A0) is a C-pair, then (Â, Â0) is a Ĉ-pair under the twist action.
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Lemma 5.5. If A0 is an ideal of A, then Â0 as defined in Example 5.4 is an ideal of Â.

Proof. By (13), noting that if b1 + b2 ∈ A0 then

b1b
′
1 + b2b

′
2 + b1b

′
2 + b2b

′
1 = (b1 + b2)(b

′
1 + b′2) ∈ A0.

Proposition 5.6. Any multilinear identity or �-identity of an A0-additive bimagma pair
(See Definition 2.3) (A,A0) also holds in the doubled pair.

Proof. By Lemma 2.24 we need only check homogeneous elements, and they are preserved
via the grading.

5.2 Negated Lie pairs from a semiring

Motivated by Theorem 4.3, we construct a Lie pair from any semiring, with the switch
a negation map.

Example 5.7. (Lie bracket on a doubled pair)
Building on Example 5.4, we can define the Lie bracket

[(x1, y1)(x2, y2)] = (x1x2 + y1y2 + x2y1 + y2x1, x1y2 + y1x2 + x2x1 + y2y1).

Theorem 5.8. If A is a semiring then the Lie bracket of Example 5.7 makes (Â, Â0) a

�0-Lie pair, where Â0 = {(a, a) : a ∈ A}.

If (A,A0) is a semiring pair over (C,C0), then (Â,A0) of Example 5.4 is a reversible
Lie pair.

Proof. We get the axioms of Definition 3.3(i) by passing to Â and applying Theorem 4.5.
We could also verify them directly:

[(x, y), (x, y)] = (xx+ yy + xy + yx, xy + yx+ xx+ yy) ∈ Â0.

[(x1, y1),(x2, y2)] + [(x2, y2), (x1, y1)]

= (x1x2 + y1y2 + x2y1 + y2x1, x1y2 + y1x2 + x2x1 + y2y1)

+ (x2x1 + y2y1 + x1y2 + y1x2, x2y1 + y2x1 + x1x2 + y1y2) ∈ Â0,

(14)

and
[[(x1, y1), (x2, y2)](x3, y3)] = [[(x3, y3), (x2, y2)](x1, y1)]

holds by symmetry of the definition.
To prove the Jacobi �0-identity, we need to show that

[(x1, y1), (x2, y2)], (x3, y3)] �0 [(x1, y1)[(x2, y2)(x3, y3)]] + [[(x2, y2), (x3, y3)(x1, y1)]],

which is straightforward but lengthy.

Â0-reversibility may fail since [(x1, y1)(x2, x2)] = (x1x2 + y1x2, x1x2 + y1x2) whereas
[(x2, x2)(x1, y1)] = (x2x1 + x2y1, x2x1 + x2y1).
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5.3 Doubling of Lie pairs

We use the method of doubling to construct a negation map for a Lie pair.

Theorem 5.9. If (L,L0) is a Lie pair, then (L̂, L̂0) is a Lie pair, and there is a Lie

homomorphism (L,L0) → (L̂, L̂0) given by y 7→ (y, 0).
If [ ] is a �-Lie bracket on (L,L0), then [ ] naturally induces a �-Lie bracket on

(L̂, L̂0).

If (L,L0) satisfies †-reversibility (resp. L0-reversibility), then so does (L̂, L̂0).

Proof. We verify the axioms of Definition 3.3(i).

[(x, y)(x, y)] = ([xx] + [yy], [xy] + [yx]) ∈ A0 ×A0 ⊆ Â0.

[(x1, x2)(y1, y2)] + [(y1, y2)(x1, x2)] =

([x1y1] + [x2y2], [x1y2] + [x2y1]) + ([y1x1] + [y2x2], [y2x1] + [y1x2]) ∈ Â0.

If y1 + y2 ∈ A0 then [(x1, x2)(y1, y2)] ∈ Â0 since

[x1y1] + [x2y2] + [x1y2] + [x2y1] = [(x1 + x2)(y1 + y2)] ∈ A0.

The other defining identities (as in Remark 3.4) and �-identities (as in Remark 3.17)

are multilinear and thus pass to (L̂, L̂0) by Lemma 5.6.

Important Note 5.10. The doubled Lie pair need not be a negated Lie pair even though it
has a negation map. Indeed,

(−)[(x1, x2)(y1, y2)] = (−)([x1y1] + [x2y2], [x1y2] + [x2y1]) = ([x1y2] + [x2y1], [x1y1] + [x2y2])

whereas
[(y1, y2)(x1, x2)] = ([y1x1] + [y2x2], [y2x1] + [y1x2]).

6 Representing Lie pairs inside semiring pairs

As always, we work with pairs over (C,C0). Our goal in this section is to embed a Lie
pair in an appropriate associative pair. In order to obtain such a pair, we need to consider
tensor pairs.
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6.1 The tensor d-bimagma and free Lie pairs

We would like to add free Lie pairs to the list of Example 2.18. We need a preliminary.
Tensor products of modules over semialgebras can be defined in the usual universal way,
cf. [19]. But we do not require this generality.

Example 6.1.

1. When constructing the tensor d-bimagma T (V ), rather than having it associative,
we take the free d-bimagma given by tensor multiplication of monomials, cf. Exam-
ple 2.18. In other words, let V ⊗m denote all tensor powers of V over C, distinguished
by parentheses, in the sense that (V ⊗ V ) ⊗ V and V ⊗ (V ⊗ V ) are distinct; for
example,

V ⊗3 := (V ⊗ V )⊗ V ⊕ V ⊗ (V ⊗ V ).

To emphasize nonassociativity, we put parentheses around each monomial. We
set T (V ) :=

⊕
m≥1 V

⊗m, with multiplication defined by juxtaposition, i.e., define
((h1)(h2)) = (h1)⊗(h2), for monomials (h1) and (h2). For example if (h1), (h2) ∈ V ⊗2

then writing (hi) = (vi ⊗ wi) we get

(h1)(h2) = (v1 ⊗ w1)⊗ (v2 ⊗ w2).

Thus V ⊗m is spanned over tensor products of the xi; these are customarily called
pure simple tensors. A simple tensor is a pure simple tensor with a coefficient
from C.

We form a d-bimagma pair (T (V ), T (V )0) over a pair (C,C0) by putting T (V )0 to
be the subspace of T (V ) spanned by:

(a) all simple tensors containing a factor in V0, and

(b) all simple tensors with coefficients from C0,

clearly an ideal of T (V ). Note that (b) is 0 when C0 = 0.

2. For the associative case, let V̄ ⊗m denote all associative tensor powers of V over C,
written without parentheses, and T̄ (V ) :=

⊕
m≥1 V̄

⊗m, with multiplication defined

by h1h2 = h1 ⊗ h2, for monomials h1 and h2. T̄ (V ) is isomorphic to the free
associative algebra over a basis of V.

We also want to make such a construction with vector space pairs. Let us consider
(V, V0) =

⊕
i∈I(C,C0) · xi be the free (C,C0)-module, with basis B = {xi : i ∈ I},

cf. Example 2.18.

Remark 6.2.

(i) We could take C0 = 0 if we want.
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(ii) In the other direction given a free C-module V , we could pass to Ṽ and C̃, to reduce
to the case that (−)1 ∈ C.

Example 6.3. Let (C,C0) be a pair, and take (T (V ), T (V )0) to be the tensor d-bimagma
of Example 6.1.

1. (The free L0-additive Lie pair) We take L to be T (V ), and L(V )0 to be the C-module
generated by T (V )0 and all expressions

(a) (xx),

(b) (xy + yx),

(c) (xy)z+ (yz)x+ (zx)y,

where the x,y, z are simple tensors. In view of Lemma 2.24, the axioms of Defini-
tion 3.3(i) are satisfied by (LL0).

2. If one is willing to modify C, we can define the free Lie pair with basis indexed by
any set I. Namely, we take commuting associative indeterminates cki,j over C, and
use Lemma 3.10 to define L over C[cki,j], and formally defining C0 to be the ideal
defined by conditions (1)-(4) of Lemma 3.10.

3. When (−)1 ∈ C (which can be attained using Remark 6.2), (T (V ), T (V )0)
− is a Lie

pair by means of Corollary 4.5.

But we need a surpassing relation � to work with the �-adjoint algebra, so we also
take a more intricate construction modeled on Proposition 2.22.

Example 6.4 (The free bilinear �-Lie pair). Re-indexing the subscripts of the yi, we adjoin
a formal indeterminate yh1,h2,h3 for each 3-tuple of simple tensors. We take C to be the
congruence generated by all pairs

(h1 ⊗ (h2 ⊗ h3) + yh1,h2,h3, h2 ⊗ (h3 ⊗ h1) + h3 ⊗ (h1 ⊗ h2))

and let U = T (V )/C; i.e., we declare that

h1 ⊗ (h2 ⊗ h3) + yh1,h2,h3 = h2 ⊗ (h3 ⊗ h1) + h3 ⊗ (h1 ⊗ h2)

Let U0 be the multiplicative ideal of U generated by all terms

hi ⊗ hi, hi ⊗ hj + hj ⊗ hi, yh1,h2,h3, i, j, k{1, 2, 3}

where hi are monomials.

Theorem 6.5. (U ,U0)) is a �0-Lie pair. Furthermore if (L,L0) is a �0-Lie pair then for
any ai in L, i ∈ I, there is a Lie homomorphism (L,L0) → (L,L0) sending xi → x̄i := ai
and yh1,h2,h3 to an element ȳh1,h2,h3 of L0 for which

[h̄1[h̄2h̄3]] + ȳh1,h2,h3 = [[h̄2h̄3]h̄1] + [[h̄3[h̄1h̄2].
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Proof. All the relations except the Jacobi �-identity can be written as identities just in
terms of L and L0, so are preserved under substitution. The only difficulty is the Jacobi
�-identity, which as in Proposition 2.22 we rewrite as an identity by inserting the extra
term from L0. (We did not claim uniqueness, since several terms of L0 might provide
equality.)

Remark 6.6. There is a natural map from the degree 2 part of the exterior semialgebra as
in [11] to the Lie pair of Example 4.24. In fact we can construct a congruence of L ⊗ L
which provides the map to L.

6.2 Lie sub-pairs

Definition 6.7.

(i) A weak ψ-Lie sub-pair of a bimagma pair (A,A0) with a pre-negation map ψ is
a sub-pair (L,L0), together with and a map [ ]ψ : L × L → A satisfying the Lie
bracket axioms of Definition 3.3(i), as well as the condition

b1b2 + ψ(b2b1) + [b2b1]ψ ∈ L0, for all b1, b2 ∈ L.

(ii) A �-Lie sub-pair of a bimagma pair (A,A0) with a surpassing map is a sub-pair
(L,L0), together with a bilinear map [ ] : L × L → A satisfying the Lie bracket
axioms of Definition 3.3(i), as well as the condition

b1b2 �0 b2b1 + [b1b2], for all b1, b2 ∈ L.

(iii) An ψ-Lie sub-pair of a bimagma pair (A,A0) is a sub-pair (L,L0), together with
a map [ ] : L×L → A satisfying the Lie bracket axioms of Definition 3.3(i), as well
as the condition

[b1b2] = b1b2 + ψ(b2)b1, for all b1, b2 ∈ L.

We shall call [ ] a bracket, even though we do not require L to be closed under [ ].

Lemma 6.8.

(i) Any ψ-Lie sub-pair is a quasi Lie pair.

(ii) For any pre-negation map ψ, the bimagma pair (L,L0) is an [ ]ψ �-sub-pair of itself.

Proof. (i)
b1b2 + ψ(b2b1) + [b2b1] = b1b2 + ψ(b2b1) + b2b1 + ψ(b1b2)

= b1b2 + b2b1 + ψ(b1b2 + b2b1) ∈ L0.
(15)

(ii) b1b2 �0 b1b2 + b2b1 + ψ(b2b1) = b2b1 + [b1b2]ψ.
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Important Note 6.9. Lemma 6.8 is applicable quite generally, since one can pass to the
doubled bimagma pair and even take ψ to be multiplication by (0, 1). An instance where
one needs to take quasi Lie sub-pairs: We want to view the free Lie pair inside the free
negated associative pair (T (L), T (L)0), which we obtain by doubling in Remark 6.2. If we
send x 7→ (x, 0), then [xy] 7→ ([xy], 0) whereas [(x, 0), (y, 0)] = (xy, yx), which is different.
By adjoining all elements of the form (xy+ [yx], yx) and (xy, [xy] + yx) to T (L)0 we have
a quasi Lie sub-pair.

6.2.1 The weak adjoint morphism

Following classical Lie theory, we want to represent Lie pairs inside semiring pairs. The
following observation is easy.

Proposition 6.10 ( [22, Proposition 10.6]). For any ψ-Lie pair (L,L0), there are weak
Lie morphisms ad : (L,L0) → End(L,L0)ψ, given by b 7→ adb, and, for ψ invertible,

ad† : (L,L0) → (EndL,EndL0)ψ−1, given by b 7→ ψ ad†
b.

Proof. We verify the conditions of Definition 3.20. (i) and (ii) are immediate, and (iii)
follows from the Jacobi L0-identity.

Clearly (ADL,ADL0
) is a pair. We would like to say that it is a Lie pair under the

obvious candidate for Lie bracket, namely [adx ady] := adx ady +ad†y adx, but unfortunately
this need not be closed.

6.3 PBW Theorems for Lie pairs

Throughout this section suppose that (L,L0) is a Lie pair, where L is also a free C-
module with basis {xi : i ∈ J}, and L0 is the submodule with basis {xi : i ∈ J0 ⊂ J}.
Reversing the direction of Theorem 4.3, we want a universal enveloping construction of
a semiring pair from the Lie pair (L,L0). In classical theory this is the celebrated PBW
(Poincare-Birkhoff-Witt) Theorem.

For Lie pairs there are three possible versions ι : (L,L0) → U where U is respectively
Uψ(L,L0), U�(L,L0), Uε(L,L0), depending on which type of Lie pair and which type of
morphism ι we use (resp. weak ε-Lie morphism, �-Lie morphism, ε-Lie homomorphism),
which we fix in the next definition.

Definition 6.11. Universal Property. If (A,A0) is any associative pair given together
with a morphism f : (L,L0) → (A,A0) such that f satisfies resp. (i), (ii), (iii) of Defini-
tion 6.7, then there is a unique respective morphism φf : U(L,L0) → (A,A0) such that
f = φf ◦ ι.

Note that we did not require ι to be injective; this will be examined each time. The
reduction techniques used in classical Lie theory become unusable without cancellation,
but in the semialgebra case we can often apply a degree argument to the elements of the
tensor algebra in the following situation, since we only adjoin monomials of degree ≥ 2 in
the xi to A0.
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Definition 6.12. A semigroup (A, 0) satisfies the lacks zero sums (LZS) property if the
sum of nonzero elements of A cannot equal 0.

The LZS property will be the key to obtaining an injection in Theorems 6.13 and 6.14.

6.3.1 The weak ψ-version of PBW

Theorem 6.13. Suppose (L,L0) is a ψ-Lie pair. Let V = L, extended by a formal set of
indeterminates Y = {yi,j : i, j ∈ J}. Define Uweak;ψ(L) = T (V ) using the construction of
Example 6.3, and, identifying x with ι(x) for x in L, let Uweak;ψ(L)0 be the C-submodule
generated by L(V )0 and

{xixj + ψ(xj)xi + [xjxi] : i, j ∈ I}.

Define Uweak;ψ(L,L0) := (Uweak;ψ(L), Uweak;ψ(L)0). It is worth noticing that only the null
part depends on ψ.

1. Uweak;ψ(L,L0) is a ψ-Lie pair, as in Theorem 4.3.

2. There is a universal weak ψ-Lie morphism ιψ (L,L0) → Uweak;ψ(L,L0) given by
xi 7→ xi, satisfying the Universal Property in this setting.

3. The universal ιψ is L0-injective when L satisfies LZS.

Proof. By definition ι(L0) ⊆ Uweak;ψ(L) = T (V ). Also

[xi, xj]ψ + [xjxi] = xixj + ψ(xj)xi + [xjxi] ∈ A0

by definition, so ι is a weak Lie morphism. Uniqueness is clear since ϕ must satisfy
ϕ(ι(xi)) = f(xi).

It remains to prove that ι is L0-injective when L satisfies LZS. This is seen seen by
checking degrees in the tensor semialgebra. Namely, the degree 1 cannot be in L0 because
of the LZS Property. (Here the lack of negation makes life easier, because there is no
ambiguity!)

6.3.2 The � version of PBW

Now, given a Lie pair (L,L0) endowed with a surpassing map �, we want to construct
an associative negated pair (U�(L,L0)) such that there is a universal �-embedding ι of
(L,L0) such that

xy � ι([xy]) + yx, (16)

satisfying the �-universal Property.
There exists a map φ : U(L,L0) → (A,A0) such that f = φ ◦ ι.
This is a bit subtler than before. Bergman [5] found a beautiful method of proving

the PBW Theorem, related to Gröbner bases, to determine bases of algebras, but lacking
negation is both a hindrance and an asset, as we shall see.
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Theorem 6.14. Suppose (L,L0) is a �-Lie pair satisfying LZS, where L is also a free
C-module with basis {xi : i ∈ I}, where we order the index set I, and L0 is the submodule
with basis {xi : i ∈ J0 ⊂ J}. We refine Example 6.3. Define T (V )> to be the subspace of
T (V ) spanned by monomials xi := xi1 ⊗ · · · ⊗ xim , where i1 > · · · > im.

Let V = L. We take W0 = {yj,i :=: i < j ∈ I}, and U�(L) the semialgebra freely
generated by T (V )> and W0, modulo the relations in the congruence generated by the
relations xjxi + yj,i = xixj + [xjxi], for all j > i, and U�(L)0 the multiplicative ideal of
U�(L,L0) generated by W0 and L0. Then

1. U�(L;L0) := (U�(L), U�(L))0 defines a �-Lie pair, and there is a universal �-
morphism ϕ : U�(L,L0) → (L̃, L̃0) given by xi 7→ x̄i.

2. Furthermore, ι (L,L0) → (U�(L,L0)) is L0-injective when L satisfies LZS.

Proof. First we note that ι is a �-homomorphism. By definition

xixj + yj,i = xjxi + yj,i � xjxi.

This extends to the congruence.
To prove that ι is L0-injective when L satisfies LZS, we simply note that all the relations

have degree ≥ 2 in the xi, so they intersect trivially with L0.

Remark 6.15. What can be said when L does not satisfy LZS? Since the Jordan algebraic
version of the PBW fails, we must deal with the ambiguities using the Lie product. Any
ambiguity involves rearranging sequences of xi into ascending sequences. But the parts
of T (V )> match and these are stipulated to be canceled, so we are left with relations in
A0; for example for i < j < k one considers xk(xjxi) versus (xkxj)xi, which is resolved by
rearranging them and canceling xixjxk :

xk(xjxi) = xk(xixj + [xjxi] + yj,i) = xixkxj + yk,ix
j + xkyj,i + xk[xjxi]

= xixjxk + (xiyk,j + yk,ixj + xkyj,i + xk[xjxi]). (17)

Canceling out xjxixk yields a relation holding in any classical Lie algebra, so we need
some further cancellative property to be in a position to apply the classical PBW theorem.

6.3.3 The ε-version of PBW

Suppose that (L,L0) is a ε-Lie pair, with ε ∈ C.3 Recall that [x, y]ǫ = xy + ǫyx. Then

[x, y]ǫ + [y, x]ǫ ∈ T (L0) := (1 + ǫ)T (L) (18)

xy + yx(1 + ǫ) = xy + ǫyx+ yx = yx+ [x, y]ǫ for all x, y ∈ T (L)

3We could work more generally with a pre-negation map ψ on L if we mod T (L) by the congruence
generated by (ψ(x) ⊗ y, x⊗ ψ(y)) for all x, y ∈ L.
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i.e.
xy �0 yx+ [x, y]ǫ for all x, y ∈ T (L) (19)

There is a natural injection ι : (L;L0) −→ (T (L), T (L0)).
Define now Uε(L) to be T (L) modulo the congruence Cong generated by

([xixj ]ε, xixj + εxjxi)

for elements in L = T 1(L). In other words, if xi, xj ∈ L then ι(xi)ι(xj) + ει(xj)ι(xi) is
identified with the ι image of ǫ[xixj ] ∈ L in T 1(L) ⊆ T (L). Similarly let U(L0) = (1+ ǫ)U .

Theorem 6.16.

1. Uε(L;L0) := (Uε(L),Uε(L)0) defines a ε-Lie pair, which is strong when (L;L0) is a
strong ε-Lie pair.

2. There is a universal ε-Lie homorphism ϕ : Uε(L,L0) → (L̃, L̃0) given by xi 7→ x̄i.

3. Let (A,A0) be any associative (C; C0)-semiring pair, and let f : (L,L0) → (A,A0) be
any map such that

f(x)f(y) + εf(y)f(x) = f([x, y]). (20)

Then there is a unique homomorphism ψf : (Uε(L),Uε(L0)) → (A,A0) such that
f = ψf ◦ ι.

Proof. (1) and (2) are as in the proofs of Theorems 6.13 and 6.14, using Theorem 4.3.
(3) We define the map T (L) → A given by xi 7→ f(xi). By (20) this map factors

through Cong, yielding the desired homomorphism ψf : U(L) → A. Moreover we also
have ψf (U(L)) ⊆ (1 + ε)A = A0.

Description of Uε(L). As a C-module, Uε(L) is spanned by finite linear combinations of
monomials xi11 · · ·xikk , using (20) to reduce whenever possible.

We can obtain surpassing reductions, as in the following example:

Example 6.17.

1. Let x, y, z,∈ L. Then

zxy � (xz + ι([zx]))y = xzy + ι([zx])y

� x(yz + (ι[z, y]) + ι([zx])y = xyz + xι([zx]) + ι([zx])y

In other words
zxy � xyz + xι([zx]) + ι([zx])y.

Notice that the right hand side only involves product of brackets in L and of product
of x, y, z in alphabetical order. We can re-arrange the factors, paying the price of
adding elements of lower degree. However, we may have extra terms of degree 1, so
we may not have an injection.
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Remark 6.18. The identity map on L induces a weak Lie morphism from Uweak(L) = T (V )
to Uε(L), extending the identity on L.
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